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Abstract: With the changing environment, a number of researches have revealed that the assumption
of stationarity of flood sequences is questionable. In this paper, we established univariate and
bivariate models to investigate nonstationary flood frequency with distribution parameters changing
over time. Flood peak Q and one-day flood volume W1 of the Wangkuai Reservoir catchment
were used as basic data. In the univariate model, the log-normal distribution performed best and
tended to describe the nonstationarity in both flood peak and volume sequences reasonably well.
In the bivariate model, the optimal log-normal distributions were taken as marginal distributions,
and copula functions were addressed to construct the dependence structure of Q and W1. The results
showed that the Gumbel-Hougaard copula offered the best joint distribution. The most likely events
had an undulating behavior similar to the univariate models, and the combination values of flood
peak and volume under the same OR-joint and AND-joint exceedance probability both displayed
a decreasing trend. Before 1970, the most likely combination values considering the variation of
distribution parameters over time were larger than fixed parameters (stationary), while it became the
opposite after 1980. The results highlight the necessity of nonstationary flood frequency analysis.

Keywords: nonstationarity; univariate model; GAMLSS; bivariate model; copulas

1. Introduction

Flood frequency analysis is the premise and foundation of water conservancy project planning
and construction. The current flood frequency analysis methods usually assume that the flood series
satisfies consistency, that is, that the distribution form or the statistical law of the flood sequence
is fixed [1]. However, with climate change and intensification of human activities, especially the
construction of large-scale water conservancy and water conservation engineering and the urbanization
process, the runoff yield and concentration mechanism, and the temporal and spatial distribution of
flooding have been changed [2]. This results in the inconsistency of flood series and the unreliability
of the frequency obtained from current frequency analysis methods [3]. Therefore, it is of great
significance to study the nonstationary flood frequency analysis methods [4].

Existing nonstationary flood frequency analysis methods in literature include mixture distribution
methods, conditional probability distribution methods, and time-varying moment methods. The main
idea of the nonstationary flood frequency analysis methods based on mixture distribution is that the
individuals of the extreme series are not from the same population [5]. That is, the series formed
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by different hydrological processes does not follow the same distribution, thus it was assumed to
consist of several sub-distributions. The nonstationary flood frequency analysis methods based on
conditional probability distribution divide the flood into several periods based on the differences
in flood formation mechanism, analyze the occurrence probability of annual maximum value in the
different periods, and then obtain the probability density function of the extreme series [6].

Different from the mixture distribution models and conditional probability distribution models,
models with time-varying moment consider the change of climate and land surface to have resulted in
a change in the physical processes and mechanism of flood generation, such that the parameters of the
distribution followed by the flood sequence are functions of time rather than constant. Much attention
has been paid to time-varying moment models [7]. Vasiliades et al. [8] applied a time-varying moment
model based on Generalized Extreme Value (GEV) distribution to analyze nonstationary frequency,
through assuming the parameters of GVE distribution to be the functions of time or other factors and
conducting a goodness-of-fit test to the model, thus verifying the significance of the nonstationarity of
hydrological sequences.

This study addressed models with time as covariate for nonstationary flood frequency analysis
based on GAMLSS (Generalized Additive Models for Location, Scale, and Shape) theory. GAMLSS
was first proposed by Rigby and Stasinopoulos [9,10]. This model overcomes the limitations of the
GLM and GAM models, greatly expands the range of the distribution types, and provides a variety of
ways to produce different distributions, including a series of continuous and discrete distributions
with high skewness and/or high peak. In addition, the systematic components provide more plentiful
content. For example, it can introduce more complex parametric (linear or non-linear), semi parametric,
non-parametric, or random-effect terms to establish models between the distribution parameters (mean,
variance, etc.) and the explanatory variables. The GAMLSS model has been widely applied in the
military, economics, medicine, and other fields [11–13]. Hydrologists have also done many researches
using GAMLSS in recent years. Serinaldi and Kilsby [14] used the GAMLSS model to analyze the
monthly rainfall data of 6 stations in England and Wales. They found that the model could better
describe the characteristics of rainfall series, and had better performance for fitting the relation between
extreme rainfall events, rainfall and atmospheric circulation index, and sea surface temperature. López
and Francés [15] proposed two methods based on the GAMLSS model to investigate the nonstationary
frequency analysis of the annual maximum flood records of 20 Spanish inland rivers. The results
illustrate that the nonstationarity of flood series caused by the effects of climate change and human
activities can not to be ignored, and GAMLSS provides a convenient and flexible model framework
for considering the influence of climate factors and human activities in the analysis of non-stationary
flood frequency.

