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Abstract: This study focused on the effects of the notch angle, notch length, and injection rate
on hydraulic fracturing. True triaxial hydraulic fracturing experiments were conducted with
300 × 300 × 300 mm cement mortar blocks. The test results showed that the fracture initiation
pressure decreased as the notch length and injection rate increased, whereas, the fracture initiation
pressure decreased as the notch angle decreased. Furthermore, the direction of the hydraulic fracture
was always along the direction of the maximum principle stress.

Keywords: hydraulic fracture; notch angle; notch length; injection rate; triaxial stress

1. Introduction

Hydraulic fracturing is a technique for enhancing the hydraulic conductivity of geological
formations, and it is currently indispensable for oil and gas extraction [1–7]. It involves pumping a
conditioned fluid into a rock formation through a borehole at high pressure to open or connect newly
created or pre-existing fractures to form flow pathways. Considerable effort has been devoted toward
developing this technique in terms of understanding phenomena and predicting the geometry and
characteristics of fractures.

Many experimental investigations of hydraulic fractures have been conducted. Fallahzadeh et al.
conducted experiments using 100 and 150 mm mortar samples (cubes) and found that the fracture
initiation and breakdown pressure was dependent on the orientation of the perforations in perforated
wellbore [8]. Wanniarachchi et al. investigated the influence of confining pressure on the hydraulic
fracturing process and the influence of both confining pressure and injection pressure on the
fracture permeability in hydraulically fractured rocks using intact siltstone samples in fracturing
and permeability experiments [9]. Chen et al. investigated the hydraulic behavior of natural
fractures/joints, in particular, the relationships between fracture offset, mechanical aperture, and
hydraulic aperture under different stress conditions through laboratory experiments [10]. Zhou et al.
studied the hydraulic fracture propagation behavior and fracture geometry in naturally fractured
reservoirs and then investigated the effect of random natural fractures on hydraulic fracture through a
series of servo-controlled, tri-axial fracturing experiments [11,12].

In principle, fractures can initiate anywhere along the open borehole section, depending mainly
on the variation in permeability and existing flaws. However, if a man-made radial notch could be cut
such that it dominates local natural variations, the number of hydraulic fractures could be controlled
to grow up from the peripheries of the artificial notches and an expected fracture geometry may be
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achieved [13–17]. In this regard, the quality of a hydraulic fracturing operation is strongly impacted
by the notch geometry, including the angle and length, and the injecting fluid properties, such as
the injection fluid type and flow rate. The key challenge in hydraulic fracturing is the selection of
the most suitable working parameters, including the angle and length of the initial notch and the
injection flow rate, to obtain greater production. To maximize the production rate while minimizing
the production cost, it is necessary to have comprehensive knowledge of each phase of the hydraulic
fracturing process, including the fracture initiation pressure, the geometry of the fracture network
generated, and the direction of the major fracture.

In this paper, the effects of the notch angle, notch length, and injection rate on the hydraulic
fracture propagation were examined. A series of fracturing experiments was conducted using
300 × 300 × 300 mm cement mortar blocks. Based on the test results, changes in the fracture initiation
pressure and the geometry that are attributed to the notch angle and length and the injection rate
are discussed. As a result of these experiments, theoretical references are provided for directional
hydraulic fracturing.

2. Experimental Program

A true triaxial hydraulic fracturing test system was used in this study. As shown in Figure 1, this
system consists of a steel framework, a loading system, and a servo injecting pump, which is capable
of applying three independent orthogonal stresses up to 28 MPa in three directions on a sample. These
stresses were applied to a sample through three pairs of flat jacks which could be controlled separately
by a multi-channel, hydraulic voltage stabilizer.

