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Abstract: The Preissmann slot model is one of the most widely used models to conceptualize both
free-surface and pressurized flows in urban drainage systems. Despite its simplicity and wide range
of applications, numerical solutions of the Preissmann slot model suffer from the spurious oscillations,
especially when flow conditions switch from free-surface flow to pressurized flow. To overcome this
problem, a new hybrid numerical flux solver of the Preissmann slot model is proposed herein, in
which the upwind flux solver is combined with the centered flux solver. Numerical experiments
are conducted for multiple flow conditions such as typical filling, pipe-filling, and transition-flow
conditions. The numerical results indicate that the proposed scheme generally outperforms the
conventional flux schemes for various hydraulic conditions and wave velocities. The proposed
scheme should be useful to further enhance integrated urban water modeling in which transient
mixed flow conditions significantly impact the simulation accuracy during extreme floods.

Keywords: Preissmann slot model; transient mixed flow; spurious oscillations; hybrid numerical
flux solver

1. Introduction

Numerical modeling of sewer-pipe flow is of significant importance for a wide range of urban
water problems such as urban inundation analysis, detecting the damage of a sewer pipe, or design of
the sewer system. The type of flows in a sewer-pipe system is a free-surface flow but, during extreme
flood events, it often becomes a partly free surface, partly pressurized flow (mixed flow) or fully
pressurized flow. The numerical modeling of transient mixed flows is associated with infrastructure
damage or operational problems. However, it is difficult to find a straightforward way because two
different flow regimes should be considered in the same domain. When using two governing equations,
it is difficult to track the mixed flow interfaces and switch smoothly between the two systems. Previous
research [1,2] has shown that a compressible one-dimensional fluid equation with a linearized pressure
law is an attractive alternative for modeling of transient mixed flows in pipe; however, a compressible
fluid system is more complex to solve than a one-dimensional shallow water system usually used
to represent open channel flows. The Preissmann slot model can avoid this difficulty and has been
widely used to solve multiple flow conditions in sewer systems [3–9].

Unfortunately, the Preissmann slot model suffers from the spurious oscillations when the flow
condition switches from open-channel flow to pressurized flow [10]. The conventional remedy for
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this problem is to reduce the impact of the acoustic-wave velocity by increasing the slot width [11,12].
However, this remedy can reduce the accuracy of the numerical solution because of the wider slot width
and lower wave speed compared with the physical values. [13] presents an exact Riemann flux solver of
the Preissmann slot model for highly transient mixed flows. However, the exact Riemann flux solver is
not practical because it requires a large amount of computation for the iteration procedure. In addition,
this method could not fully remove the spurious oscillations [6]. Ref. [3] proposed two methods based
on the Roe’s flux scheme to prevent spurious oscillations. The first method is to introduce the artificial
viscosity, which gradually increases with respect to the wave velocity. The second method uses the
numerical filter to smooth variables such as water depth and momentum across the cells. Although
both two methods can reduce the numerical oscillation within a certain level and stabilize the numerical
results, oscillations can still be significant even with a comparatively moderate acoustic-wave speed of
100 m/s [14]. Leon [15] proposed a funnel-shaped slot to alleviate the abrupt change of wave velocity
and the modified-shaped slot resulted in nonoscillatory solutions. However, this method is specifically
tailored for a pipe with circular cross section. Malekpour and Karney [10] investigated the source
of the spurious oscillation and proposed the modified Harten–Lax–van Leer (HLL) flux estimation
based on the HLL flux proposed by Leon [15]. Their method removes the spurious oscillations even
with acoustic-wave speed as high as 1000 m/s and produces accurate results for a wide range of cases.
However, it requires tuning two additional parameters for each case, which may hinder the general
application of this method.

The formulation of boundary conditions is also not a trivial issue in numerical modeling of
sewer-pipe systems. The treatment of boundary conditions is strongly associated with the stability
and accuracy of the numerical solution. Recently, ref. [16] presented a robust formulation that can
represent a wide range of boundary conditions such as drop shafts, reservoirs, junctions, and dead
ends. They considered common boundaries as junctions connected to an arbitrary number of pipes,
and their method works well for a wide range of problems. However, equations for the implicit
nonlinear system must be solved at each junction for each time step, which is not an easy task and may
be an obstacle to applying this method.