In flood frequency analysis, univariate probability distribution functions are usually used to
estimate the occurrence probability or magnitude of the flood peak or volume in a certain region.
However, flood events involve more than one characteristic variable such as flood peak discharge,
flood volume, flood water level, etc. In order to estimate the probability of flooding, one needs to
know not only the high and extreme values of each variable, but also the likelihood of their occurring
simultaneously [16]. The main issue of the univariate models is their difficulties in capturing the
underlying joint probability among multiple physical processes, and this will lead to underestimation
of the associated occurring probability [17]. For instance, if only the rainfall is considered to estimate
the flood risk for a catchment, the resultant estimation would be significantly lower than its true risk,
when there is a statistically significant dependence between the rainfall on the catchment and the
downstream high water levels. To this end, bivariate models are used to address this issue [18].

Copula functions, for which the marginal distribution of each variable is uniform, were adopted in
the bivariate model with time as covariate in this study. They are popular in high-dimensional statistical
applications because they allow one to easily model and estimate the distribution of random vectors
by estimating marginals and copulae separately. They can describe the linear, non-linear, symmetric,
and asymmetric relations between variables, and are simple, flexible, and adaptable in application.
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Therefore, copulas are effective mathematical tools to construct the multivariate joint distribution
and correlation between variables. In recent years, they have been widely used in multivariate
hydrological frequency analysis. In drought characteristics analysis, Mirabbasi et al. [19] used a
copula function to establish the joint probability distribution between drought duration and drought
degree. In rainfall frequency analysis, Zhang and Singh [20] adopted copula functions to construct
the bivariate joint distribution between rainfall intensity and depth, rainfall intensity and duration,
and rainfall depth and duration, respectively. The results were compared with a Gumbel mixture
model and a two-dimensional normal transformation distribution model. Fu G. and Butler D. [21]
used the copula method to separate the dependence structure of rainfall variables from their marginal
distributions, and analyzed the different impacts of dependence structure and marginal distributions
on system performance.

This paper takes Wangkuai Reservoir, which is undergoing substantial change in climate, land
use/land cover, and increased number of soil-water conservation projects in Daqing River Basin,
to construct both univariate and bivariate time-varying moment models for flood frequency analysis
based on GAMLSS theory. The inflow flood peak and flood volume time series (1956–2004) of Wangkuai
Reservoir were selected as basic data to discuss the nonstationary univariate and peak-volume bivariate
joint flood frequency analysis methods. Flood quantiles and the combined values of flood peak
and flood volume under certain exceedance probabilities have been worked out. This study aims
to provide new ideas and approaches for nonstationary flood frequency analysis method under a
changing environment.

2. Study Region and Data

Wangkuai Reservoir is located in the upstream of Sha River, Daqinghe Catchment (Figure 1).
Its construction started in June 1958 and finished in September 1960. The control area of the reservoir is
3770 km2, and the storage capacity is 13.89 × 108 m3. The currently used design floods were calculated
with flood data series under the assumption of stationarity. The watershed receives an average
precipitation of 626.4 mm annually, mostly in the summer (70–80%). The annual mean temperature
is 7.4 ◦C.

Water 2018, 10, x FOR PEER REVIEW  4 of 14 

 

 
Figure 1. The study area: Wangkuai Reservoir in the Daqinghe river basin with the Wangkuai Reservoir 
watershed in the upper-left corner. 

