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Abstract: Because of global concerns regarding pollution and eutrophication in fresh water, China’s
Taihu Lake has gained attention both for these issues and as a source of nitrous oxide (N2O)
emissions. In this study, we investigated N2O fluxes and nitrification and denitrification rates
at the sediment–water interface and analyzed monthly the relationships between these processes
in different areas of Taihu Lake over a one-year period. Annual maximum nitrification and
denitrification rate and N2O flux were observed during June in an algae-dominated area of the
lake and measured 17.80, 235.51, and 31.49 µmol N m−2 h−1, respectively. The nitrification
rate ranged from 0 to 1.18 µmol N m−2 h−1 at other sampling sites, with less variation.
The denitrification rate showed clear seasonal variation, with lower levels between August and
January (0.01–8.57 µmol N m−2 h−1; average = 1.49 µmol N m−2 h−1) and a rapid increase between
February and July (1.03–235.51 µmol N m−2 h−1; average = 41.73 µmol N m−2 h−1).The N2O flux
ranged from −0.64 to 1.5 µmol N m−2 h−1, with little variability except for a much higher rate
(31.49 µmol N m−2 h−1) in June in algae-dominated areas. N2O flux was significantly positively
correlated with nitrification and denitrification rates in most lake zones. By comparing the slopes
of the regression equations, we found that N2O emissions from the sediment–water interface were
influenced predominantly by nitrification, suggesting that lower N2O fluxes from the sediment–water
interface in Taihu Lake are caused primarily by lower nitrification rates.

Keywords: nitrous oxide flux; nitrification; denitrification; sediment–water interface; Taihu
Lake China

1. Introduction

Nitrous oxide (N2O) is the third important greenhouse gas, and has a greenhouse effect
approximately 300 times stronger than that of CO2 [1]. The atmospheric N2O concentration has
kept increasing steadily over the past century by approximately 0.25 ± 0.05% year−1 (IPCC, 2007),
which has gained great attention. Water eutrophication caused by excess phosphorus has become
a severe environmental problem globally, while excessive nitrogen accumulation in water produces
nitrous oxide (N2O) emissions, exacerbating the greenhouse effect [2,3]. Although lakes are not
generally considered major sources of N2O emissions compared to other aquatic ecosystems such
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as rivers and wetlands [4], increasing levels of pollution and eutrophication in freshwater lakes can
cause ongoing problems, including higher N2O concentrations, saturation, and emissions fluxes.
Nitrification and denitrification are among the microbial processes that produce N2O in lakes and other
aquatic ecosystems [5–7]. A byproduct of microbial nitrification and denitrification processes, N2O
can also be consumed by denitrification [8]; net N2O emissions may therefore result from these two
dynamic processes in which N2O is both produced and consumed in lake ecosystems [9]. Nevertheless,
opinions differ regarding the dominant N2O emission process at the sediment–water interface in
various ecological environments [10]. The sediment–water interface, which plays an important role
in the removal and transformation matter, is an important part of rivers, lakes, and other aquatic
ecosystems [11]. Material cycling processes occurring at the sediment–water interface in lakes have
recently attracted increasing attention from researchers. Most studies on the exchange and migration
of nutrients [12–14] and heavy metals [15,16] at the sediment–water interface have been performed in
aquatic ecosystems. Several studies have specifically investigated nitrification, denitrification, and N2O
emissions at this interface [17,18]. Xia et al. [19] found that the sediment–water interface denitrification
rate increased with ammonia concentration in the water. Jha and Masao [20] determined that water
column nitrate concentration and temperature were the primary factors influencing the denitrification
rate in Barato Lake, Japan. Teixeira et al. [21] found that N2O emissions at the sediment–water interface
increased with seawater salinity. Kenny et al. [22] found a strong positive correlation between N2O
emission rates and ammonium concentration in a study concerning sediment nitrate concentrations
in water, while Beaulieu et al. [23] found no relationship between N2O yield and aquatic N-NO3 in
American streams.