In a general sense, the numerical flux solver for hyperbolic conservation laws can be categorized
as either an upwind scheme or a centered (symmetric) scheme [17,18]. The upwind flux solvers, also
called “Godunov-type schemes” or “approximated Riemann flux solvers,” are based on Riemann
approaches or the equivalent and are suitable for capturing sharp water profiles such as shocks. Because
of their superior performance, the upwind flux solver has been preferred over general hyperbolic
conservation systems such as compressible flow, hydrodynamics systems, and shallow water systems,
etc. [3,13,16,19–21]. However, for the Preissmann slot model, the monotonicity is not guaranteed by
the widely used Riemann flux solvers because of the highly irregular shapes of pipes connected to
the hypothetical slot, as presented in numerous previous works [5,10,22], whereas it is preserved for
a regular-shaped flow domain. Conversely, the centered flux schemes are more diffusive than the
upwind flux schemes, although they often over-smooth the water profile. The present study is based
on the simple idea that a more diffusive flux solver may be required when flow is near the conduit
roof [10,14].

The objective of this study is to develop a new hybrid numerical scheme of the Preissmann
slot model and, through numerical experiments, demonstrate its applicability for a wide range of
transient mixed-flow conditions. To achieve a more stable and accurate numerical scheme, the hybrid
scheme combines both the upwind flux solver and the centered flux, although the proposed scheme is
more than a combination of existing schemes. We also propose a modified formulation for boundary
conditions, originally developed by [16,23], to explicitly compute the junction boundary. Numerical
experiments are conducted to demonstrate the improved performance of the proposed method over
conventional schemes for multiple flow conditions such as typical filling (Test 1), pipe-filling (Test 2),
and transition-flow conditions (Test 3).
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2. Numerical Model

2.1. Governing Equation

The hyperbolic conservative form of the continuity and momentum equations of free surface flow
in uniform open channels and pipes can be written as follows:

∂U
∂t

+
∂F
∂x

= S, (1)

where U, F, and S are vectors representing flow variables, fluxes, and source terms, respectively. These
terms are written as follows:

U =

[
A
Q

]
, F =

[
Q

Q2

A + Ap
ρ

]
, S =

[
0

gA
(

S0 − S f

) ], (2)

where A is the flow cross-sectional area, Q is the flow discharge, p is the average pressure over the
flow cross-sectional area, ρ is the density of water, g is the acceleration due to gravity, S0 is the slope of
the pipe, and S f is the energy slope, which can be expressed by Manning’s formula as follows:

S f =
nm

2Q|Q|
A2R4/3 , (3)

where R is hydraulic radius and nm is Manning’s coefficient. Note that the friction surface on a slot is
ignored following a basic assumption of Preissmann slot model [15].

The pressure head of pressurized flow is conceptualized as the open-channel flow depth in the
Preissmann slot model. Because the acoustic-wave velocity is hypothetically equivalent to the velocity
of a gravity wave, the slot width is Ts = gA f /a2, where A f is the conduit cross-sectional area and a is
the acoustic-wave velocity of the pipe.

Equation (1) can be discretized by the finite volume and forward Euler method as follows:

Un+1
i = Un

i −
∆t
∆x
(
Fn

i+1/2 − Fn
i−1/2

)
+ ∆tSn, (4)

where the superscript n is the time-step index, the subscript i is the index for the ith computational cell,
∆t is the time step, ∆x is the length of a computational cell, and Fi+1/2 is the numerical flux between
cells i and i + 1.

The numerical flux function Fi+1/2(UL, UR) is estimated by using UL = Ui and UR = Ui+1 in
the spatially first-order finite-volume numerical scheme with piecewise constant variable in the cell,
where UL and UR represent the left and right variable vectors at cell-interface i + 1/2. The values of
UL and UR can be reconstructed for the higher-order spatial estimate. Here, we consider the total
variation diminishing scheme with piecewise linear distribution of variables. The UL and UR are
reconstructed as

UL = Ui +
1
2

ϕ(ri)∆Ui−1/2, UR = Ui+1 −
1
2

ϕ(ri+1)∆Ui+1/2, (5)

where
∆Ui−1/2 = Ui −Ui−1, ∆Ui+1/2 = Ui+1 −Ui, ri =

∆Ui+1/2

∆Ui−1/2
, ri+1 =

∆Ui+3/2

∆Ui+1/2
, (6)

and ϕ is a slope-limiter function. Among the variety of slope-limiter functions, the minmod limiter is
used herein for stability. The minmod limiter is

ϕ(r) = max[0, min(r, 1)]. (7)
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Note that the minmod limiter is the most diffusive and stable limiter.