Water 2018, 10, x FOR PEER REVIEW  2 of 11 

 

impacted by the notch geometry, including the angle and length, and the injecting fluid properties, 

such as the injection fluid type and flow rate. The key challenge in hydraulic fracturing is the selection 

of the most suitable working parameters, including the angle and length of the initial notch and the 

injection flow rate, to obtain greater production. To maximize the production rate while minimizing 

the production cost, it is necessary to have comprehensive knowledge of each phase of the hydraulic 

fracturing process, including the fracture initiation pressure, the geometry of the fracture network 

generated, and the direction of the major fracture.  

In this paper, the effects of the notch angle, notch length, and injection rate on the hydraulic 

fracture propagation were examined. A series of fracturing experiments was conducted using 300 × 

300 × 300 mm cement mortar blocks. Based on the test results, changes in the fracture initiation 

pressure and the geometry that are attributed to the notch angle and length and the injection rate are 

discussed. As a result of these experiments, theoretical references are provided for directional 

hydraulic fracturing. 

2. Experimental Program 

A true triaxial hydraulic fracturing test system was used in this study. As shown in Figure 1, this 

system consists of a steel framework, a loading system, and a servo injecting pump, which is capable 

of applying three independent orthogonal stresses up to 28 MPa in three directions on a sample. 

These stresses were applied to a sample through three pairs of flat jacks which could be controlled 

separately by a multi-channel, hydraulic voltage stabilizer. 

 

Figure 1. Schematic of the true triaxial hydraulic fracturing test system. 

Figure 2 shows the size and structure of the test blocks and the metal casings modeling the 

notches. Six specimens with different notch angles, notch lengths, and injection rates were prepared 

in total, and the experiment parameters of the specimens are listed in Table 1, where l, θ, v, and pi 

denote the notch length, angle, injection rate, and initiation pressure, respectively. Test blocks with 

dimensions of 300 × 300 × 300 mm with a single borehole (diameter: 30 mm, length: 150 mm) were 

prepared using cement mortar. A metal casing was placed in the center of the mold. The initial notch 

was simulated by two circular steel plates with 3 mm spacing. The model blocks were prepared from 

a mixture of Chinese cement (No. 325) and fine sand. The mechanical parameters of the cement 

mortar had an unconfined compressive strength of 28.34 MPa, a Young’s modulus of 8.40 GPa and a 

Poisson’s ratio of 0.23. 

Figure 1. Schematic of the true triaxial hydraulic fracturing test system.

Figure 2 shows the size and structure of the test blocks and the metal casings modeling the notches.
Six specimens with different notch angles, notch lengths, and injection rates were prepared in total,
and the experiment parameters of the specimens are listed in Table 1, where l, θ, v, and pi denote the
notch length, angle, injection rate, and initiation pressure, respectively. Test blocks with dimensions of
300 × 300 × 300 mm with a single borehole (diameter: 30 mm, length: 150 mm) were prepared using
cement mortar. A metal casing was placed in the center of the mold. The initial notch was simulated
by two circular steel plates with 3 mm spacing. The model blocks were prepared from a mixture of
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Chinese cement (No. 325) and fine sand. The mechanical parameters of the cement mortar had an
unconfined compressive strength of 28.34 MPa, a Young’s modulus of 8.40 GPa and a Poisson’s ratio
of 0.23.
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Figure 2. Diagram of the specimens (units: mm): (a) 3D illustration, (b) size, and (c) photo.

Table 1. Test parameters and initiation pressure of specimens.

Specimen Stress State θ (◦) l (mm) v (mm/s) pi (MPa)

1

σv = 6.5 MPa,
σH = 12.0 MPa,
σh = 11.5 MPa

90 15 0.2 22.81
2 90 30 0.2 20.50
3 90 30 0.4 18.29
4 45 15 0.2 16.90
5 45 15 0.4 16.15
6 45 30 0.4 16.02

Six block experiments were performed to investigate the different notch angles, notch lengths,
and injection rates influencing hydraulic fracture propagation. In the experiments, all of the wellbores
were vertical. The notch planes were horizontal for specimens 1–3 and inclined for specimens 4–6.
The test block was placed in the true triaxial stress loading framework. The simulated stress field
conditions were σv = 6.5 MPa, σH = 12.0 MPa, and σh = 11.5 MPa, and the stress direction is shown
in Figure 2. After the stress had been maintained for 30 min, the fracturing fluid was injected into
the wellbore at a constant injection rate. Green guar gum was added to the water tank of the fracture
propagation track to improve the detection of hydraulic fracture. The water injection was stopped
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when the water ran out. After the experiments had been performed, the blocks were cut to reveal the
discontinuity and hydraulic fracture geometry by analyzing photos taken of each block slice.