Significantly different nitrification and denitrification rates and N2O emissions have been reported
at the sediment–water interface in different aquatic ecosystems due to high ecosystem complexity and
differences between given locations: such differences can occur even between two bodies of water
in the same location [24,25]. In this study, from August 2014 to July 2015, we examined nitrification
and denitrification rates and N2O fluxes at the sediment–water interface in Taihu Lake, a large and
important lake in China where few studies [20–22] have focused on these processes, allowing us to
determine the dominant N2O emission process.

2. Materials and Methods

2.1. Study Site

Taihu Lake is the third largest freshwater lake in China (2338 km2) [26], located in eastern China.
Taihu is a shallow lake with a mean depth of 2 m and a bed ranging between 1.5 m and 2.5 m (72%
of total area). Taihu Lake serves economically developed regions with high-density populations and
well-developed industries near the Changjiang (Yangtze) River delta (Figure 1). These developed
regions have contributed excessive inputs of nitrogen and phosphorus [27,28]. In 2012, the nutrients
load exceeded 0.93 g P m−2 year−1 and 19 g N m−2 year−1 [29], which contribute in turn to ongoing
eutrophication. The lake is characterized by different ecological zones, such as algal zones, macrophyte
zones, and open-water zones with high spatial variation [30].

We selected four sampling locations within the lake (Figure 1). Average total P concentration in the
lake is 0.14 mg P L−1 with the range of 0.02 mg P L−1 (July) to 0.57 mg P L−1 (April), which indicates
poor water quality [31] and lies in water quality standard IV grade described by China environmental
bulletin 2014. The first sampling site (S1), located in Meiliang Bay, is considered a typical algal zone.
This site has an average water depth of about 3.2 m, with the range of 3 m (January and February) to
3.7 m (July, August and September) [32]. It features significant amounts of sludge on the lake bottom;
dense algal blooms occur from June to August; and the level of eutrophication is highest at S1, as noted
by Yang et al. [33] and Wang et al. [34]. The second sampling site (S2) is situated in an open-water zone
with an average water depth of about 2 m, where the sediment contains more sand and no aquatic
plants, with much algae in water. The other two sites are located in the eastern portion of the lake
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with an average water depth of about 1.6 m, which is dominated by large aquatic plants. The third
sampling site (S3) is characterized by floating plants and the fourth sampling site (S4) by submerged
plants, which produce better water quality [35]. Thus, the sediments contain more organic detritus.
The chemical characteristics of the water and sediment at all four sites are given in Tables 1 and 2.
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ammonia (N-NH4), nitrate (N-NO3), total nitrogen (TN), total dissolved nitrogen (TDN), chemical
oxygen demand (COD), and chlorophyll a (Chl a) in water samples from the four sampling locations.
Data are given as concentration ranges with the annual average in parentheses. For all parameters
except for Chl a, the annual maximum occurred in June at S1.
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2.2. Sampling Procedure

We collected samples monthly from August 2014 to July 2015. The sites were located using a GPS
device. Fifteen sediment–water column samples were collected at each site using a gravity sampler
9 cm in diameter and 30 cm in height, which produced a 20 cm sediment core with 10 cm of overlying
water. Water temperature was determined simultaneously using multi-parameter water probe meters
(YSI Inc., Yellow Springs, OH, USA). Twelve samples were used to determine the nitrification and
denitrification rates and N2O flux at the sediment–water interface; the uppermost 2 cm of sediment
in the remaining three samples was collected and sealed in polyethylene plastic bags, which were
subsequently flattened to keep the sediment in an anaerobic state for analysis. In addition, 10 L samples
of overlying water were collected; 50 mL aliquots of which were filtered through a 0.45 µm Millipore
membrane filter for the determination of ammonia and nitrate. The 50 mL water and sediment samples
were placed in an incubator with ice packs, transported to the Chinese Academy of Sciences Taihu
Lake Ecological Experiment Station as soon as possible, and stored in a refrigerator until tests could be
completed. The sediment–water columns were placed in an Electro-Thermostatic sink (STICK Inc.,
Shanghai, China) to regulate the water temperature, which would maintain the value measured in the
lake and maximally simulate the actual state of lake. It is a little different with in situ incubations in
benthic chambers [36]. Intact sediment cores were incubated in a laboratory microcosm usually used to
study the effect of environmental factors on greenhouse fluxes across sediment water interface [18,19].
Thus, it could meet to the requirement of this research.

