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Abstract: This paper employs an optimization algorithm called the salp swarm algorithm (SSA) for
the parameter estimation of the soil water retention curve model. The SSA simulates the behavior
of searching for food of the salp swarm and manages to find the optimal solutions for optimization
problems. In this paper, parameter estimation of the van Genuchten model based on nine soil samples,
covering eight soil textures, is conducted. The optimization problem that minimizes the difference
between the measured and the estimated water content is formulated, and the SSA is applied to
solve this problem. To validate the competitive advantage of the SSA, the experimental results are
compared with Particle Swarm Optimization algorithm, the Differential Evolution algorithm and the
RETC program, which indicates that SSA performs better than the three methods.

Keywords: irrigation and drainage; soil characteristics; salp swarm algorithm; evolutionary algorithm

1. Introduction

Soil water retention is a key soil property, playing a significant role in many applications in the
fields of irrigation, hydrology, geotechnical engineering, and soil science in general [1]. The soil water
retention curve (SWRC), which gives the relation between the amount of water contained in soil
and the soil water potential, is widely used to estimate unsaturated soil properties [2]. The method
of measuring the SWRC directly can be time-consuming, and improper measurement may lead to
greater errors. Thus, mathematical equations to approximate the general form of the SWRC have
been suggested, and several different analytical models, including Farrell-Larson [3], Brooks-Corey [4],
Fredlund-Xing [3], Gardner [5], van Genuchten [6], Campbell [7], and Russo [8,9] models, have been
proposed. These models usually contain several parameters that need to be identified based on
collected experimental data. An optimization problem that minimizes the difference between the
measured and the estimated water content are formulated to determine the parameters. In order
to address the optimization problem, nonlinear least-square (NLS) [6] methods and heuristic search
methods [10] are usually considered.

NLS methods, a form of least squares analysis, are used to fit a set of m observations with
a model that is non-linear parameterized by n unknown parameters (m > n) [11,12]. The basis of
the NLS method is to approximate the model by a linear function and to refine the parameters by
successive iterations. The RETC algorithm is a representative NLS method [13] and is widely used
in parameter estimation of SWRC. However, the estimation result of RETC cannot be guaranteed
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to be a globally optimal solution, which requires parameter initialization with prior knowledge of
specified soil types. On the contrary, the heuristic search methods do not need prior knowledge to
initialize the model parameters, which contributes to a performance that is better than that of the NLS
methods in the parameter estimation of SWRC. However, these heuristic search methods require some
specified parameters that could have effects on the final estimation solution, and the adjustment of
these parameters may be also time-consuming [14], such as the inertia weight, and learning factors in
particle swarm optimization (PSO) [15].

There are many related studies on the parameter estimation of SWRC. Hosseini et al. [2] used the
van Genuchten and Fredlund-Xing equations for the estimation of the SWRC, which takes the plasticity
index and fine content into consideration. Xing et al. [16] proposed a vertical infiltration method to
estimate parameters α and n and further develop the SWRC and establish the relationships describing
the cumulative infiltration and infiltration rate with the depth of the wetting front. Oh et al. [17]
modified van Genuchten’s function for SWRC within the range of low matric suction to improve
the Mualem hydraulic conductivity (HC), and van Genuchten-Mualem hydraulic conductivity was
then modified to integrate the proposed SWRC for each interval decomposed by a tangential curve.
The modified model was tested on Korean weathered soils and accurately predicted the unsaturated
behavior of the HC functions. Wang et al. [18] proposed a method based on the Jaya algorithm to
estimate the parameters of the van Genuchten model via four different soil samples, and the results
showed the superiority of the proposed method. Matula et al. [19] applied Woesten’s continuous
pedotransfer functions to 140 SWRCs measured in a selected location, and the results showed that the
general equation of Woesten’s pedotransfer functions were not very suitable to estimate the SWRC
for the location studied. Maggi [20] used a method based on the differential evolution algorithm
for the determination of the characteristic parameters of several water retention models from the
experimental data, and the method could find the optimal model parameters without any prior
information. Chen et al. [21] used the Monte-Carlo method to analyze the sensitivity of the parameters
and uncertainty of the van Genuchten model to obtain the key parameters and a posteriori parameter
distribution to guide the parameter identification, and a new type of intelligent algorithm-difference
search algorithm was then employed to identify these parameters. Nascimento et al. [22] estimated the
parameters of the van Genuchten model using the inverse modeling function of Hydrus-1D, and the
results revealed that the Hydrus-1D can simulate well the behavior of matric potential and moisture
over time if the field data is fed.