3. Methods 

3.1. Generalized Additive Models in Location, Scale, and Shape (GAMLSS) 

In this study, we adopted a general class of regression models which was called the Generalized 
Additive Models in Location, Scale, and Shape (GAMLSS) to analyze the nonstationary flood 
frequency. In GAMLSS models, one assumes that the vector of actual observation values 

( )nT yyyy ,,, 21 =  follows a probability (density) distribution function ( )iiyf θ , where 

( ) ( )iiiiiiiii ,,,,,, τυσμθθθθθ == 4321
 is a parametric vector. The first two parameters of the 

model are usually defined as position and scale parameters, which are the mean vector and the mean 
variance vector of random variables. If there are other parameters in the distribution, such as the 
skewness vector iυ  and the kurtosis vector iτ  of random variable series, they are all designated 
shape parameters. In this paper, we only consider the first two parameters. A GAMLSS model can be 
expressed as a known monotonic link function which demonstrates the explanatory variables and 
random effects: 

( ) iiii X|yf βθ =  (1) 

where 
iθ  are n-length vectors, and ( )Tniiii ,,, θθθθ 21= , ( )TiIiii i

,,, ββββ 21=  is a 

parameter vector of length 
iI , and 

iX
 is an explanatory matrix of order 

iIn× . 
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watershed in the upper-left corner.
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Since 1980, a series of water conservation measures have been carried out in the Wangkuai
Reservoir catchment, such as closing land for reforestation and returning farmland to forest.
Meanwhile, a number of small hydraulic structures have been constructed. These factors have
increased the vegetation coverage rate and significantly changed the land surface, which has affected
the flood process in this watershed and thus resulted in nonstationarity of flood series, as revealed by
many studies [22–24].

Flooding runoff data have been monitored for a period of 49 years from 1956 to 2004, and collected
on hourly basis. The data were provided by Hydrology and Water Resources Survey Bureau of Hebei
Province. Maximum flood peak Q and maximum one-day flood volume W1 of each year are selected
in this work.

3. Methods

3.1. Generalized Additive Models in Location, Scale, and Shape (GAMLSS)

In this study, we adopted a general class of regression models which was called the Generalized
Additive Models in Location, Scale, and Shape (GAMLSS) to analyze the nonstationary flood frequency.
In GAMLSS models, one assumes that the vector of actual observation values yT = (y1, y2, · · · , yn)

follows a probability (density) distribution function f (yi|θi ), where θi = (θ1i, θ2i, θ3i, θ4i) =

(µi, σi, υi, τi) is a parametric vector. The first two parameters of the model are usually defined as
position and scale parameters, which are the mean vector and the mean variance vector of random
variables. If there are other parameters in the distribution, such as the skewness vector υi and the
kurtosis vector τi of random variable series, they are all designated shape parameters. In this paper,
we only consider the first two parameters. A GAMLSS model can be expressed as a known monotonic
link function which demonstrates the explanatory variables and random effects:

f (yi|θi) = Xiβi (1)

where θi are n-length vectors, and θi = (θ1i, θ2i, · · · , θni)
T , βi =

(
β1i, β2i, · · · , β Ii i

)T is a parameter
vector of length Ii, and Xi is an explanatory matrix of order n× Ii.

There are two basic algorithms for parameter estimation in the GAMLSS models. The first is the
CG algorithm [25], and the other is the RS algorithm [9,10]. The latter algorithm is more suited for
fitting mean and dispersion additive models, thus, it was used herein for parameter estimation.

In order to estimate the parameters in GAMLSS models, a penalized likelihood function L is
usually introduced:

L =
n

∑
i=1

log f (yi|θi) (2)

Generally, the objective function is that the logarithmic likelihood function takes its maximum
value. Then the regression parameter vector βi can be estimated by RS algorithm.

Analyzing the normality and independence of the residuals of the models can verify the quality
of model fitting when there are no validated models. The model should be adequate with their
mean nearly zero, variance nearly one, coefficient of skewness and kurtosis close to zero and three,
respectively, and the Filliben coefficient [26] greater than the critical value given a certain sample size.