2.2. Upwind Flux Solver

The Riemann flux solver for the Godunov-type numerical scheme is constructed based on an
analysis of the eigenstructure of the system. Since an exact Riemann flux solver is impractical because
of its high computational cost, an approximate Riemann flux solver should be used in practical
applications [24]. In this study, we consider Roe’s flux and HLL flux schemes.

Roe’s flux scheme determines the approximate solution by solving a constant-coefficient linear
system instead of the original nonlinear system. The system of Equation (1) is linearized as

∂U
∂t

+ Ĵ(UL, UR)
∂U
∂x

= S, (8)

where Ĵ is a Jacobian matrix at inter-cells and is assumed constant between two cells. The Riemann
problem can then be solved as a linear hyperbolic system at each cell interface as

FRoe
i+1/2 =

1
2
(FL − FR)−

∣∣Ĵ(UL, UR)
∣∣(UR −UL), (9)

Ĵ(UL, UR) = R(UL, UR) · |Λ(UL, UR)| ·R−1(UL, UR), (10)

where R is the eigenvector matrix and Λ is the diagonal corresponding eigenvalue matrix. The final
stage of the algorithm is to find a suitable average interface state to determine Ĵ. As long as the space
of the numerical solution is smooth, any reasonable average would probably give the right results.
However, when discontinuities or shocks are present in the solution, the estimate of the average
interface states becomes very important to find the right solution. Here, we use the average interface
state as follows:

A =
√

AL AR, Q =

√
ARQL +

√
ALQR√

AR +
√

AL
, c =

√
g

IR − IL
AR − AL

(11)

where c is the gravity wave velocity and I = Ay.
In the HLL approach, the solution of the Riemann problem is approximated by an intermediate

region U∗, which is the constant state separated from the left and right states UL and UR by two
infinitely thin shock waves. The numerical flux Fi+1/2 is computed by the HLL flux solver as follows:

FHLL
i+1/2 =


FL if SL > 0,

SRFL−SLFR+SLSR(UR−UL)
SR−SL

if SL ≤ 0 and SR ≥ 0,
FR if SR < 0,

(12)

where FL and FR represent left and right flux vectors at cell-interface i + 1/2, respectively, and SL and
SR left and right wave speeds, which are calculated as follows [15]:

SL = uL −ML, SR = uR −MR (13)

where uL and uR are left and right flow velocities, respectively, and MK(M = L, R) is

MK =


√(

A∗p∗
ρ − AK pK

ρ

)
A∗

AK(A∗−AK)
if A∗>K

cK otherwise
(14)

where the subscript “*” represents the star (intermediate) region and both A∗ and p∗ are the functions
of flow depth of the star region (y∗). The variables of the star region can be estimated from the
characteristic of the system. Ref. [1] suggests several different approaches for approximating y∗ based
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on two shock-wave approximations, two rarefaction-wave approximations, and the linearization of
the governing equations. For example, the estimate based on the linearized governing equation is

A∗ =
AR + AL

2
+

A
2c

(uL − uR), (15)

where A = (AR + AL)/2 and c = (cR + cL)/2. However, in our experience all three approaches
mentioned above result in spurious oscillations when the flow switches from open-channel flow
to pressurized flow, which is consistent with the observation of [4]. They investigated the effect of
Equation (15) and concluded that the intermediate state could be adjusted to admit optimal numerical
viscosity. They proposed following the adjusted estimate of star region flow depth as follows:

y∗ = Kamax[yi−NS, yi−NS+1, . . . , yi−1, yi, yi+1, . . . , yi+NS−1, yi+NS], (16)

where Ka and NS are parameters that must be tuned empirically. The problem of Equation (16) is
that both parameters significantly affect the performance of the numerical scheme and should be
calibrated for each case. Unlike the experiment, there usually is no reference data in an actual sewer
network, which can significantly hinder the practical application of Equation (16). Therefore, the
method proposed by [4] is not considered herein.