2.3. Analytical Procedures

The nitrification and denitrification rates and N2O flux were determined as follows.
The sediment–water column samples were divided into four groups. In the first group, 60 mL
serum bottles were filled with overlying water using a siphon before the incubation experiment began.
Then, 0.5 mL of saturated HgCl2 was added and the bottles were sealed. In the second group, used as
a control group, no inhibitors were added. The third group was treated with acetylene to prevent the
N2O from being converted into N2. Saturated acetylene solution was added to the sediment–water
column in amounts sufficient to achieve 10% acetylene concentrations in both the porewater and the
overlying water [37]. This group was used to determine the denitrification rate. The fourth group was
treated with the nitrification inhibitor allylthiourea (ATU), which prevents the microbial oxidation of
N-NH4 to N-NO2 and N2O produced from nitrification [38,39], ATU was added to the sediment–water
column in amounts sufficient to achieve a concentration of 10 mg L−1 in both the porewater and
the overlying water to determine the nitrification rate. A multi-channel peristaltic pump (BT100-L
Baoding Lange) was used to keep the water flowing and ensure evenly distributed nutrient content.
An incubation time of 4 h in the dark was used throughout the process, after which 60 mL serum bottles
were filled with overlying water from sediment water column using a siphon. The 0.5 mL aliquots of
saturated HgCl2 were added to the serum bottles to inhibit microbial activity. Finally, the solution in
the serum bottles was used to determine the amount of dissolved N2O.

2.4. Environmental Variables and N2O Measurement

Chemical characteristics of water and sediment were determined using standard methods [40].
We determined water and sediment ammonia nitrogen (N-NH4) using Nessler’s reagent
colorimetric method (LOD of 0.02 mg N L−1) and nitrate nitrogen (N-NO3) using UV
spectrophotometry (LOD of 0.02 mg N L−1). Total dissolved nitrogen (TDN) and total nitrogen
(TN) were determined using the alkaline potassium persulfate digestion-UV spectrophotometry
method (LOD of 0.05 mg N L−1). Nitrite nitrogen (N-NO2) was determined using the Griess
spectrophotometry method (LOD of 0.003 mg N L−1). Chemical oxygen demand (CODMn) was
determined using the potassium permanganate method. Chlorophyll a (Chl a) was determined using
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the ethanol extraction-spectrophotometry method. The amount of organic carbon (Org-C) in sediment
samples was determined using the potassium dichromate oxidation-ferrous sulfate titrimetry method.

We determined the concentration of dissolved N2O using the headspace equilibrium
technique [32], in which 10 mL of high purity N2 was injected into a serum bottle to displace 10 mL
of water. The bottle was then shaken vigorously for 30 min at room temperature until the liquid
and gas phases reached equilibrium. Then, the headspace gas was extracted with an ejector and the
concentration of N2O was determined via gas chromatography (GC) with electron capture detection
(ECD) (Agilent 7890B), during which the column temperature was 60 ◦C, the ECD detector temperature
was 300 ◦C, and 99.999% grade N2 carrier gas was used at a flow rate of 35 mL min−1. The water
N2O concentration was calculated using formulas derived by Johnson et al. [41], and data concerning
the solubility of N2O in water was drawn from Weiss and Price [42]. Treatment with ATU allows
the indirect calculation of the contribution of nitrification to the N2O flux, which is expressed as the
difference between the control group and the ATU treatment group [38,39,43]. The denitrification rate
was calculated using the N2O accumulation in the acetylene treatment group. The N2O flux at the
sediment–water interface was then calculated using the difference in N2O concentration between the
control group and the initial sample. This method is similar to a laboratory-scale benthic chamber [44],
which is also an accurate and direct way for determining the N2O flux across sediment–water interface
in comparison with the gradient method [45].

