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Abstract: All pharmaceuticals are separated chromatographically using the liquid chromatography-
time of flight/mass spectrometry (LC-ToF/MS) on a 5 µm, 2.1 mm × 250 mm, C18 column at
0.3 mL/min. The recovery is investigated at two spiking levels, 10 and 1 ng/mL; the mean
recovery is higher than 77, 84, and 93% in sewage treatment plants (STP) influent, STP effluent,
and surface water, respectively. The limit of quantification (LOQ) averages 29, 16, 7, and 2 ng/L in
STP influent, STP effluent, surface water, and drinking water, respectively. The matrix effect is also
evaluated in STP influent and effluent. It is observed that sulfamethoxazole, prednisolone, ketoprofen,
and glibenclamide are highly impacted compared to other compounds, −99, −110, 77, and 91%,
respectively. The results show that six out of nine pharmaceuticals, namely atenolol, acetaminophen,
theophylline, caffeine, metoprolol, and sulfamethoxazole are detected in STP influent, STP effluent,
and surface water. However, the means of concentration are 561, 3305, 1805, 3900, 78, and 308 ng/L
for atenolol, acetaminophen, theophylline, caffeine, metoprolol, and sulfamethoxazole, respectively,
in STP influent. Caffeine and acetaminophen are detected with the highest concentration, reaching
up to 8700 and 4919 ng/L, respectively, in STP influent.

Keywords: transportation of pharmaceuticals; Malaysian aquatic environment; pharmaceutical
consumption; LC-ToF/MS

1. Introduction

It is well known that different therapeutic classes of pharmaceuticals are used for the treatment of
some diseases in the human body since they are biologically active compounds used for this purpose.
However, the occurrence of some pharmaceuticals in surface water may be due to the bodily excretion
of metabolized and un-metabolized pharmaceutical compounds into septic wastewater, which is
then discharged to surface water. Although these concentrations are very low (ng/L), they are a big
concern for their potential impact on the aquatic environment [1]. In the environmental analysis of
pharmaceuticals, many methods have been reported in literature using liquid chromatography (LC).
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The reason why LC was used in the analysis of these pharmaceuticals is related to the low volatility and
high hydrophilicity of most of the pharmaceuticals. A gas chromatography instrument has also been
used for the analysis of pharmaceuticals [2,3]; however, the derivatization of pharmaceuticals is needed
to attain volatility and stability prior to the injection into the gas chromatography instrument [4].
The quantification analysis of pharmaceuticals is challenging due to high interference with other
organic pollutants and low concentrations present in real samples [5]. Generally, a sample preparation
method is required prior to instrumental analysis. A liquid-phase micro-extraction is a relatively newly
developed extraction process consuming low solvent consumption [6].

This procedure requires small volume, and it is more suitable for biological samples such
as blood and urine. [7]. So far, solid phase extraction is considered one of the most frequently
employed extraction techniques in the analysis of pharmaceuticals in water, as it offers high
selectivity, precision, and extraction efficiency [8–10]. The most common solid phase extraction
(SPE) materials that allow the retention of a wide variety of compounds are the copolymer poly
(divinylbenzene-co-N-vinylpyrrolidone) (Oasis HLB) that has both hydrophilic and lipophilic retention
characteristics, and it can be used to retain both polar and non-polar compounds [10,11]. So far,
very limited literature on the multi-residue analysis method for pharmaceuticals has been reported
in Malaysia.

Therefore, the aim of this present study is to investigate the possibility of analyzing different
therapeutic classes of pharmaceuticals in different bodies of water using a single solid phase extraction
method by developing a very accurate and selective liquid chromatography-time of flight/mass
spectrometry (LC-ToF/MS) method.

Hence, this study was conducted to develop a sensitive and accurate method for the determination
of nine pharmaceuticals which are selected based on the national consumption report in Malaysia [12].

The aim of this work is to develop and validate a comprehensive analytical LC-ToF/MS method
that can simultaneously detect and quantify a wide spectrum of pharmaceuticals in water samples.
One single extraction method is applied to investigate and quantify the studied pharmaceuticals in
surface water, sewage treatment plant (STP) influent, STP effluent, and hospital effluent.