In order to avoid the additional, unnecessary work caused by adjusting these specified
parameter in the SWRC parameter estimation, the SSA was employed to determine these parameters.
Taking advantage of the lack of algorithm-specified parameters in SSA [23], the parameter estimation
of the SWRC based on nine different soil samples, covering eight soil textures, is performed and the
van Genuchten Model is selected as the SWRC model. To verify the efficient performance of this
algorithm, the estimation solution is compared with the PSO algorithm, the differential evolution (DE)
algorithm, and the RETC program.

2. The Van Genuchten Model

The van Genuchten Model was proposed by van Genuchten in 1980 [6]. Due to the superiorities
of simple form and high fitting ability, the van Genuchten Model has gained popularity and is widely
used in research on soil water retention. The van Genuchten Model depicts the relation of the water
contained ϕ(h)(cm3cm−3) and soil water potential h(cm−1). The formula of the van Genuchten Model
is shown in (1):

ϕ(h) = ϕr + (ϕs − ϕr)(1 + α|h|n)−m (1)

where ϕr is the residual water content, ϕs represents the saturated water content, α is a parameter
given by experience, n is the shape parameter of the curve, and m = 1− 1/n.
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Referring to the optimization problem formulated, the sum of squared errors (SSE) is utilized as
the metric in order to evaluate the difference between the measured and the estimated water content.
The SSE is defined as follows:

SSE =
N

∑
k=1

(ϕ(hk)r − ϕ(hk)e)
2 (2)

where the ϕ(hk)r is the measured data, while the ϕ(hk)e is the estimated value corresponding to the hk,
and N is the total number of measurements in each soil sample.

3. Salp Swarm Algorithm

The salp swarm algorithm was proposed by Seyedali Mirjalili in 2017 [23] and is used in many
fields. For example, Sayed et al. [24] used an SSA-based algorithm for feature selection, and the results
indicate that the algorithm has the capability of finding an optimal feature subset, which maximizes
the classification accuracy and minimizes the number of selected features [24,25]. It can also used to
adjust the hyper-parameters of neural networks and other machine learning models [26–28].

The main idea of SSA is inspired by the predatory behavior of salp, a kind of creature in the ocean.
The salps often form a swarm called a salp chain and move forward to the food resource, which has
not been able to be explained clearly until now. In SSA, the population is divided into two groups,
leaders and followers, according to the position in the chain. The leader is in the front of the chain and
the followers follow it. For a specified model, assume that n variables need to be estimated, x denotes
the position of a salp, and y defines the food source, which indicates the target of the swarm in the
search space. The leader salp updates its position by (3) in the search process:

x1
i =

{
yi + r1((ubi − lbi)r2 + lbi) r3 ≥ 0
yi − r1((ubi − lbi)r2 + lbi) r3 < 0

(3)

where the x1
i is the position of the first salp in the ith dimension, and yi is the food position in the

ith dimension. lbi and ubi represent the lower bound and the upper bound of the ith dimension,
and r1, r2, r3 are three random numbers.

