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Abstract: Phosphorus is the primary factor that limits eutrophication of surface waters in aquatic
environments. Sediment particles have a strong affinity to phosphorus due to the high specific
surface areas and surface active sites. In this paper, a numerical model containing hydrodynamics,
sediment, and phosphorus module based on improved Langmuir equation is established, where the
processes of adsorption and desorption are considered. Through the statistical analysis of the physical
experiment data, the fitting formulas of two important parameters in the Langmuir equation are
obtained, which are the adsorption coefficient, ka, and the ratio k between the adsorption coefficient
and the desorption coefficient. In order to simulate the experimental flume and get a constant and
uniform water flow, a periodical numerical flume is built by adding a streamwise body force, Fx.
The adsorbed phosphorus by sediment and the dissolved phosphorus in the water are separately
added into the Advection Diffusion equation as a source term to simulate the interaction between
them. The result of the numerical model turns out to be well matched with that of the physical
experiment and can thus provide the basis for further analysis. With the application of the numerical
model to some new and relative cases, the conclusion will be drawn through an afterwards analysis.
The concentration of dissolved phosphorus proves to be unevenly distributed along the depth and
the maximum value approximately appears in the 3/4 water depth because both the high velocity in
the top layer and the high turbulence intensity in the bottom layer can promote sediment adsorption
on phosphorus.
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1. Introduction

Phosphorus (P) is one of the main limiting factors for eutrophication in most lakes and rivers [1].
Therefore, the migration and transformation processes of phosphorus play an important role in aquatic
environments [2]. Sediment particles have a strong affinity to phosphorus due to the high specific
surface areas and surface active sites [3]. Phosphorus absorbed by the sediment accumulates in the
riverbed as sediment settles [4] and may be released by resuspension [5].

The main interactions between sediment and phosphorus are adsorption and desorption [6].
There are many factors affecting these interactions such as the physical [7] and chemical [8] properties
of sediment, the water environment chemical properties [9], the adsorbate and sorbent concentration,
and the hydrodynamic characteristics. Usually, the amount of adsorption per unit mass of sediment in
the quasi-equilibrium state increases as the initial phosphorus concentration in water increases or as
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the sediment concentration decreases [10]. The increase of velocity can greatly affect the adsorption
and desorption due to flow turbulence [11].

Besides the physical experiments, a great number of water quality models have been developed
over recent decades [12]. Early models often ignored the effect of sediment on phosphorus
transport [13]. Subsequently, lots of models considering the influence of sediment were proposed [14].
Most of these models considered that with empirical parameters such as a linear distribution coefficient
kd of adsorption thermodynamics [15], or adsorption rate k1 and desorption rate k2 of adsorption
kinetics [16]. Other simplifications included a sedimentation coefficient and a suspension coefficient,
or a constant phosphorus release rate at the sediment-water surface [14]. It is very difficult to determine
these parameters reasonably for lacking fundamental mechanistic analysis, and they are site-specific
and not easily extended.

This paper develops a model regarding hydrodynamics and the interactions of suspended
sediment and phosphorus based on the Langmuir equation. Sediment samples are collected from
the Wujiadu gauging station of the main stream in Huaihe River. After finishing the dynamic water
physical experiments, the adsorption coefficient in the Langmuir adsorption kinetic model, ka, and the
ratio k between ka and the desorption coefficient kb are obtained. By separately fitting these values,
two formulas are deduced. One is the relationship between k and suspended sediment S, cross-sectional
average velocity v, initial phosphorus concentration C0. The other is the relationship between ka and v,
C0. Then k and ka are applied to the Langmuir equation in the numerical model for verification and
application. The purpose of this study is to get the distribution between adsorbed phosphorus on
the suspended sediment and dissolved phosphorus in the water, and find out how hydrodynamic
condition affects the phosphorus transport.