2. Materials and Methods

2.1. Consumption of the Pharmaceuticals

The general description of the studied pharmaceutical compounds was overviewed [13]. Atenolol
and metoprolol are called beta blockers, which are used for the treatment of high and low blood
pressure and to prevent heart attack. A non-prescription compound also known as paracetamol,
Acetaminophen is commonly used for its analgesic and antipyretic effects; its therapeutic effects are
similar to salicylates. The non-prescription pharmaceutical stimulant xanthine compounds caffeine
and theophylline are included in this present study. Theophylline is used to relax the muscles in the
airway, making breathing easier, while caffeine is responsible for the stimulation of the central nervous
system in the body.

Sulfamethoxazole is an antibacterial used to reduce the impact of bacterial synthesis of
dihydrofolic acid. Prednisolone is one of the steroid compounds used to help reduce the symptoms
of asthma, such as wheezing in children. Ketoprofen is nonsteroidal anti-inflammatory drug, which
is used for the symptomatic treatment of acute and chronic rheumatoid arthritis. Glibenclamide is
called glyburide, an antidiabetic drug, which is used to reduce the blood glucose in patients with
non-insulin-dependent diabetes mellitus (Type II diabetes). In Malaysia, the Ministry of Health
annually publishes a statistical report on drug consumption. Table 1 presents the defined daily doses
(DDD) of the studied pharmaceuticals per thousand inhabitants between 2011 and 2014 in Malaysia.
The DDD values are based on the Anatomical Therapeutic Chemical (ATC) classification system by the
World Health Organization (WHO) [14]. The annual consumption of these pharmaceuticals can be
calculated using the following formula:
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Consumption (kg) = DDD(g) × DDD/1000 inh × Population/1,000,000 × 366 (1)

where DDD is the defined daily dose and DDD/1000 inh is the number of daily doses consumed per
1000 inhabitants in one year.

Table 1. Defined daily doses (DDD) and the consumption of the selected pharmaceuticals in Malaysia
(MOH 2014).

Compound DDD (mg) a Consumption (kg/year)

2011 2012 2013 2014

Atenolol 75 (O, P) 8184 8233 8428 9094
Acetaminophen 3000 (O, P, R) 249,358 255,444 268,814 272,690

Theophylline 400 (O, R, P) - - - -
Caffeine 400 (O, P) - - - -

Metoprolol 150 (O, P) 13,025 14,387 15,393 15,689
Prednisolone 10 (O) 736 649 589 479

Glibenclamide (O) 10 (O) 392 616 458 435
Sulfamethoxazole b 2000 (O) - - - -

Ketoprofen b NA - - - -
Population (107 inhabitants) 2.9062 2.9510 2.9915 3.0261

a WHO (2018), b Means the compound not listed as top 50 pharmaceuticals consumed in Malaysia. O = Oral,
P = Parenteral, R = Rectal, NA: not available.

It was observed from Table 1 that acetaminophen has the highest consumption levels during the
four years compared to the other pharmaceutical compounds. Furthermore, it could be considered an
over-the-counter drug, and it is consumed in three different ways: orally, parenterally, and rectally.

All of the studied pharmaceuticals have been presented in Figure 1. Non-prescription
pharmaceutical compounds, such caffeine and theophylline, were selected for their prevalence in
very commonly consumed drinks, such as tea, coffee, milo, and Pepsi, and, furthermore, due to
their frequent detection as reported in previous studies [11,15–19]. Acetaminophen was selected as a
non-prescribed and/or prescribed pharmaceutical compound.
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2.2. Reagents and Materials

All standards were pure with (≥98%) of atenolol, acetaminophen, theophylline, caffeine,
caffeine-13C3 (internal standard, IS), metoprolol, sulfamethoxazole, prednisolone, ketoprofen,
and glibenclamide, which were obtained from Sigma-Aldrich (St. Louis, MO, USA). Deionized
water (DIW) was collected from the water analysis and research lab at Universiti Kebangsaan Malaysia.
HPLC-grade methanol (MeOH), acetonitrile (ACN), methyl tertiary butyl ether (MTBE), acetone, and
formic acid (FA) were supplied by Merck (Darmstadt, Germany). The cartridges used for SPE were
Oasis HLB (3cc, Waters, Milford, MA, USA).