Among the three random numbers, r1 occupies the dominant position because it balances
exploration and exploitation during the entire search process, and it is defined as

r1 = 2e−(
4l
L )

2
(4)

where L is the maximum iterations, l is the current iteration, and r2, r3 are random numbers between
[0,1]. For the followers, the following equation is used to update their positions according to Newton’s
law of motion:

xj
i =

1
2

λt2 + δ0t (5)

where j ≥ 2, xj
i indicates the position of the jth salp in the ith dimension, t is the time, δ0 is an initial

speed, and λ =
δ f inal

δ0
, where δ = x−x0

t .
Considering the assumption that δ0 = 0, and t equals the iteration in an optimization problem,

the aforementioned equation can be transformed into the following form:

xj
i =

1
2
(xj

i + xj−1
i ) (6)

where j ≥ 2. This equation shows that the following salps update their position based on the position
of their own and the prior salp.
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If some salps move outside the limited search space, they will be brought back to the boundaries
though the limitation formula:

xj
i =


l j i f xj

i ≤ l j

uj i f xj
i ≥ uj

xj
i otherwise

(7)

All of the above updates are iteratively executed until satisfaction of the end condition. It should be
pointed that the food source can be updated sometimes because the salp chain may find a better solution
by exploring and exploiting the space around the current solution. In other words, the salp chain has
the ability to move toward the global optimum solution during the optimization. The procedure of the
SSA is illustrated in Algorithm 1, which shows that the SSA starts approximating the global optimum
by initiating multiple salps with random positions, updates these positions iteratively, and finally finds
a global optimization solution. A flowchart of the SSA is shown in Figure 1.

Algorithm 1 The Procedure of the Salp Swarm Algorithm (SSA) Algorithm.

Require: Initialize the salp population xi(i = 1, 2, ..., n) consider ub and lb.
while (End condition is not satisfied)

Calculate the fitness of each search salp
F=the best search solution
Update r1 by Equation (4)

for each salp (xi)
if (i == 1)

Update the position of the leading salp by Equation (3)
esle

Update the position of the followers salp by Equation (6)
end

end
Verify the position of salps based on the upper and lower bounds

end
return F

Benchmarking Algorithms

To assess the performance of the SSA in parameter estimation, its estimation results are compared
with the PSO and DE algorithms, as well as the RETC program.

PSO is an evolutionary algorithm–algorithm, which starts from a random solution and finds the
global optimum by following the optimal value found in the current research. The advantage of PSO is
that it is easy to implement and there are not many parameters to be adjusted. The updating formula
of PSO is

δ
′
i = ωδi + r1c1(pbesti − xi) + r2c2(gbesti − xi) (8)

where ω, c1, and c2 are three specified parameters, δ
′
i and δi represent the new updated and the current

velocities, and pbesti is the best solution found by the ith particle, while the gbesti indicates the global
best solution.

The RETC program, a computer program which includes an NLS algorithm for optimization,
developed by the U.S Salinity Laboratory, can be used to predict the hydraulic conductivity from
observed soil water retention data. The executable program can be obtained from the Laboratory’s
website freely, and the program can work normally on a Windows 10 system.
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Figure 1. The flowchart of the salp swarm algorithm (SSA).

4. Estimation Algorithms and Dataset

In this paper, the parameter estimation of the van Genuchten Model using the SSA is performed.
In order to show the universality of SSA, nine different soil samples that consist of eight soil textures
are employed to conduct the experiment. Furthermore, the PSO and DE algorithms, as well as the
RETC program, are utilized as benchmarks for comparison.

The DE algorithm is a type of evolutionary algorithms for solving the global optimal solution
in multidimensional space [29]. In the DE algorithm, M parent vectors, each of which consists of
j-dimensional vectors, are initialized as

xi,j = Li + rj(Ui − Li) (9)

where rj is randomly generated in (0, 1). In the gth generation, three different individual vectors,
xi1, xi2, and xi3, are selected randomly to compute the mutant vector pi:

pi(g) = xi1(g) + F [xi2(g)− xi3(g)] (10)

where F is a constant factor in [0, 2]. Then the trial vector is formed:

ui,j(g) =

{
pi,j(g) i f (rj ≤ Rj) or (j = Rm)

xi,j(g) otherwise
(11)
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where Rj is a parameter specified by user which is a constant in [0, 1), Rm is generated randomly in
set {0, 1, ...., M− 1, M}. In the process of vector updating, the vector in xi,j(g) and ui,j(g), which has
a smaller fitness value for the objective function would be selected as the parent vector for the next
generation. The iteration process ends until the set condition is satisfied.