3.2. Univariate Time Varying Model Based on GAMLSS Theory

Four two-parameter distributions can reflect the actual hydrological process, and have thus been
adopted within the framework of GAMLSS. The parametric model is given as:

f (yi|µ) = X1β1, f (yi|σ) = X2β2 (3)
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The four two-parameter distributions for nonstationary flood frequency analysis are expressed
as following:

(1) Gumbel distribution

fY(y|µ, σ ) =
1
σ

exp
[(

y− µ

σ

)
− exp

(
y− µ

σ

)]
, −∞ < y < ∞, −∞ < µ < ∞, σ > 0 (4)

(2) Weibull distribution

fY(y|µ, σ ) =
σyσ−1

µσ
exp

[
−
(

y
µ

)σ]
, y > 0, µ > 0, σ > 0 (5)

(3) Gamma distribution

fY(y|µ, σ ) =
1

(σ2µ)
1/σ2

y1/σ2−1e−y/(σ2µ)

Γ(1/σ2)
, y > 0, µ > 0, σ > 0 (6)

(4) Log-normal distribution

fY(y|µ, σ ) =
1√

2πσ2

1
y

exp

{
− [log(y)− µ]2

2σ2

}
, y > 0, µ > 0, σ > 0. (7)

3.3. Bivariate-Joint Time Varying Model Based on Copulas

For modeling the dependence structure of two or more random variables, copula functions are
efficient mathematical tools. They were proposed first by Sklar [27], and have been widely used over
the last decades. Considering a pair of random variables X and Y, with marginal distribution functions
u = FX(x) = P(X ≤ x) and v = FY(y) = P(Y ≤ y), there will be a copula function C to describe the
associated relationship, which can be expressed as:

FX,Y(x, y) = C[FX(x), FY(y)] = C(u, v) (8)

where FX,Y(x, y) is a joint cumulative distribution function (cdf) with margins u and v,
all (u, v) ∈ (0, 1)2 [28].

One kind of frequently-used copula is the Archimedean, which has three types, written as:

(1) Gumbel-Hougaard copula

Cθ(u, v) = exp
{
−
[
(− ln u)θ + (− ln v)θ

] 1
θ

}
, θ ∈ [−1, ∞); (9)

(2) Clayton copula

Cθ(u, v) =
(

u−θ + v−θ − 1
) 1

θ , θ ∈ (0, ∞); (10)

(3) Frank copula

Cθ(u, v) = −1
θ

ln
{

1 +
[exp(−θu)− 1][exp(−θv)− 1]

exp(−θ)− 1

}
, θ ∈ R. (11)

The nonstationary models in this study were constructed through copulas, composed of two
marginal distributions and a copula parameter θ. The marginal distributions were determined by
the best nonstationary univariate models mentioned in Section 3.1, and only the copula parameter
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θ needed to be solved herein. In literature the copula parameter θ was estimated by the inference
function of margins method (IFM), which is given as:

L(u, v; θ) = ∑ ln C[FX(x), FY(y); θ]. (12)

Let ∂L/∂θ = 0, then θ can be calculated.
Two steps were carried out for model selection. Firstly, the Kolmogorov-Smirnov (K-S) test

method was adopted to conduct the test of fit for copulae. Secondly, the models which passed K-S test
were selected optimally according to the goodness-of-fit (GoF), which was represented by ordinary
least squares (OLS) and Akaike information criterion (AIC) [29]. The K-S test statistic D and estimates
of OLS and AIC were calculated by the following formulae:

D = max
{∣∣∣∣Ck −

i
n

∣∣∣∣, ∣∣∣∣Ck −
i− 1

n

∣∣∣∣}, (13)

where Ck is the copula value of the measured sample series, i is the number of samples which meet the
requirements that x ≤ xi, y ≤ yi, and n is the length of the sample series.

OLS =

√
1
n

n

∑
i=1

(Pei − Pi)
2, (14)

Pei =
i

n + 1
, (15)

where Pei and Pi are the empirical frequency and theoretic frequency of measured sample
series, respectively.

AIC = nln

(
1
n

n

∑
i=1

(PeiPi)
2

)
+ 2m (16)

where m is the number of model parameters. When the value of AIC is smaller, the model fitting
is better.