2.3. Centered Flux Solver

The main feature of the centered scheme lies in its simplicity. This scheme does not require
explicit knowledge of the eigenstructure of the system, nor the availability of a Riemann solver. The
classical centered schemes include the Lax–Wendroff (LW) scheme and the Lax–Friedrichs (LF) scheme.
The two-step version of the Lax–Wendroff scheme is

FLW
i+1/2 = F

(
QLW

i+1/2

)
, QLW

i+1/2 =
1
2
(
Qn

i + Qn
i+1
)
− 1

2
∆t
∆x
(
F
(
Qn

i+1
)
− F(Qn

i )
)
. (17)

The Lax–Friedrichs scheme is

FLF
i+1/2 =

1
2
(
F(Qn

i ) + F
(
Qn

i+1
))
− 1

2
∆x
∆t
(
Qn

i+1 −Qn
i
)
. (18)

Note that the two-step version of LW scheme was derived by estimating intermediate variables at
n + 1/2 from LF scheme. Therefore, it is a second-order method in temporal and different with the
first-order forward Euler method. Although these two schemes are pioneering works in the centered
scheme, they are not suitable for a modern finite-volume numerical scheme. The LW scheme does not
preserve monotonicity and often results in spurious oscillations. The LW scheme, however, usually
results in excessively diffusive numerical solutions. Vasconcelos et al. [25] pointed out that the LF
scheme is not appropriate for flow regime transition problems because a huge difference in the wave
velocities before and after the shock front results in very small Courant numbers in the free-surface
portion of the flow, which in turn exacerbates the diffusive nature of the LF scheme and compromises
the representation of the pipe-filling bore.

The first-order centered (FORCE) flux, proposed by Toro and Billett [26], is another option for a
centered scheme. The FORCE flux is derived as the deterministic version of the staggered-grid random
choice method, and the FORCE flux is an arithmetic mean of the LF and LW fluxes:

FFO
i+1/2 =

1
2

(
FLW

i+1/2 + FLF
i+1/2

)
. (19)

The FORCE flux is less diffusive than the conventional LF scheme and it preserves the
monotonicity. It was applied to Euler and molecular hydrodynamics equation, and the high-order
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extension of the FORCE scheme was also presented on two-dimensional unstructured meshes by Toro
et al. [17].

Because the centered flux schemes are more diffusive than the upwind flux schemes, we expect
the spurious oscillations to be reduced by the centered flux schemes. However, the diffusive flux
schemes may affect the numerical accuracy whereas the upwind schemes usually do not result in
spurious oscillations when the flow depth is lower than the conduit roof. Therefore, the following
simple hybrid flux is proposed:

FHybrid
i+1/2 =

{
FFO

i+1/2 if (yL − D)(yR − D) < 0,
FHLL

i+1/2 otherwise.
(20)

where D is the height of pipe. The strategy of the hybrid scheme is straightforward: FORCE flux is
implemented only if the flow switches from the open-channel flow to the pressurized flow; otherwise,
HLL flux is implemented.

2.4. Boundary Computation

Various types of boundaries should be considered for a typical storm-sewer system. These include
drop shafts, reservoirs, junctions, dead ends, and control gates, etc. Leon et al. [27] generalized the
various types of boundary conditions as an N-way junction problem. In general, 2N + 1 variables are
unknown for an N-way junction; namely, the piezometric depth yb and the flow discharge Qb at each
pipe boundary, and the water depth yd at the junction pond. Therefore, 2N + 1 equations must be
solved for an N-way junction. The first equation is obtained from the Riemann invariants between the
pipe boundary and the neighboring cell as du± (c/A)dA = 0. The Riemann invariants are solved as
follows Leon et al. [27]:

un+1
bj
− un

bj
±
(

cn+1
bj

+ cn
j

)An+1
bj
− An

j

An+1
bj
− An

j

= 0, (21)

where the positive (negative) sign is used for inflowing (outflowing) pipes, the subscript b refers to the
boundary, and j is the pipe index.

The second equation is usually given by the following energy equation:

yn+1
b − yn+1

p +

(
un+1

bj

)2

2g
∓ k j

un+1
b

∣∣∣un+1
b

∣∣∣
2g

= 0, (22)

where k is the local head-loss coefficient and the subscript p is the depth of the junction pond. When
the inflowing pipe is decoupled from the junction, the different boundary conditions can be used as
presented in Leon et al. [27].