Data Description

The data for this experiment are collected from the UNSODA database and can be obtained
freely. The nine soil samples data recorded contain the soil water potential and the water content.
More details of physical properties are represented in Table 1.

Table 1. The physical properties of nine soil samples.

Soil Sample ID Location Bulk Density Data Number Soil Type

3020 Moscow, Russia 1.21 5 Sand
1120 Rome, AL, USA 1.63 10 Sandy Loam
3154 Dickey Co., ND, USA 1.53 10 Sand
1330 Hannover, Germany 1.37 21 Silt
1173 Clemson, SC, USA 1.38 11 Clay Loam
1102 Blackville, SC, USA 1.71 9 Sandy Clay
1162 Watkinsville, GA, USA 1.54 15 Clay
1361 Reinhausen (Goettingen), Germany 1.49 11 Silty Clay
2400 Cass County, ND, USA 1.08 17 Loam

From Table 1, we can see that the data are different in type, bulk density, and location, and the
number of data points covers from 5 to 21, which indicates that the effectiveness of the proposed
method is validated with different datasets to examine the universality of this algorithm. The lower
bound and upper bounds of parameters, ϕr, ϕs, α, and n of the van Genuchten Model are set and
presented in Table 2.

Table 2. The lower and upper bounds of the four model parameters.

Parameter ϕr ϕs α n

Lower Bound 0 0 0 1
Upper Bound 1 1 100 100

5. Estimation Results and Discussion

To estimate the parameters of the van Genuchten Model efficiently using the SSA, the population
size was set to 50 and the maximum number of iteration was 30,000. In this experiment, the end
condition was that the current iteration reaches the maximum iteration. Furthermore, in order to
search the set of parameters corresponding to each soil sample, data with different sizes were used,
and the estimation procedure was repeated.

For the three benchmarking methods, the algorithm-specific parameters in DE and PSO were set
according to [20,30], and a precompiled version RETC was applied. The source code of the SSA was
written in Matlab, and a Windows 10 system with an Intel Core i5@3.20GHz CPU and 4GB memory
was used to conduct the experiment. The computational results of the experiment are shown in Table 3.
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Table 3. Estimated parameters and the sum of squared errors (SSE) of the van Genuchten model using
SSA, differential evolution (DE), particle swarm optimization (PSO), and RETC.

Soil Sample ID Algorithm ϕr (cm3cm−3) ϕs (cm3cm−3) α (cm−1) n SSE (10−3)