2.3. Sample Collection

All samples were collected from Nilai and Seremban, Malaysia, and then shipped to the laboratory
on the same day. Eight points, as shown in the map (see Figure 2), were chosen to study the fate of nine
pharmaceutical compounds. Samples were collected from four STPs (STP1, STP2, STP3, and STP4)
and two hospitals (HSP1 and HSP2). Samples were also collected from the recipient rivers at two
points (SW1 and SW2). The treatment process in all STPs was an oxidation ditch, while it was a
rotating biological contractor in the hospitals. The frequency of sampling was for three months in 2014.
Samples were collected on the same day, within three hours in the morning, at a fixed volume (1.0 L)
for each point; the sampling interval was every month. One liter amber glass bottles were rinsed in
the field twice before sample collection. A polyethylene plastic bucket was used to collect wastewater
samples and fill the glass bottles. All safety was taken into account during sampling. The sampler
used disposable gloves to prevent any contamination by the personal care products from the sample.
A plastic bucket was used to collect the samples. All samples were filtered by 0.7 µm GF/F filter
(Whatman, Little Chalfont, UK) to remove any solid matter suspended in the samples. All filtered
samples were kept at 4 ◦C until the solid phase extraction experiments.
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2.4. Instrumental and Extraction Method

Separation of pharmaceuticals was performed on the liquid chromatography (LC) instrument
(Dionex, Sunnyvale, CA, USA). 30 µL of sample was injected at 0.3 mL/min. All selected
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pharmaceuticals were analyzed in the positive mode (PI). Two mobile phases were used; (A) 0.1% FA
in DIW and (B) ACN-MeOH (3:1, v/v) at 0.3 mL/min. The gradient elution is as follow:

5% B (0 min)→ 60% B (linear increased in 3 min)→ 97% B (linear increased in 3 min)→ 97% B
(hold 5 min)→ 5% B (linear decreased in 0.1 min)→ 5% B (hold 5 min).

All analytes were acquired using an independent reference spray via the LockSpray interference
to ensure accuracy and reproducibility (mass spectrometry (MS) capillary voltages, 4000 (PI); drying
gas flow rate, 8.0 L/min; drying gas temperature, 190 ◦C; and nebulizer pressure, 4.0 bar). A mixture
of sodium hydroxide and FA was used as the lock mass m/z 90.9766 to 974.8132. Accurate masses were
calculated using the software Daltons Data Analysis incorporated in the instrument. Samples of 500,
250, 100 mL from surface water, sewage treatment plant and hospital effluent, and sewage treatment
plant influent, respectively, were filtered by 0.7 µm GF/F filter (Whatman, UK) to remove any solid
matter suspended in the samples. All filtered samples were kept at 4 ◦C until solid phase extraction.
The sample extraction method was provided using Oasis hydrophilic-lypophilic balanced (HLB) (3 cc,
60 mg) cartridges (Waters, Milford, MA, USA). To achieve all SPE experiments, a vacuum manifold
was used for this extraction procedure. SPE cartridges were pre-conditioned with 2 mL of methanol
and 2 mL of deionized water (DIW) before sample loading. Water samples were loaded at a flow rate
of 3 mL/min under vacuum. To exclude water residue from the cartridge, it was dried under vacuum
for 15 min. After that, analytes were eluted by passing 5 mL of MTBE and 5 mL of (MeOH-ACN, 50:50,
v/v). Then, eluents were dried by flowing a stream of nitrogen gas. A 0.5 mL of solvent was added to
reconstitute the extracted analytes, which were filtered by 0.45 µm (Nylon syringe) before injection.
Each experiment was repeated three times to find the precision of the injection using LC-ToF/MS.
Individual stock standard solutions and caffeine 13C3 as an internal standard solution (1000 µg/mL)
were prepared in MeOH by dissolving 0.01 g of compound in 10 mL of methanol. Stock solutions were
kept at −20 ◦C until further experiments. Working solutions were prepared by serial dilutions of stock
standard solution with MeOH-DIW (1:9, v/v) solvent.