2. Materials and Methods

2.1. Sediment Collection and Dynamic Water Experiments

Sediment samples were collected from a depth of >5 cm from the bank of Huaihe River at the
Wujiadu gauging station in October 2013. In order to get uniformly distributed particle sized and clean
sediment, all points were far away from scoured riverbeds and pollutant discharge ports. Sediments
were immersed in deionized water for a month and then were air-dried in a ventilated environment.
After being screened through 200 mesh sieves, particles finer than 90 µm were analyzed in the physical
experiment. The median diameter of the samples was 22.7 µm, and the other two typical particle size
in the sediment distribution curve D10 and D90 were 3.3 µm and 60 µm, respectively.

The dynamic water experiment was carried out in an elongated annular flume, which did not
break up the sediment flocs when the flow is propelled by a Plexiglas gear instead of a water pump.
A defined amount of sediment and KH2PO4 solution of known concentration was added to the water
at the beginning of the experiment, as shown in Table 1. The rotational speed was set at a certain
value and was kept running for 24 h. Samples were filtered through a 0.45 µm filter membrane and
non-absorbed phosphorus was determined using a molybdenum blue method on ultraviolet-visible
spectrophotometer (TU-1810PC, Persee Co., Beijing, China). The amount of adsorbed phosphorus per
unit mass sediment, Ne, at an equilibrium state of different cases were also shown in Table 1. During
the experiments, the indoor temperature and the water pH were 21 ± 2 ◦C and 6.5–7.0, respectively.
The detailed description of the physical experiment can be found in the literature [10].
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Table 1. C0, S, v and the balanced adsorbed phosphorus amount per unit mass sediment Ne of various
cases in the physical experiments.

Case C0 (mg/L) S (g/L) v (m/s) Ne (mg/g)

1 0.5 1 0.515 0.0614
2 0.5 1 0.48 0.062
3 0.5 1 0.44 0.0662
4 1 1 0.515 0.072
5 1 1 0.48 0.0787
6 1 1 0.44 0.0817
7 3 0.5 0.515 0.1431
8 3 0.5 0.48 0.1289
9 3 0.5 0.44 0.1084
10 3 0.5 0.39 0.1017
11 3 1 0.515 0.112
12 3 1 0.48 0.102
13 3 1 0.44 0.0885
14 3 1 0.39 0.0587
15 3 1.5 0.515 0.0907
16 3 1.5 0.48 0.0783
17 3 1.5 0.44 0.065
18 3 1.5 0.39 0.041
19 3 2 0.515 0.0702
20 3 2 0.48 0.0629
21 3 2 0.44 0.054
22 3 2 0.39 0.0332
23 5 1 0.515 0.1272
24 5 1 0.48 0.1102
25 5 1 0.44 0.1052

2.2. Adsorption Parameters

There are two kinds of classical adsorption theories. One is adsorption isotherm model for
studying the phosphorus distribution during the equilibrium, such as Langmuir model and Freundlich
model [17]. Another is adsorption kinetic model for studying the dynamic phosphorus distribution
with time increasing, such as Elovich equation [18], parabolic equation [6] and Langmuir model.
According to the theory proposed by Huang S.L. in 1997 [19], the adsorbed phosphorus amount per
unit mass by sediment at an equilibrium state relates to C0, S, maximum amount of adsorption Bm

and k. Among them, Bm is only related to the characteristic of specific sediment. In this paper, Bm is
given 0.15 mg/g according to the batch reactor experiments [10]. Thus we can predicate the adsorbed
phosphorus amount per unit mass by sediment if k is given. And another parameter ka represents the
speed of the reaction.

2.2.1. The Ratio k between ka and kb

In this paper, the formula of k is given by the fitting method according to the results of the physical
experiments of our research group.