3020

SSA 0.19166 0.44901 0.06244 2.40869 0.011171
DE 0.19166 0.44901 0.01796 2.40869 0.011724

RETC 0.19166 0.44901 0.01796 2.40885 0.011718
PSO 0.19220 0.44900 0.01780 2.43342 0.011732

1120

SSA 0.07951 0.28940 0.02583 1.88130 0.261462
DE 0.07951 0.28940 0.01238 1.88130 0.261464

RETC 0.07951 0.28940 0.01239 1.88119 0.261465
PSO 0.07951 0.28940 0.01238 1.88131 0.261463

3154

SSA 0.06941 0.41611 0.06706 2.69126 0.214173
DE 0.06941 0.41611 0.02813 2.69128 0.214174

RETC 0.06942 0.41609 0.02813 2.69178 0.214175
PSO 0.06941 0.41611 0.02813 2.69131 0.214174

1330

SSA 0.08362 0.38004 0.00337 2.11588 11.25378
DE 0.08362 0.38004 0.00259 2.11588 11.25378

RETC 0.08373 0.37998 0.00259 2.11992 11.25386
PSO 0.08344 0.38021 0.00260 2.10977 11.25391

1173

SSA 0.29087 0.47857 0.03335 1.14316 0.037139
DE 0.30479 0.47850 0.03022 1.16004 0.037951

RETC 0.30130 0.47850 0.04960 1.15530 0.499869
PSO 0.03266 0.47909 0.05867 1.04872 0.041419

1102

SSA 0.12175 0.34674 0.09208 1.29730 0.240458
DE 0.12198 0.34673 0.09168 1.29806 0.240460

RETC 0.12170 0.34670 0.15910 1.29720 1.402827
PSO 0.12183 0.34677 0.09208 1.29753 0.240460

1162

SSA 0.29374 0.41333 0.01369 1.31096 2.711846
DE 0.29372 0.41334 0.01371 1.31075 2.711846

RETC 0.29400 0.41330 0.03770 1.31270 4.622924
PSO 0.29311 0.41346 0.01424 1.30620 2.711884

1361

SSA 0.16454 0.43307 0.00105 1.25767 0.266938
DE 0.16448 0.43308 0.00106 1.25746 0.266939

RETC 0.16450 0.43319 0.00430 1.25760 10.92369
PSO 0.16128 0.43329 0.00112 1.25138 0.267039

2400

SSA 0.19672 0.45414 0.00139 1.58303 0.144518
DE 0.19633 0.45419 0.00139 1.58259 0.144576

RETC 0.19670 0.45410 0.00157 1.58310 0.418468
PSO 0.19455 0.45444 0.00147 1.57232 0.144657

As shown in Table 3, we can see that the SSA performs better than the three benchmarking methods
for Soil Samples 3020, 1120, 3154, 1102, 1361, 1173, and 2400, which indicates that SSA can find more
accurate parameter sets in the van Genuchten model. However, it is observable that the SSA has the same
SSE value with DE for Soil Samples 1330 and 1162. Meanwhile, it can be seen that the RETC program
shows a good performance for Soil Samples 3020, 1120, 3154, and 1330, but it has poor performance
for the remaining soil samples, especially Soil Sample 1361, where the SSE of RETC is 1.092369× 10−2.
For PSO, its performance is similar to that of DE. The results of the nine soil samples show the superiority
of heuristic algorithms compared with the NLS method for the SWRC parameter estimation problem.

In order to illustrate the difference between the measured data and the estimated data, Figure 2
shows the details of SWRCs of all eight soil samples corresponding to the eight soil textures.



Water 2018, 10, 815 8 of 11

0 1 2 3 4 5 6 7

(a)  Soil Water Potential(log(hPa+1))

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Wa
te
r 
Co
nt
en
t(
cm
3/
cm
3)

Measured Data

Estimated Data

SWRC modeled by SSA

0 1 2 3 4 5 6 7

(b)  Soil Water Potential(log(hPa+1))

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Wa
te
r 
Co
nt
en
t(
cm
3/
cm
3)

Measured Data

Estimated Data

SWRC modeled by SSA

0 1 2 3 4 5 6 7

(c)  Soil Water Potential(log(hPa+1))

0.15

0.20

0.25

0.30

0.35

Wa
te
r 
Co
nt
en
t(
cm
3/
cm
3)

Measured Data

Estimated Data

SWRC modeled by SSA

0 2 4 6 8 10 12

(d)  Soil Water Potential(log(hPa+1))

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Wa
te
r 
Co
nt
en
t(
cm
3/
cm
3)

Measured Data

Estimated Data

SWRC modeled by SSA

0 2 4 6 8 10

(e)  Soil Water Potential(log(hPa+1))

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

Wa
te
r 
Co
nt
en
t(
cm
3/
cm
3)