2.5. Statistical Analysis

All data analysis was performed using SPSS 19.0 and Microsoft Excel 2007 software in Windows
7. Simple linear regressions were used to describe the relationships between the N2O flux at
the sediment–water interface and the nitrification and denitrification rates. The relationship was
considered statically significant at values of p < 0.05.

3. Results

3.1. Chemical Characteristics of Water and Sediment

The ranges and average values for the relevant water and sediment chemical characteristics over
the one-year study period are presented in Tables 1 and 2. The water-borne concentrations of TN,
N-NH4, CODMn, and Chl a were generally higher and more variable at S1 than at the other sites
(Table 1). N-NO3 was the dominant form of inorganic nitrogen. The concentrations of N-NH4 in
the water varied far less than did the other variables. Overall, the algal productivity in S1 and S2
zones were higher than those in the macrophyte zones (S3 and S4). The sediment-borne N-NO3

concentrations were lower than those of ammonia (N-NH4) on average (Table 2), and the amounts of
sedimentary N-NO2 were small. The concentrations of TN at S1 were higher than those at the other
sites. The macrophyte zones (S3 and S4) had higher Org-C contents than S1 and S2.

3.2. Nitrification and Denitrification Rates at the Sediment–Water Interface

The monthly nitrification and denitrification rates at the sediment–water interface are shown in
Figure 2. The annual maximum values at S1 were recorded in June, and both maxima were significantly
higher than the other values. At S2, the nitrification rate was maximum in January and April, however
the other sites featured no major annual variations. Overall, the nitrification rates were low, with little
seasonal variation.

There were no significant differences in denitrification rate between the sampling sites from
August 2014 to January 2015. However, denitrification rates increased with increasing water
temperature (February 2015 to July 2015) and denitrification rates increased most noticeably
at S1. Most of the sampling sites maintained elevated denitrification rates through July.
Overall, the denitrification rates were higher than the nitrification rates.
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3.3. Monthly Variations in N2O Flux at the Sediment–Water Interface

Monthly variations in the N2O flux at the sediment–water interface are shown in Figure 3. At S1,
the minimum and maximum N2O fluxes were observed in November and June, respectively. At S2,
the N2O fluxes, which surpassed those at any other site, were highest in April and May. Overall,
the N2O fluxes varied over a narrow range for all sites except S1 and remained low during most of
the year.
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4. Discussion

4.1. The Influence of Environmental Variables on Nitrification at the Sediment–Water Interface

The nitrogen content in lake water has a direct effect on the nitrification process. The TN
concentration measured in this study was lower than that in previous years [46], which resulted from
recent environmental management, such as sediment dredging [47]. The lower TN concentration
(Table 1) could be the primary cause of the lower nitrification rates observed throughout the study
period (Figure 2a). The correlation analysis presented in Table 3 shows significant positive correlations
between nitrification rate and water N-NH4, N-NO3, TN, and TDN (p < 0.01). These results indicate
that dissolved nitrogen significantly affected the nitrification rate at the sediment–water interface,
which is consistent with previous findings [48]. Since the content of Chl a is closely related to the algal
productivity, Chl a was positively correlated with both the nitrification rate and the N2O flux (p < 0.01),
which confirms that algal blooms may promote nitrification and N2O production [49,50].

Although temperature is important and can affect nitrifying microorganism activity, thus
affecting the nitrification rate [51–53], no clear relationship was found between water temperature
and nitrification rate in this study (Table 3) (Figure 2a). Overall, the nitrification rate at the
sediment–water interface fluctuated over a narrow range at all Taihu Lake sampling sites, except S1.
Thus, the nitrification rate was low throughout most of the year and lower than that reported in estuary
sediments by Yang et al. [43]. Therefore, nitrification at the sediment–water interface in Taihu Lake
may have been limited by the lower water nitrogen concentrations.