The concept of return period in stationary frequency analysis is prone to misconceptions and
misuses. New methods have been adopted to solve this problem, but have not worked well enough [30].
Since the return period is based on the probability, for the present study we explore the effect of
nonstationarity on flood data focusing on the exceedance probability. As the return period is based
on the probability, in the present work we studied the effect of nonstationarity on flood data based
on exceedance probability. In the bivariate model, the OR-joint exceedance probability describes
that at least one of the hydrologic variables X and Y exceed the values x and y respectively, that is,
P∪ = P(X > x ∪ Y > y). The AND-joint exceedance probability describes that X and Y both exceed
the values x and y, that is, P∩ = P(X > x ∩ Y > y). The P∪ and P∩ are written as:

P∪ = 1− C[FX(x), FY(y)] (17)

P∩ = 1− FX(x)− FY(y) + C[FX(x), FY(y)] (18)

For a given data set, all the copula C(u, v) at the same probability level have the same exceedance
probability. However, at least one combination of a given probability is more likely than others, namely
the most-likely events. Therefore, the most-likely events can be selected as the point with the largest
joint probability on the level curve, which was given by Gräler et al. [31]:

(u, v) = argmax
CUV(u,v)=k

fXY

(
F−1

X (u), F−1
Y (v)

)
x = F−1

X (u), y = F−1
Y (v)

(19)
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where k is a given value of copula, and x and y can be calculated by the inverse cdf of the
marginal distributions.

4. Results

In this study, following the identification of the nonstationarity for the Wangkuai Reservoir inflow
flood sequences, two nonstationary models based on GAMLSS theory were established, in which the
flood peak Q and flood volume W1 were considered as the independent response variables, and time t
was adopted as the explanatory variable.

4.1. Identification of Nonstationarity for Flood Sequences

Firstly, we adopted the pettitt test and Mann-Kendall test to detect the change point and trend of
the annual maximum flood peak Q and one-day flood volume W1 time series. Through pettitt test,
the possible change points for the Q sequence are 1979 and 1996, and for W1 1979 and 1982. Since the
test probability P of 1979 is the largest, and it is among the change points of both Q and W1 sequences,
the most possible change point is 1979. This agrees with the results obtained by other researchers using
different methods [32].

Before the trend analysis, the autocorrelation analysis of the flood sequences should be carried out.
Since the autocorrelation coefficients of both the Q and W1 sequences are less than 0.1, it is considered
that the autocorrelation of these sequences is not significant, so the trend test can be conducted directly.
Without considering the change point, the non-parametric Mann-Kendall test was used to analyze
the trend of the flood sequences. The statics Un of flood sequences Q and W1 are both less than
−1.96, which shows that the flood sequences have passed the test at a significance of 5% and present a
downward trend.

In order to consider the influence of the change point on the trend test, the Q and W1 sequences
were divided into two subsequences and tested by non-parametric Mann-Kendall test method,
respectively. Figure 2 shows the test results of the subsequences: although the subsequence of
Q before 1979 shows a slight upward trend, and the subsequences of Q and W1 after 1979 show a
downward trend, none of them passed the test of significance. Meanwhile, no trend has been found
for the sequence of W1 before 1979.

In the case of full flood sequences presenting a significant downward trend, while the
subsequences with 1979 as the dividing point showing no significant trend, the latter is more suitable
for describing the inconsistency of the flood sequences.
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4.2. Nonstationary Model of Univariate Flood Frequency Analysis with Time as Covariate