The last equation is given by the mass-balance equation of the junction pond:

Ap
∂yp

∂t
=

N

∑
j

Abj
ubj

, (23)

where Ap is the vertical cross-sectional area of the junction pond. Leon et al. [27] used the backward
Euler method to discretize Equation (24) as follows:

Ap
yp

n+1 − yp
n

∆t
=

N

∑
j

(
Abj

ubj

)n+1

(24)

The combination of Equations (21), (22) and (24) can represent wide range of boundary conditions
such as drop shafts, reservoirs, junctions, and dead ends, as has been verified through several test
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problems. However, this approach requires 2N + 1 nonlinear equations to be solved at a junction in
an implicit manner. The convergence of the nonlinear system could be difficult to achieve for a large
number of connected junctions. To avoid this difficulty, the above approach is modified in this study.
The explicit form of Equation (25) is

Ap
yp

n+1 − yp
n

∆t
=

N

∑
j

(
Abj

ubj

)n

(25)

Note that Equation (25) is derived from Equation (23) by using the forward Euler method. This
simple change makes the problem much easier. Equation (25) can be solved separately, so the boundary
conditions at each pipe can be solved in separate manner.

3. Numerical Results

3.1. Test 1: Typical Filling Bore Problem

For Test 1, a typical filling bore problem with an analytical solution, introduced by Malekpour
and Karney [10], is used to understand the cause of the numerical oscillations. Figure 1 shows the
description of typical filling bore problem and details regarding the experiments process can be
found in Malekpour and Karney [10]. With the condition yR = 0.6 m and uR = 0, the analytical
solution can be obtained by using the traveling-wave method as SW = 10.077 m/s, uL = 4.044 m/s,
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Figure 1. Description of typical filling bore problem (Test 1).

The Courant–Friedrichs–Lewy (CFL) number is set to 0.5 and two acoustic-wave velocities
(a = 100, 1000 m/s) are considered to estimate the performance of numerical schemes with relatively
low and high values of wave velocity. The number of numerical cells is 400, as used in the study
of Malekpour and Karney [10]. The values at intermediate region for HLL scheme are estimated by
Equation (15) for all test problems in this paper.

Figure 2 compares the analytical solution with the numerical solutions computed by HLL, Roe,
FORCE, and hybrid flux schemes using the spatially first-order piecewise constant variables in
cells. Both upwind schemes, HLL and Roe, produce spurious oscillations near the shock-wave
front whereas FORCE and hybrid schemes do not. In particular, the Roe scheme produces the most
significant oscillations for both cases with a = 100, 1000 m/s, presumably because it is the least
diffusive of the four flux schemes while preserving the sharp water profile near the shock-wave front.
Conversely, the FORCE scheme produces a smoothed water profile compared with the other flux
schemes. Over-smoothing of the water profile becomes more significant when a higher acoustic-wave
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velocity, a = 1000 m/s, is applied. Smoothed hydraulic-head profiles are also found in the other
three schemes with high acoustic-wave velocity near the shock-wave front, although the magnitude
of over-smoothing is smaller than those of FORCE. This result implies that the high acoustic-wave
velocity in the Preissmann slot model may cause not only the computational instability but also the
reduced accuracy in a practical aspect. Overall, of the four flux schemes, the proposed hybrid scheme
performs the best.
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3.2. Test 2. Pipe-Filling Bore Experiment

For Test 2, a laboratory experiment performed by Vasconcelos and Wright [25] is used to compare
the performance of the numerical schemes. Figure 3 shows the temporal variations of the observed and
simulated water levels at the downstream tank. All numerical flux schemes reproduce the observed
phenomena of the experiment except for the Roe flux scheme. The Roe flux scheme fails to reproduce
this experiment because of the instability caused by spurious oscillations. Figure 4 compares the
hydraulic-head profiles obtained from different flux schemes at 6 s. Apparently, the HLL scheme
causes the most spurious oscillations of the three flux schemes. The spurious oscillation is more
significant with a = 300 m/s than with a = 100 m/s. The FORCE scheme produces the most stable
results but the profile is over-smoothed near pipe-filling bores as compared with the other two flux
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schemes. The hybrid scheme has the best result with a = 100 m/s whereas it suffers from spurious
oscillations with a = 300 m/s. Note that the FORCE scheme, which is the most diffusive flux scheme
of the three schemes, also produces spurious oscillations with a = 300 m/s. The results of this study
are comparable to Figure 7(A) in Vasconcelos et al. [14]. Their results, obtained by using a modified
Roe scheme, are more oscillatory than the results presented herein. Although the spurious oscillations
are not perfectly removed in the case of high acoustic-wave velocity, the hybrid scheme performs
satisfactorily for all cases in Test 2.
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The results of this study are comparable to Figure 7(A) in Vasconcelos et al. [14]. Their results, 
obtained by using a modified Roe scheme, are more oscillatory than the results presented herein. 
Although the spurious oscillations are not perfectly removed in the case of high acoustic-wave 
velocity, the hybrid scheme performs satisfactorily for all cases in Test 2.  
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3.3. Test 3: Transition Flows in Pipe Experiment