Measured Data

Estimated Data

SWRC modeled by SSA

0 1 2 3 4 5 6 7

(f)  Soil Water Potential(log(hPa+1))

0.25

0.30

0.35

0.40

0.45

0.50

Wa
te
r 
Co
nt
en
t(
cm
3/
cm
3)

Measured Data

Estimated Data

SWRC modeled by SSA

0 2 4 6 8 10

(g)  Soil Water Potential(log(hPa+1))

0.25

0.30

0.35

0.40

0.45

Wa
te
r 
Co
nt
en
t(
cm
3/
cm
3)

Measured Data

Estimated Data

SWRC modeled by SSA

0 1 2 3 4 5 6 7

(h)  Soil Water Potential(log(hPa+1))

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

Wa
te
r 
Co
nt
en
t(
cm
3/
cm
3)

Measured Data

Estimated Data

SWRC modeled by SSA

Figure 2. The estimated SWRCs of eight soil samples using SSA. (a) Sample 3020, (b) Sample 1120,
(c) Sample 1102, (d) Sample 1330, (e) Sample 1162, (f) Sample 2400, (g) Sample 1361, and (h) Sample 1173.

Figure 2 visualizes the estimation results, and it can be observed that the estimated curves with
the modeled data can fit the measured data accurately for Samples 3020, 1120, 2400, and 1173 (see in
Figures 2a,b,f,h), which have fewer data points than the rest of the soil samples. Correspondingly, it is
observable that, for Soil Samples 1330 and 1162, which have more data points, the SWRC cannot perform
as well as it can for Soil Samples 3020 and 1120. From the values of SSEs recorded in Table 2 and the
eight subgraphs, it can be observed that the SSA can estimate parameters of the van Genuchten model
accurately even with a smaller dataset. Apart from the lower and upper bounds of the set of parameters
need to be estimated, the SSA does not have any other model-specified parameters. Due to this advantage,
the SSA is applicable to estimate parameters of the van Genuchten model simulating the SWRC.

It is not practical to perform the parameter estimation with a normal computer in the field.
Thus, a portable computing device is a better option. To verify the performance of the SSA on
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embedded devices, we implemented the parameter estimation algorithm on Raspberry Pi 3 using the
Octave language. The hardware specification of the Raspberry Pi 3 platform was a 64-bit quad core
processor, with on-board WIFI, Bluetooth, and USB boot capabilities, and 1 GB of memory. The lower
and upper bounds, population size, and maximum iteration were set to the same value as those on the
Windows 10 system in the verification experiment. Soil Samples 2400, 3020, 1361, 1330, and 1102 were
selected, and the estimation SSEs are given in Table 4.

Table 4. SSEs of SSA on Raspberry Pi 3 and a Windows 10 system.

Soil Sample Id SSE on Raspberry Pi 3 (10−3) SSE on Windows 10 System (10−3)

2400 0.144518 0.144518
3020 0.011171 0.011171
1361 0.266938 0.266938
1102 0.240458 0.240458
1330 11.25378 11.25378

From Table 4, the estimated SSEs are the same as those on the Windows system. The results show
that the SSA can perform well on the Raspberry Pi 3, a embedded computing device, which makes the
algorithm applicable on portable devices in the field.

6. Conclusions

A new heuristic algorithms SSA was utilized to estimate the parameters of the van Genuchten
model, and nine soil samples, covering eight soil textures, were collected to validate the universality of
the SSA.

In the nine estimation experiments, the SSA performed better than the three benchmarking
methods, including DE and PSO algorithms, and the RETC program. The SWRC using parameters
estimated by SSA based on the van Genuchten model could fit the measured data well and provided
minimum values of SSE among all the algorithms. Furthermore, by comparing the estimated SSEs on
both Raspberry Pi 3 and Windows 10 platforms, the SSA can obtain the same results, so it is suitable
for the embedded implementation.
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