2.5. Method Validation

Selectivity is the ability of an analytical method to differentiate and quantify the targeted
compounds in the presence of other sample components [20]. The method selectivity was investigated
by analyzing a blank solvent sample MeOH:DIW (10:90, v/v), an effluent STP sample spiked with
nine pharmaceuticals and one IS, and an effluent STP un-spiked sample. It was observed that the
LC-ToF/MS method has a good ability to select the target compounds from different samples. To assess
intra-day precision, three concentrations (8, 40 and 200 ng/mL) of mixture compounds were injected
three times using liquid chromatography–time of flight/mass spectrometry. To assess inter-day
precision, samples were analyzed with the same above concentrations on three separate days. Five
replicates (n = 5) were performed on the same day (intra-day precision) and at different days (inter-day
precision). Recovery was investigated in different samples: surface water, the influent of a sewage
treatment plant, and the effluent of a sewage treatment plant. Standard solution mixtures of 1 and
10 ng/mL (n = 5) were spiked in the samples and extracted using solid phase extraction. The recoveries
were evaluated by comparing the peak area of the extracted samples to the peak area of the standard
solutions. The recoveries (R%) were calculated based on the following formula:

R% =
(ASP −AUN)

AS
× 100% (2)

where ASP is the peak area of a compound in an extract, AUN is the peak area of a compound in a
sample, and As is the peak area of a compound in the standard solution.

Linearity was investigated by generating the calibration curve for each analyte. Four to five points
of calibration curves were generated by injecting mixture solutions prepared from the standard stock
solution. Concentrations used to create the calibration curves ranged from each analyte’s instrumental
quantification limit (IQL) up to 400 ng/mL. Calibration curves were generated for each compound
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by plotting the peak area against the concentration of each compound using the linear regression
model. The determination coefficient, R2 ≥ 0.993, was obtained for all analytes. The instrumental
quantification limit (IQL) was the lowest concentration corresponding to the signal-to-noise ratio
(S/N) ratio ≥ 10. The limit of quantification (LOQ) for the whole method in the different matrices was
estimated using the following formula [21]:

LOQ =
IQL× 100
R%×CF

(3)

where IQL is the instrumental quantification limit (ng/L), R (%) is the recovery of the compound, and
CF is the concentration factor which corresponds to 2000, 1000, 500, and 200 for drinking water, surface
water, STP and HSP effluent, and STP influent, respectively. The identification and quantification of
pharmaceutical compounds was based on retention times (Rt) and mass value (m/z) for each analyte.
A 0.02 Da narrow window was applied for all analytes to be extracted and quantified in real samples.

2.6. Matrix Effects

The matrix effect (ME%) was evaluated based on the signal intensity of the analytes in a sample.
However, it was calculated according to this procedure: Sample extracts of STP influent and effluent
were spiked at a level of 10 ng/mL of pharmaceuticals (n = 3), and then it could be injected to
LC–ToF/MS. The following formula was used to estimate the matrix effect.

ME% =
AS − (ASP −AUN)

AS
× 100% (4)

where AS is the peak area of the compound in the standard solution, ASP is the peak area of
the compound in the extract of the sample, and AUN is the peak area of the compound in the
un-spiked extract.

3. Results and Discussion

Atenolol, metoprolol, sulfamethoxazole, prednisolone, ketoprofen, and glibenclamide
were selected as the top prescribed pharmaceuticals in Malaysia [12]. The most commonly
used non-prescription drugs were acetaminophen, theophylline, and caffeine. An example of
chromatographical separation (Figure 3) was provided by using a gradient elution program as described
in the previous section. The intensity of the pharmaceutical compounds varied strongly. This variation
may be due to the diversity of physico-chemical properties among the selected pharmaceuticals under
electrospray ionization conditions. However, the LC-chromatogram was more sufficient for analysis of
the studied pharmaceuticals at the expected ambient environmental concentrations.
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3.1. Elution Solvent Effect