4.2. The Influence of Environmental Variables on Denitrification at the Sediment–Water Interface

In a lacustrine ecosystem such as Taihu Lake, denitrification occurs mainly in sediment and
is affected by factors such as nitrate concentration [6], temperature [54], and organic carbon
content [55,56]. In this study, the denitrification rate was positively correlated with the water N-NO3,
TN, and TDN concentrations (p < 0.01) (Table 3), but there were no obvious relationships between
the denitrification rate and the various sediment characteristics (Table 4). This indicates that the
denitrification rate at the sediment–water interface increases with increased dissolved N loading in
Taihu Lake. The rivers, especially during the high rainfalls mainly concentrated in June, flows nutrients
from cultivated fields, urban soil surfaces, and domestic waste exudates into Meiliang Bay (S1) [57–59],
which rapidly increase both the nitrogen content in the lake water reaching the yearly maximum and
the rate of denitrification (Figure 2b).

Table 3. Correlations among N2O flux, nitrification rate, denitrification rate, and water parameters.

Parameters N-NH4 N-NO3 TN TDN CODMn Chl a Nitr. Rate Denitr. Rate N2O Flux T

N-NH4 1 0.160 0.158 0.103 0.224 0.183 0.523 ** 0.242 0.496 ** −0.07
N-NO3 1 0.841 ** 0.935 ** 0.017 0.314 * 0.611 ** 0.611 ** 0.617 ** 0.060

TN 1 0.884 ** 0.235 0.480 ** 0.613 ** 0.676 ** 0.618 ** 0.79
TDN 1 −0.044 0.276 0.581 ** 0.718 ** 0.603 ** 0.032

CODMn 1 0.662 ** 0.148 0.019 0.118 0.211
Chl a 1 0.399 ** 0.216 0.391 ** 0.178

Nitr. rate 1 0.766 ** 0.996 ** −0.074
Denitr. rate 1 0.782 ** −0.042
N2O flux 1 −0.072

T 1

Notes: ** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).
These designations also hold true for Table 4.
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Table 4. Correlations among N2O flux, nitrification rate, denitrification rate, and sediment parameters.

Parameters N-NH4 N-NO3 N-NO2 TN Org-C Nitr. Rate Denitr. Rate N2O Flux

N-NH4 1 −0.19 −0.066 0.076 0.205 0.176 0.061 0.169
N-NO3 1 0.489 ** −0.150 0.115 0.193 0.247 0.196
N-NO2 1 0.132 0.160 −0.103 −0.176 −0.120

TN 1 0.368 * −0.097 −0.151 −0.107
Org-C 1 −0.085 −0.066 −0.075

Nitr. rate 1 0.766 ** 0.966 **
Denitr. rate 1 0.782 **
N2O flux 1

Notes: ** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).
These designations also hold true for Table 4.

Many studies have found that the denitrification rate rises with increasing water
temperature [43–45]. In this study, this pattern appeared to occur between February and June 2015,
and no obvious changes occurred from August 2014 to January 2015 (Figure 2b). Our correlation
analysis showed that water temperature had no significant effect on the denitrification rate (Table 3),
suggesting that the effects of water temperature on the denitrification rate vary between regions and
seasons [54,60]. The lower denitrification rates observed in this study in autumn and winter suggest
that denitrification may be inhibited by the lower levels of nitrate in sediment and water, sediment
organic carbon content, and decreased microbial activity [61]. On the other hand, the sedimentation of
dead algae and hydrophyte residues increased in spring and summer, which increased the rate
of nitrogen utilization by microorganisms [62]. These factors combined to rapidly increase the
denitrification rate during spring and summer. Overall, these results suggest that denitrification
is influenced primarily by seasonal changes. However, nitrification rate showed no seasonal variations,
which is perhaps limited by the lower water N-NH4 concentrations (Table 1).