Firstly, in order to study the relationships between k and S, v, C0, the single factor analysis method
is used. Samples of Figure 1a–c are obtained from the results of different physical experiments. All the
blue lines are fitting values. The author analyzes the effect of every single factor by keeping the
others same, such as the different S and equal v, C0. Figure 1a shows that the logarithms of k decrease
monotonically as logarithms of S increase. Figure 1b shows that most of the logarithms of k increase
linearly with the increase of logarithms of v apart from these red samples when C0 is smaller than
3 mg/L. In Figure 1c, it should be said that the fit is not very good. The R2 based on all scattered
points is 0.7. However, the R2 based on cases of “v = 0.44 mg/L, S = 1 g/L” and “v = 0.48 mg/L,
S = 1 g/L” are 0.96 and 0.99, respectively. While the R2 based on the rest case of “v = 0.515 mg/L,
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S = 1 g/L” is small. The possible reason is that the corresponding physical experiment may have
some errors. On the whole, we still think that the logarithms of k have a linear correlation with the
logarithms of C0. Secondly, the multivariate nonlinear regression analysis method is used to obtain
the comprehensive impact of all variables and get the Equation (1). Obviously, v and S are the major
factors affecting k as their absolute exponential values are larger than 1.0, and C0 is the secondary
factor. Figure 1d lists the original values of Ne from the physical experiments and the fitting values
based on the Equation (1) with different cases except C0 = 0.5 and 1.0 mg/L. This is consistent with the
literature [20]. The result shows that the fitting equation can be used in the next numerical simulation
or even for further analysis.

k =
27v4.6

C00.3S1.343 − 0.006 (1)
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Figure 1. Relationships between k and S, v, C0 (a–c) and the comparison between the fitting and
experimental ratio Ne with cases 7–25 (d).

2.2.2. The Adsorption Coefficient ka

Another important parameter in the adsorption-desorption process is ka which represents the
speed of the reaction. By adopting the same method as above, the author analyzes the factors affecting
ka and gives formula of ka.

Firstly, in order to study the relationships between ka and v, C0, the single factor analysis method
is used. Samples of Figure 2a,b are obtained from the results of different physical experiments when
suspended sediment S equals to 1.0 g/L. All the blue lines are fitting values. The author uses the
variable control approach to analyze the effect of every single factor, such as v and C0. In Figure 2a,
there is a logarithmically decreasing trend of ka as the initial P concentration increases. Figure 2b
shows that ka decreases linearly with the increase of velocity when the initial P concentrations were
low, while the values of ka are similar at higher P concentrations. Secondly, the multivariate nonlinear
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regression analysis method is used to obtain the comprehensive impact of all variables and get the
Equation (2). Obviously, both of v and S greatly affect ka. Figure 2c lists the original values of ka

from the physical experiments and the fitting values of ka from the Equation (1) with different cases.
The R2 based on all scattered points in Figure 2c is 0.88. This is consistent with the literature [10].
The result shows that the fitting equation can be used in the next numerical simulation or even for
further analysis.

ka = 3.713e−1.089C0 − 11.584v + 5.909 (2)
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2.3. Numerical Model

In the physical experiments, an elongated annular flume propelled by a Plexiglas gear is used
to get a circulatory flow. While in the numerical model, a periodical numeric flume with the stream
body force is built to get a constant and uniform flow. Based on Equations (1) and (2), the interaction
between sediment and phosphorus is also considered. Then, the numerical model is built which
consists of hydrodynamic module, sediment and phosphorus transport module.

2.3.1. Hydrodynamic Module

The three-dimensional hydrodynamic module is based on continuity Equation (3) and momentum
Equation (4).

∇ · u = 0 (3)
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∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + ν · ∇2u + f (4)

where u is the velocity vector,∇ is the Laplace operator, t is the time, p is the pressure, ν is the kinematic
viscosity, which is equal to 10−6 m2/s at the normal temperature of 20 ◦C, and f is the body force,
which is equal to the resultant force of the gravitational acceleration in the vertical direction and the
stream body force, Fx. In order to get a constant and uniform water flow in the numerical study, a
streamwise body force, Fx, is added to counteract the kinetic energy loss caused by resistances on solid
boundaries and water viscosity.

2.3.2. Sediment Transport Module

The sediment transport is described using an equilibrium approach, assuming that all sediment
are suspended in the given hydrodynamic condition. The governing equation can be written in
Equation (5).