The variety of physico-chemical properties of pharmaceutical compounds provided varying
results among the elution solvents tested in the preliminary experiments. The best overall solvent
elution recoveries were achieved using 5 mL of MTBE + 5 mL of methanol:acetone (50:50, v/v) without
a pH adjustment of the sample. Recoveries for the compounds tested are shown in Figure 4. It is well
known that extraction of pharmaceuticals from the Hydrophilic-Lipophilic Balance sorbent (HLB-oasis
cartridge) could be impacted by the polarity and non-polarity of the solvent and depends on the type
of analytes. Various elution solvents combining methanol, acetone, and methyl tertiary butyl ether
have been tested in this study. These elution solvents include the following: Elu A: 10 mL of MeOH,
Elu B: 10 mL of acetone, Elu C: 10 mL of methanol:acetone solution (50:50, v/v), Elu D: 10 mL of MTBE,
and Elu E: 5 mL of MTBE + 5 mL of methanol:acetone (50:50, v/v). On average, the analytes were
recovered by 84% with eluent E, 63% with eluent D, 67.5% with eluent C, 65.1% with eluent B, and 48%
with eluent A.
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Figure 4. Influence of elution solvent on the recovery of the studied pharmaceuticals at 10 ng/mL of
standards (n = 3).

Slightly-polar compounds, such as atenolol, acetaminophen, metoprolol, sulfamethoxazole,
and glibenclamide, were recovered at less than 60% with methanol as the elution solvent (A).
By reducing the polarity of the solvent, it was observed that most of the compounds were well
recovered. A polar–nonpolar elution solvent, such as eluent E, was the best choice in this present study.
Low recovery for slightly-polar pharmaceutical compounds may be attributed to the poor elution from
the HLB sorbent or poor retention on the sorbent, whilst most of compounds were very well recovered
(≥90%) using eluent E (5 mL of MTBE + 5 mL of methanol: acetone (50:50, v/v)). Recoveries of less
than 50% were observed for the prednisolone and ketoprofen in the presence of eluent E. Theophylline
and caffeine, in the same way, are believed to be poorly retained in the polymeric sorbent without pH
adjustment. However, this low recovery is not an obstacle to quantify theophylline and caffeine in real
samples, as they have a reliably low limit of quantification.

3.2. ToF Screening and Confirmation

Future strategies in LC-ToF/MS method development would include the use of electrospray
ionization modes to enhance detection methodology. In addition, the development of good
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chromatographical separation using different mobile phases (data not shown) provides a highly
sensitive and selective method to separate and quantify the compounds in real samples.

Two types of ionization, either positive or negative modes, were optimized. However, positive
ionization (PI) was selected to monitor and quantify the analytes in the samples. It was found that,
at the PI mode, the S/N ratio for all selected pharmaceuticals was the highest (data not shown).
Two compounds, ketoprofen and glibenclamide, were also identified in the negative ionization (NI)
mode, but their intensities were very low. Thus, all pharmaceutical compounds were analyzed in
positive ionization mode.

The low detection limit and the possibility of interference with other organic pollutants in a
real sample that has mass-to-charge value close to that of studied pharmaceuticals are one of the
most challenging fields in quantitative analysis. In order to reduce this challenge and to increase the
selectivity of ToF/MS measurements, a narrow, accurate mass interval was used to reconstruct the
chromatographic traces levels. Extracted ion chromatograms (EIC) were typically extracted using
a 0.02 Da for all studied pharmaceuticals. However, reducing the mass window resulted in an
enhancement of the detection limit in influent and effluent sewage treatment plants and a complete
loss of interferences from contaminants.

Petrovic et al. observed that reducing the mass window from 100 to 20 mDa resulted in an almost
15-fold increase of the signal-to-noise ratio and in an almost complete loss of the interferences from the
isobaric contaminant ions for carbamazepine in urban wastewater [22].

In all cases, the accurate mass of the protonated [M + H]+ molecular ions were applied for
confirmation and quantification purposes. Accurate mass data for the molecular ions was processed
through the software Brucker Daltons Data Analysis, which provided the elemental formula and mass
errors. Figure 5 shows an example of atenolol analysis in the influent of sewage treatment plants
using Brucker software. It could be observed that the elemental formula (C14H23N2O3) has −1.8 ppm,
which is an accurate value to confirm that this formula belongs to atenolol. The other exact mass
measurements, retention times, elemental composition, and mass errors were presented in Table 2.
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Table 2. Retention times and accurate mass measurements of molecular ions of target pharmaceuticals
in a standard solution.