4.2.1. Model Fitting Evaluation

A univariate nonstationary model with different distribution functions based on GAMLSS
with time as covariate has been constructed based on the inflow flood sequences of Wangkuai
Reservoir. In order to avoid an over-fitting problem due to excessive freedom degree, this study
only considered the linear relationship between the distribution parameters and time t. The parameters
include the distribution parameter θ1 (mean value of flood sequence) and θ2 (variance of flood
sequence). The optimal fitting distribution, the optimal covariates of the distribution parameters,
and the functional relationship between the distribution parameters and the optimal covariates were
determined by the AIC criterion. Table 1 shows that, for flood peak (Q) and flood volume (W1)
sequences, Weibull distribution and Gamma distribution had similar fitting effect, while log-normal
distribution performed best with a minimum value of AIC. The functional relationships are written as
Equation (20) for Q and Equation (21) for W1. For all the distribution models, the optimal covariates of
the distribution parameters have been proved to satisfy the significant level 0.05 via χ2 test. Besides,
for both Q and W1 time series, the distribution parameter θ1 presents a linear dependent relationship
with time t, whereas θ2 is constant. Therefore, it can be concluded that the variation of the inflow flood
sequences of Wangkuai Reservoir is mainly reflected by the mean value rather than the variance.

θ1 = 77.769− 0.036t, θ2 = 1.030 ( f or Q) (20)

θ1 = 84.876− 0.039t, θ2 = 1.193 ( f or W1) (21)

Based on the above analysis, log-normal distribution was selected as the optimal distribution of
both flood peak and volume. The corresponding residuals of the optimal distributions and the Filliben
coefficients are shown in Table 2. For a sample size of 49, when the Filliben coefficients are both greater
than 0.975, they satisfy the significant level 0.05 via T test. Thus, the model residuals of both Q and W1

sequences are acceptable and in normal distribution.

Table 1. The functional relationships of the explanatory variables and distribution parameters.

Distributions
Q W1

AIC θ1 θ2 AIC θ1 θ2

Gumbel 895.80 t - 1074.23 t -
Weibull 786.60 t - 928.57 t -
Gamma 785.99 t - 930.55 t -

Log-Normal 783.92 t - 919.26 t -

Table 2. The residuals of the optimal distributions and corresponding Filliben coefficients.

Flood Series Optimal
Distribution Mean Variance Coefficient of

Skewness
Coefficient of

Kurtosis
Filliben

Coefficient

Q Log-Normal 0 1.021 −0.357 3.408 0.9895
W1 Log-Normal 0 1.021 0.249 2.402 0.9925

4.2.2. Model Results Analysis

The summary of the associated results of the univariate nonstationary model is shown in Figure 3.
Most of the observed data points are distributed in the grayscale range between 5% to 95% quantiles,
indicating that the model results are able to capture the nonstationarity of the flood data. With time
t as covariate, flood peak and volume time series show a downward trend over time. Especially
when the quantile is larger (such as 95% quantile), the decrease trend is more significant. This proves
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that variation of flood sequences has occurred under the changing environment, and the traditional
“stationarity” hypothesis has become questionable. Thus, use of the traditional hydrological frequency
analysis method may result in inaccurate results. The change of the flood sequences are mainly caused
by climate change, land use change, and construction of Water conservancy projects [33–35]. Besides,
the downward trend is significant before 1980, and tends to be gentle after 1980. This may be due to
the change of land use. As revealed by Li et al. [34], water area, agricultural land, and grassland area
decreased, while the forest area increased significantly in the control basin of Wangkuai Reservoir
during 1970–1980, but from 1980 to 2000, the land use types kept almost invariant.

Figures 4 and 5 show the worm plot and normal QQ of the peak discharge Q and one-day
volume W1. As can be seen, no significant departure from normality has been highlighted. Therefore,
the results of residuals supported the inference that log-normal distribution provides a good fit to both
Q and W1.
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Location, Scale, and Shape (GAMLSS) implementation. Red points represent the observed time series of 
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grey region is the area between 0.25 and 0.75 quantiles; the light grey region is the area between 0.05 
and 0.95. 