∂S
∂t

+
∂(uS)

∂x
+

∂(vS)
∂y

+
∂(wS)

∂z
= εx

∂2S
∂x2 + εy

∂2S
∂y2 + εz

∂2S
∂z2 +

∂(ωS)
∂y

(5)

where S is the concentration of suspended sediment; t is time; x, y, z are coordinate directions,
respectively; u, v, w are velocities of direction x, y, and z; εx, εy, εz are diffusion coefficient of direction
x, y and z;ω is the settling velocity.

2.3.3. Phosphorus Transport Module

Figure 3 shows a conceptual model of the phosphorus transport. The red circles represent
dissolved or adsorbed phosphorus, the irregular khaki circles represent suspended sediment particles.
Usually, the advection-diffusion equation is used for phosphorus transport to simulate the evolution
processes of spatiotemporal concentration. By using the classical Langmuir equation (Equation (6)),
the interaction of adsorption and desorption between dissolved phosphorus and adsorbed phosphorus
is considered. Then the Equation (6) is added into the Advection-Diffusion equation (Equation (7)) as
a source term which is shown in Equation (8).

dN
dt

= ka ·C · (Bm −N)− kd ·N (6)

∂N
∂t

+ u
∂N
∂x

+ v
∂N
∂y

+ w
∂N
∂z

= Dx
∂2N
∂x2 + Dy

∂2N
∂y2 + Dz

∂2N
∂z2 + S′ (7)

∂N
∂t + u ∂N

∂x + v ∂N
∂y + w ∂N

∂z = Dx
∂2N
∂x2 + Dy

∂2N
∂y2 + Dz

∂2N
∂z2 + ka ·C · (Bm −N)− kd ·N

∂C
∂t + u ∂C

∂x + v ∂C
∂y + w ∂C

∂z = Dx
∂2C
∂x2 + Dy

∂2C
∂y2 + Dz

∂2C
∂z2 − (ka ·C · (Bm −N)− kd ·N) · S

(8)

where N is the adsorbed phosphorus amount per unit mass by sediment (mg/g); C is the concentration
of dissolved P in the water (mg/L); t is time; S′ is the source term; S is sediment concentration (g/L);
ka, kd (= ka/k) are separately the coefficients of the adsorption and the desorption (l/mg/h, 1/h);
Bm is the maximum adsorption of adsorption (mg/g).
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3. Model Verification

3.1. Hydrodynamic

As is demonstrated in Figure 4, a periodical numerical flume is built to simulate the flume of the
previous physical experiment where the recirculating water is propelled by Plexiglas gear driven by
an AC frequency conversion electric machine. In order to get a constant and uniform water flow in the
numerical study, a streamwise body force, Fx, is added to counteract the kinetic energy loss caused by
resistances on solid boundaries and water viscosity.
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Figure 4. Schematic diagram of the periodical numerical flume.

The numerical simulation is designed in a 2 m × 0.3 m × 0.2 m (L ×W × H) periodical numerical
flume, and the resolution of computational grids is 200 × 30 × 20, which is sufficiently fine to obtain
a stable numerical solution. The velocities after the flow of laboratory experiment reaching a steady
state are used as the initial condition of the numerical simulation. The initial fluid level of all different
cases is 0.2 m. All the solid walls including the sidewalls and the flume bed are considered as the
no-slip wall boundary conditions. In this study, the turbulence is predicted by the renormalization
group (RNG) k− ε turbulent model (turbulent kinetic energy k and its dissipation ratio ε).

To compare the numerical and experimental hydrodynamic conditions, two cases are set with
the mean cross-sectional velocities of 0.515 m/s and 0.48 m/s, respectively. Shown in Figure 5,
the streamwise velocities along the water depth at the bold black line AB (Figure 4) of these two cases
are in good agreement with experimental velocities.
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3.2. Sediment and Phosphorus Transport

According to the result of the batch reactor experiments [10], the maximum adsorption of
adsorption Bm is 0.15 mg/g. The initial phosphorus concentration and sediment concentration equal
to that of the corresponding physical experiments are given in Table 2. The variation of adsorbed
phosphorus amount per unit mass sediment with time is shown in Figure 6. Although the experimental
N changes a little around numerical results, the values of them are almost the same when reaching an
equilibrium state.