Compound Elemental Composition Theoretical
Mass m/z

Extracted
Mass m/z

RT
(min)

Collision
Energy (eV)

Error

mDa ppm

Atenolol [M + H]+ C14H23N2O3 267.1704 267.1700 5.55 10 −0.4 −1.5
Acetaminophen [M + H]+ C8H10NO2 152.0712 152.0718 5.79 10 0.6 3.9

Theophylline [M + H]+ C7H9N4O2 181.0731 181.0728 5.99 10 −0.3 −1.7
Caffeine [M + H]+ C8H11N4O2 195.0921 195.0925 6.47 10 0.4 2.1

Metoprolol [M + H]+ C15H26NO3 268.1910 268.1913 7.03 10 0.3 1.1
Sulfamethoxazole [M + H]+ C10H12N3O3S 254.0592 254.0604 7.64 10 1.2 4.7

Prednisolone [M + H]+ C21H29O5 361.2020 361.2019 8.11 10 −0.1 −0.3
Ketoprofen [M + H]+ C16H15O3 255.1021 255.1015 9.32 10 −0.6 −2.4

Glibenclamide [M + H]+ C23H29ClN3O5S 494.1511 494.1522 9.95 10 1.1 2.2

3.3. Method Validation

The linearity of the external calibration curve method ranged from IQL to 400 ng/mL for all
compounds. It was observed from Table 3 and Figure S1 that (4–5) points were generated to achieve
correlation coefficients (R2) ≥ 0.993 using linear regression. The IQL for each analyte was determined
using pure standards that were analyzed using the LC–ToF/MS method. The IQL was determined to
be the concentration with an S/N ratio ≥10. A wide range of IQLs were obtained, because they depend
on the sensitivity of the instrument and the ionization efficiency of the analyte in an electrospray
ionization (ESI) source. The IQLs for all pharmaceuticals ranged between 0.3 and 8 ng/mL except
for prednisolone, which was 40 ng/mL. This high value is not an obstacle for developing the method
since most pharmaceuticals have very good IQLs compared to prednisolone. The LOQs over the
entire method were calculated using Equation (1), in which the concentration factors and matrix
effects of different environmental samples were considered. In drinking water (DW), the LOQ ranged
between 0.3 and 8.2 ng/L. In effluent of STP, the LOQ ranged between 6.5 and 50.3 ng/L, whereas the
LOQ ranged between 11.1 and 83 ng/L in influent of STP. The findings in this present study were in
agreement with our previous studies [11,19].

Table 3. Method validation parameters.

Compound Equation (5 Points) R2 Range
ng/mL

IQL
ng/mL

LOQ (ng/L)

INF STP EFF STP SW DW

Atenolol y = 2100x + 6486 0.9998 1.6–400 1.6 11.1 8.8 3.5 0.3
Acetaminophen y = 350x − 118 0.9931 8–400 8 58.8 25.6 14.7 8.2

Theophylline y = 664x − 103 0.9972 8–400 8 19.2 7.7 5.7 0.8
Caffeine y = 663x + 8328 0.9963 4–400 4 22 17 8.4 5

Metoprolol y = 2015x + 1938 0.9943 0.3–400 0.3 18.2 14.6 6.2 1.7
Sulfamethoxazole y = 546x − 2963 0.9963 4–400 4 12.5 8.2 7.9 0.5

Prednisolone y = 275x − 12888 0.9961 40–400 40 83 50.3 3.2 0.6
Ketoprofen y = 449x − 3285 0.9950 8–400 8 14.3 6.5 7.7 1.4

Glibenclamide y = 116x + 1389 0.9991 1.6–400 1.6 20.5 7.9 5.1 0.4

The precision of the method was evaluated based on the results of the analysis of three
concentrations (8, 40, and 200 ng/mL) with three replications for each one on the same day and
the results from inter-day precision from the other three different days. The values were compared
with the standards; thus, all values demonstrated good results with RSD% ≤ 6.7% for intra-day
precision and 11.7% for inter-day precision (see Table 4). Recoveries of the solid phase extraction
method were compared to the recoveries from drinking water, surface water, and STP influent and
effluent samples. Five samples of surface water, STP influent, and STP effluent were spiked at 1 and
10 ng/mL, and then extracted using HLB sorbent and eluent E. These set spikes are used to evaluate
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method performance over different matrices. CAF-13C3, as an internal standard, was spiked at the
same concentrations to evaluate the relative recovery for caffeine as one of the selected compounds
in this study. The absolute and relative recoveries are presented in Table 5. Recoveries for SPE trials,
extracted and analyzed in triplicate, ranged from 30.7 to 79.6% in STP influent, 37.4 to 82.4% in STP
effluent, and 41.2 to 86.4% in surface water at 1 ng/mL spiking level with a mean of 54, 61, and 69%,
respectively. For 10 ng/mL spiking level, recoveries were better and ranged from 50.1 to 100.6% in
STP influent, 61.2 to 106.9% in STP effluent, and 66.8 to 109.6% in surface water.