The laboratory experiment, conducted at the Hydraulics Laboratory of the University of Calabria
by Trajkovic et al. [12], is used for Test 3. This experiment evaluates how rapid changes affect the
opening or closing of the sluice gates. In this study, we simulate the type-A set of experiments
of Trajkovic et al. [12]. The initial condition for the experiment is an inflow rate of 0.0013 m3/s.
The downstream sluice gate is totally opened, and the upstream sluice gate is opened by 0.014 m.
A transient flow is generated after the downstream sluice gate is rapidly closed. Thirty seconds after
the gate closes, the gate is partially reopened by 0.008 m. The pressure head appears 4.6 and 0.6 m
upstream from the downstream sluice gate. The CFL number is set to 0.5 and two acoustic-wave
velocities (a = 100, 300 m/s) are considered to estimate the performance of the numerical schemes
with relatively low and high wave velocity. The number of numerical cells is 100.

Figure 5 shows the observed and simulated pressure head 4.6 and 0.6 m upstream from the
downstream sluice gate. The results of the HLL and hybrid schemes match well with the observed
data overall whereas the FORCE scheme does not reproduce the observed pressure heads, even with
a relatively low acoustic-wave speed a = 100 m/s. We hypothesize that the FORCE scheme is too
diffusive to capture a filling bore propagation to a satisfactory level for this problem. The effect of
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the diffusive numerical flux is more significant when high acoustic-wave speed is adopted, which
is also shown in Test 1. Figure 6 shows the hydraulic-head profile at 30 s. The HLL and hybrid
scheme produce very similar profiles with a = 100 m/s. However, the HLL scheme causes significant
spurious oscillations with a = 300 m/s at x = 7.5 m, whereas the hybrid scheme does not. For both
cases, the FORCE scheme produces diffusive filling bore profiles. Although the acoustic-wave speed
of 1000 m/s is also tested, the results are not presented here because all numerical schemes fail to
simulate due to spurious oscillations. Note that the hybrid scheme proposed herein can, to a certain
degree, alleviate the instability from spurious oscillations, but the very high acoustic-wave speed of
over 1000 m/s still can cause numerical instability, depending on the situation.
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4. Conclusions

We propose a hybrid flux solver of the Preissmann slot model and evaluate it for the improved
numerical analysis of transient mixed flows in sewer-pipe systems. The new hybrid scheme combines
the upwind flux solver and the centered flux solver to exploit the benefits of the two different
approaches. A modified treatment scheme for general boundary conditions, such as junctions, which
was originally developed by Leon et al. [27], is also proposed and applied.

Three numerical test problems are investigated to verify the proposed hybrid flux scheme.
The proposed scheme is usually more stable than the conventional HLL scheme and less diffusive
than the central flux schemes such as the Force scheme. For Test 1, which is a typical filling bore
problem with an analytical solution in a rectangular pipe, the hybrid scheme performs the best of
the four different flux schemes with high and low wave celerity (a = 100, 1000 m/s). Tests 2 and
3 are experimental simulations of transient mixed flows in a circular pipe connected between two
water tanks. The hybrid scheme performs generally better than the other conventional flux schemes.
In particular, the Roe scheme, which is known as the least diffusive scheme, often results in spurious
oscillations and fails the computations.

In addition to improved numerical accuracy and stability, another advantage of the hybrid scheme
is its simplicity of application compared with the other methods presented in Vasconcelos et al. [26]
and Malekpour and Karney [10]. Regardless of the shape of the cross section, the hybrid method
can be applied to any type of pipe without adjusting additional parameters. The hybrid method is
usually stable with a wave velocity ranging from ~100 to ~300 m/s through various test simulations.
There remains, however, a limitation in terms of spurious oscillations, especially with a very high
value of the wave velocity, such as a = 1000 m/s for two test problems. It remains difficult to present
a threshold for the wave velocity that causes a numerical instability because it depends strongly on the
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problem. A more rigorous analysis of the relation between numerical stability and wave velocity is left
for future work. The proposed scheme would be useful to further enhance integrated urban water
modeling in which transient mixed flow conditions impact the simulation accuracy, especially for
extreme flooding. We are currently pursuing a demonstration of the proposed method for real-world
applications in a large urban area, and the results will be reported in the near future.
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