Table 2. The initial phosphorus concentration C0, initial sediment concentration S, and the
cross-sectional average velocity v of different cases in the numerical simulations.

Case C0 (mg/L) S (g/L) v (m/s)

A1 0.5 1 0.515
A2 1 1 0.515
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4. Model Application

In order to further study the interaction processes between phosphorus and sediment, another
four cases are considered (listed in Table 3). Derived k and ka based on Equation (1) and (2) are
applied to new cases (B1–B4). Figure 7 shows the variation of the amount of adsorbed phosphorus
amount per unit mass sediment with time for a sediment concentration of 1 g/L with different initial
P concentrations. Obviously, N reaches to a stable state different from dynamic equilibrium of the
physical experiment after several hours because Equation (5) is used to consider the interaction in the
numerical simulation. N increases with the initial phosphorus concentration by comparing of A1, A2,
B1 and B3 from Figures 6 and 7. And N also increases with the velocity by comparing B1 and B2 or B3
and B4.

Table 3. The initial phosphorus concentration C0, initial sediment concentration S, and the
cross-sectional average velocity v of different cases in the numerical simulations.

Case C0 (mg/L) S (g/L) v (m/s)

B1 2 1 0.515
B2 2 1 0.48
B3 4 1 0.515
B4 4 1 0.48
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Figure 8 shows that the concentration of dissolved phosphorus in the water changes little within
the whole water depth and its maximum approximately appears in the 3/4 water depth. One reason
is that the strong turbulence intensity of the water flow and the high sediment concentration at the
bottom of the tank can result in the large amount of phosphorus absorbed by the sediment (shown
in Figure 9). Another is that the large flow rate of the upper water body leads to the increase of the
adsorption of phosphorus by sediment (Figure 5). So in the final upper water body and the lower
water body, the amount of dissolved phosphorus in the water is relatively low, and the concentration
of phosphorus in the 3/4 water depth shows a relatively large value. In stable natural rivers or
reservoirs, dissolved phosphorus shows an increasing trend from the bottom to the surface of the water.
However, this is not always the case. Both sediment and hydrodynamic forces can cause changes in
the distribution of dissolved phosphorus along the depth.
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5. Conclusions

In this paper, a numerical model of hydrodynamics, sediment, and phosphorus based on improved
Langmuir equation was established where the processes of adsorption and desorption were considered.
The main conclusions can be summarized as follows:

(1) The influence of both hydraulic and environmental factors on phosphorus sorption to suspended
sediments was quantitatively investigated by fitting analysis of ka, and the ratio k between the
adsorption coefficient and the desorption coefficient in flume experiments.

(2) The concentration of dissolved phosphorus was unevenly distributed along the depth, and the
maximum value approximately appeared in the 3/4 water depth because both the high velocity
in the top layer and the high turbulence intensity in the bottom layer can promote sediment
adsorption on phosphorus.

(3) Derived k and ka based on equation can well be applied to new cases. However, it would be much
more meaningful to establish a general formula for k based on a large quantity of experiments
with sediment of different origins.

(4) This paper hasn’t taken bed sediment into consideration. However, bed sediment widely exists
in natural rivers and has great impaction on the adsorption and desorption of phosphorus. So the
next step is to further consider the sedimentation and suspension between suspended sediment
and bed sediment, and the adsorption and phosphorus processes in the bed sediment layer.
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(5) Natural rivers are very different from experimental flumes because of complex terrain and
hydrodynamic conditions. So, it is of great importance to build a model based on typical riverbed
and real dynamic conditions with the data of on-site water samples and sand samples, especially
in the river seriously affected by eutrophication.
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