Table 4. Intra-day and inter-day precision and accuracy for all studied pharmaceuticals.

Compound
Concentration

ng/mL
Intra-Day Precision (n = 5) Inter-Day Precision (n = 5)

Found RSD % Accuracy % Found RSD % Accuracy %

Atenolol
8
40

200

7.2
37.4
216

13.4
11.3
5.3

89.5
93.4

107.8

7.1
41.2

187.8

15.9
12.4
6.1

88.8
103.1
93.9

Acetaminophen
8
40

200

7.6
36.2

198.8

9.8
7.9
3.1

95.2
90.4
99.4

8.1
37.8

192.2

10.6
9.1
4.9

101.3
94.6
96.1

Theophylline
8
40

200

8.1
37.1

193.4

11.1
9.7
4.2

101.6
92.8
96.7

7.5
35.2

208.8

13.8
11.2
5.8

94.3
87.9

104.4

Caffeine
8
40

200

7.9
37.6

198.2

12.2
10.5
5.8

98.5
93.9
99.1

7.6
36.7

193.4

15.3
12.1
7.9

94.9
91.7
96.7

Metoprolol
8
40

200

7.5
43.9

195.6

11.5
9.1
4.7

93.2
109.7
97.8

8.2
37.9

201.4

13.9
12.5
5.8

102.7
94.7

100.7

Sulfamethoxazole
8
40

200

8.4
35.7

194.8

10.8
7.6
2.2

104.5
89.3
97.4

7.6
39.6

207.6

11.4
8.3
3.6

95.5
98.9

103.8

Prednisolone
8
40

200

7.4
4.1

201.4

9.6
7.2
2.9

92.9
103.3
100.7

8.1
37.6

210.6

10.4
7.9
4.8

100.6
93.9

105.3

Ketoprofen
8
40

200

7.2
38.5

199.6

8.1
5.1
1.4

90.1
96.3
99.8

7.1
43.7

220.2

9.6
6.7
3.1

88.3
109.2
110.1

Glibenclamide
40

200
34.9

208.4
14.3
4.2

87.2
104.2

42.5
195.6

15.7
5.8

106.3
97.8

Table 5. Recovery for all studied pharmaceuticals at different spike levels 1 and 10 ng/mL.

Compound
Spike Level 10 ng/mL

R% ± SD, n = 5
Spike Level 1 ng/mL

R% ± SD, n = 5

INF STP EFF STP SW INF STP EFF STP SW

Atenolol 88.6 ± 5.2 96.4 ± 7.8 104.2 ± 11.5 69.4 ± 5.3 78.3 ± 6.2 83.2 ± 7.5
Acetaminophen 92.6 ± 6.2 97.6 ± 7.5 99.8 ± 9.2 79.6 ± 5.3 81.4 ± 8.3 87.6 ± 9.3

Theophylline 50.1 ± 7.7 61.2 ± 10.4 70.2 ± 10.4 43.3 ± 3.8 43.2 ± 3.9 46.4 ± 5.4

Caffeine
56.7 ± 4.3

93.7 ± 6.8 a
61.3 ± 4.7
97.4 ± 3.5

66.8 ± 4.7
103.7 ± 7.2

44.6 ± 7.7
99.3 ± 3.1

50.2 ± 7.6
102.2 ± 8.2

60.6 ± 5.5
108.4 ± 6.9

Metoprolol 86.4 ± 4.3 90.2 ± 4.7 93.4 ± 4.1 43.1 ± 5.2 59.2 ± 4.9 72.6 ± 4.8
Sulfamethoxazole 99.4 ± 9.62 102.6 ± 6.5 103.2 ± 10.6 58.2 ± 6.8 67.4 ± 5.1 78.2 ± 5.3