Figure 3. Summary of results of the univariate nonstationary model with Generalized Additive Models
in Location, Scale, and Shape (GAMLSS) implementation. Red points represent the observed time series
of peak discharge Q (A) and flood volume W1 (B). The solid black line represents 0.5 quantile; the dark
grey region is the area between 0.25 and 0.75 quantiles; the light grey region is the area between 0.05
and 0.95.
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4.3. Nonstationary Model of Bivariate-Joint Flood Frequency Analysis with Time as Covariate

4.3.1. Parameters Calculation, Fitting Test, and Result Optimization of Joint Probability Distribution

With the above two log-normal distributions (Equations (19) and (20)) as marginal distributions,
the joint distribution model of flood peak and volume based on copulas have been constructed
according to Equations (9)–(11). The parameter of Copula functions θ, K-S test statistic D, and values of
OLS and AIC were estimated by Equations (12)–(16). A significance level of α = 0.05 was used for the
K-S test, and the corresponding standard quantile was approximately 0.1943 for n = 49. This means that
when D-value is less than 0.1943, it passes the test. The results of the calculation, test, and optimization
are presented in Table 3.

Table 3. The estimation of copula parameters and the associated fitting test and model selection.

Copulas Copula
Parameter (θ)

Indices of Fitting Test and Model Selection

D (K-S) OLS AIC

Gumbel-Hougaard Copula 2.9224 0.1648 0.0404 −312.3751
Clayton Copula 1.6444 0.1940 0.0470 −297.7266
Frank Copula 9.1480 0.2537 0.0469 −297.7374

It can be observed in Table 3 that Gumbel-Hougaard copula function and Clayton copula
function have passed the K-S test, while the Frank Copula has not passed the test. Among them,
the Gumbel-Hougaard copula function has the minimum values of OLS and AIC, indicating that the
Gumbel-Hougaard copula function is more suitable to describe the extreme sequence of hydrological
variables, such as the joint distribution of flood peak and volume. Therefore, the G-H Copula with
parameter θ = 2.9224 was considered as the optimal copula for the bivariate-joint distribution of the Q
and W1 time series of Wangkuai Reservoir.

4.3.2. Most Likely Combination of the Flood Peak and Volume

The “most likely” design events derived from Equation (11) have their maximum value of
likelihood function on each probability-isoline, and all combinations of Q and W1 were illustrated in
Figure 6. They have the similar undulating behavior as the univariate models shown in Figure 3.
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Figure 6 shows that, under changing environmental conditions, with time t as the covariate of the
marginal distribution, the combination values of the flood peak and volume under the same OR-joint
and AND-joint exceedance probability both display a decreasing trend. Meanwhile, the combination
values of the nonstationary model intersect with the traditional stationary results between 1970–1980.
That is, before 1970, the most likely combination values considering the variation of distribution
parameters over time were larger than fixed parameters (stationary), however, they were smaller
after 1980.

5. Discussion and Conclusions

The changing environment makes the assumption of stationarity of flood sequences questionable.
In this context, this paper constructed both univariate and bivariate nonstationary models with time as
covariate based on GAMLSS theory for flood frequency analysis. The inflow flood peak Q and flood
volume W1 series of Wangkuai Reservoir were used as basic data.

Within the framework of nonstationary flood frequency, this paper adopted four two-parameter
distributions (Gumbel, Weibull, Gamma, and Log-Normal) as alternative distributions, which have
the characteristics of power distribution and exponential distribution simultaneously. In the univariate
nonstationary model with time as covariate, log-normal distribution performed best according to AIC
criterion. The flood peak and volume time series presented a decreasing trend over time. Especially
when the quantile is high (such as 95% quantile), the downward trend is more significant. Besides,
the decreasing trend is significant before 1980, and tends to be gentle after 1980. This proves that
variation of flood sequences has occurred under the changing environment.

Based on the optimal univariate models, copula functions were addressed to construct the
dependence structure of Q and W1, with the two optimal log-normal distributions as marginal
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distributions. The results showed that only the Gumel-Hougaard copula can provide the best joint
distribution. The most likely events have similar undulating behavior to the univariate models, and the
combination values of the flood peak and volume under the same OR-joint and AND-joint exceedance
probability both display a decreasing trend. Meanwhile, the combination values of the nonstationary
model intersect with the traditional stationary results between 1970–1980. That is, before 1970, the most
likely combinations considering the variation of distribution parameters over time were larger than
fixed parameters (stationary), whereas it became the opposite after 1980.
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