4.3. N2O Production Mechanisms at the Sediment–Water Interface in Taihu Lake

N2O can be produced from several different processes, including nitrification, denitrification,
dissimilatory nitrate reduction to ammonium (DNRA) [63], and some chemical processes [64].
However, in aquatic ecosystems, researchers remain concerned about the effects of nitrification and
denitrification on N2O production. Our correlation analysis found close relationships between the
N2O flux and the rates of nitrification and denitrification (Table 3) (p < 0.01), which indicates that these
processes had a significant effect on N2O flux at the sediment–water interface in Taihu Lake.

In lakes, nitrification can occur in both the water column and the surface sediment [63].
Furthermore, denitrification usually occurs in an anaerobic sediment layer [65–67]. N2O fluxes
are thought to arise primarily from denitrification [68], but the N2O flux is also closely related to
nitrification in aquatic ecosystems [67,69]. In this study, we investigated the response of the N2O flux to
the nitrification and denitrification rates using regression analysis (Figure 4). Quite significant positive
correlations with obviously different slopes were found between the N2O flux and the nitrification
rate at S1, S2, and S4 (p < 0.01). Thus, the results indicate that the N2O production by nitrification
was more rapid at S1 than at other sites. The correlation between the N2O flux and the denitrification
rate was highly significant at S1, S3, and S4. However, the slopes suggest that denitrification did
not have a significant effect on the N2O flux at the sediment–water interface in Taihu Lake, which
indicate that nitrification may play a key role in N2O flux. Moreover, pervious references evidenced
that less N2O produced by denitrification and more N2O by nitrification were released to the overlying
water [25,48,67]. These results are consistent with the present research. In view of inhibitor methods’
limitation [70,71], it is difficult to determine the amount of N2O production via nitrification and
denitrification. Thus, further research is needed.
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sediment–water interface, including the regression equation, the sample number (n), and the coefficient
of determination (R2), accompanied by p values, at each site.
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As most allochthonous nutrient comes from the north of the Taihu Basin with most cities and
the major inflow rivers [72], high nutrient concentrations in water can be observed at Meiliang
Bay (S1) in the beginning of rainy season (June), further releasing more N2O. However, water
nutrient concentration would be diluted due to much rainfall during monsoon season (August and
September) [32] and due to continuous nutrient consumption by enlarging algae [73], reducing
nitrification and denitrification rates and N2O flux (Figures 2 and 3). This is likely the main reason
that the nitrification and denitrification rates and N2O flux peaked in June 2015 at S1 (Figures 2 and 3).
Other than the nutrient increases at S1 in June 2015, no significant differences in nutrients were found
at any of the sampling sites in any month. These results suggest that significant changes in water
nutrient concentration can significantly affect the nitrification and denitrification rates and N2O flux at
the sediment–water interface. However, smaller water nutrient concentration fluctuations were clearly
not sufficient to produce significant changes in Taihu Lake.

5. Conclusions

This study investigated seasonal changes in the nitrification and denitrification rates and N2O
flux at the sediment–water interface in Taihu Lake, China. Our results show that the nitrification rate
was both lower and less variable than the denitrification rate and did not feature seasonal variation
(other than one outlier at one sampling site), suggesting that nitrification was limited by the lower
concentrations of dissolved nitrogen. The denitrification rate featured more obvious seasonal variation
and a much higher annual average, but did not cause increased N2O emissions at the sediment–water
interface. Our analysis suggests instead that N2O emissions from the sediment–water interface may be
dominated by nitrification; thus, the lower N2O flux from the sediment–water interface in Taihu Lake
was due primarily to lower nitrification rates. Nitrification and denitrification are affected by many
factors, and the mechanisms of N2O production are equally complex. Future experiments should focus
on identifying these factors via experiments under various conditions and more advanced technology
should be adopted to determine the amount of N2O production via nitrification and denitrification.
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