3. Experimental Results and Analysis

Figure 3 shows the water pressure for the six specimens during hydraulic fracturing. The total
experimental process was divided into three stages. At first, when water was injected into the test block,
the water pressure increased. Then, the pressure fluctuated, indicating hydraulic fracture initiation and
propagation. The fluctuation in pressure indicates the propagation process of the hydraulic fractures.
A highly oscillatory curve was observed at sample 4. This oscillation might have resulted from the
formation of a large fracture surface area and local heterogeneity. Finally, the hydraulic fractures
connected with the boundary surface and the water pressure decreased.
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The laboratory-obtained drying water pressure curves were different each other due to the effects
of the notch length, angle, and the injection rate. The initiation pressures were obtained from these
six specimens. The initiation pressure refers to the pressure at the first fluctuation in the water
pressure curves.

3.1. Effect of Notch Angle

The angle of notch had a significant effect on the hydraulic fracture, as shown in Figures 4 and 5.
When θ = 45◦, the water pressure increased faster, and the initiation pressure occurred earlier than when
θ = 90◦. Moreover, the initiation pressure for θ = 45◦ was lower than that for θ = 90◦. A lower notch
angle accelerated hydraulic fracturing and facilitated the perforation and cutting of the test blocks,
whereas, the larger notch angle delayed the initiation and propagation of the hydraulic fractures.
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3.2. Effect of Notch Length

The effect of the notch length on the hydraulic fracture is shown in Figures 6 and 7. A longer notch
length generated a smaller initiation pressure. This is because a longer notch produces larger stress
concentrations near the notch-tip. This phenomenon may result in fractures initiating preferentially at
the ends of the notch.
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3.3. Effect of Injection Rate

Figures 8 and 9 indicate the effect of the injection rate on the hydraulic fracture. When the injection
rate increased, the initiation pressure reduced, as did the time taken to achieve the initiation pressure.
This was mainly because more energy is supplied to the notch as water is injected at a higher flow
rate. Consequently, the notch pressurization rate increases. This makes the fracturing process more
dynamic, and as a result, a smaller fracture initiation pressure is required to create a fracture.
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3.4. Fracture Geometry

The geometry of the hydraulic fracture along the notch plane direction plays an important role
during the fracturing operation. A more planar fracture plane results in a wider and smoother fracture
with less frictional pressure loss. The fracture configurations for six specimens are shown in Figure 10.
For specimens with θ = 90◦ (specimens 1, 2, and 3), horizontal fractures were induced. Hydraulic
fractures propagated directly along the notch plane regardless of the notch length and injection rate.
When θ = 45◦ (specimens 4, 5, and 6), the fractures deviated along the notch plane toward the direction
of minimum horizontal stress. The spatial configuration of the hydraulic fracture was a curving surface
instead of a plane. It is noteworthy that the propagation mode and configuration of the hydraulic
fractures were basically independent of the notch length and injection rate.
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Figure 10. Hydraulic fracture configurations for the six specimens.

4. Conclusions

(1) A larger notch length and injection rate but a smaller notch angle is responsible for the decrease
in fracture initiation pressure.

(2) The fracture propagation geometry may not be directly related to the notch length and injection
rate but rather, governed by the notch angle.

(3) The propagation direction of a hydraulic fracture is at an angle to the horizontal direction and
the surface of hydraulic fracture is a curved surface when the notch plane is not perpendicular to
the direction of the minimum principal stress.
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