Prednisolone 63.6 ± 5.88 65.2 ± 5.2 71.4 ± 1.7 30.7 ± 5.8 37.4 ± 6.1 41.2 ± 9.2
Ketoprofen 57.4 ± 5.8 67.3 ± 4.8 73.4 ± 4.2 40.6 ± 3.1 46.4 ± 7.3 62.8 ± 5.9

Glibenclamide 100.6 ± 5.3 106.9 ± 10 109.6 ± 11.5 78.4 ± 6.1 82.4 ± 7.1 86.4 ± 10.3
a relative recovery (RR%). It was calculated using Caffeine-13C3.
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The means of the recoveries were 77, 83, and 88% for STP influent, STP effluent, and surface water,
respectively. Lower recoveries for the prednisolone and ketoprofen ranged from 30.7 to 41.2% and
40.6 to 48.8%, respectively, at 1 ng/mL in all samples; these are likely attributable to the unsuitability
elution with eluent E as a non-polar to polar solvent. Although prednisolone and ketoprofen exhibited
low recoveries, other pharmaceutical compounds were recovered well in this extraction method. In
comparison to other previous studies, the recovery results were not considered surprising compared
to those pharmaceutical compounds that recovered between 10 and 15% in wastewater samples, as
reported by Ferrer et al. [23]. In the same way, Shaaban et al. reported that few compounds were
recovered between 12.7 and 32.2% at a 100 µg/L spiking level [24]. Thus, this method could be
acceptable for extracting all nine pharmaceuticals using a single solid phase extraction cartridge.
All pharmaceuticals were eluted within 16.1 min, with atenolol as the first elute and glibenclamide
as the last. A perfect chromatogram of nine pharmaceuticals and one internal standard spike in STP
effluent is presented in Figure 6.
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3.4. Matrix Effect

As the developed sample preparation procedure involves an extraction process, ion suppression
or enhancement is assessed through spiking the extracted influent and effluent of STP before injection
to LC-ToF/MS at 10 ng/mL (see Figure 7). The matrix effect was evaluated as an enhancement or
suppression according to Equation (3). Some pharmaceuticals at higher portions of acetonitrile
(Rt > 7 min) were affected, in which signal suppression was 77 and 91% for ketoprofen and
glibenclamide in influent of STP, respectively. Signal enhancement was also observed to be found at
−99 and −110% for sulfamethxazole and prednisolone, respectively. These results indicate that the
organic pollutants present in a matrix that elute at higher proportions of acetonitrile could suppress
and/or enhance the ionization of the pharmaceutical compounds eluting at retention times longer
than 7 min. The reason is related to the fact that at this time the polarity of elution mobile phase
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increases according to the elution program. The same phenomenon has been previously reported by
Hernando et al. [25]. The matrix effect is highly dependent on the chromatographic gradient elution
and the composition of the mobile phase; however, it was reported that some pharmaceuticals eluting
at the beginning of the LC gradient were more heavily affected by the matrix effect as well [25].Water 2018, 10, x FOR PEER REVIEW  12 of 16 
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3.5. Occurrence of Pharmaceuticals in Water Samples

The LC-ToF/MS method described herein has been applied to samples collected from surface
water, STP influent and effluent, and HSP effluent in Malaysia. The pharmaceuticals detected frequently
by this method were six compounds (see Table 6), and some of them were presented in Figure S2.
The most frequently detected compounds were non-prescription compounds, such as acetaminophen
(75%), theophylline (100%), and caffeine (83.3%). Mean concentrations measured were 74 ng/L for
acetaminophen, 38 ng/L for theophylline, and 540 ng/L for caffeine; the highest concentrations for
these compounds were 110, 60, and 821 ng/L, respectively, in surface water. For the influent of sewage
treatment, the mean concentrations measured were 3305, 1805, and 3900 ng/L for acetaminophen,
theophylline, and caffeine, respectively; the highest concentrations for these compounds were 4919,
2722, and 8700 ng/L, respectively. All non-prescription pharmaceutical compounds were detected in
all samples (100%).

For the effluent of sewage treatment plants, only theophylline was completely frequently detected
(100%). Acetaminophen and caffeine were detected at 75% and 50%, respectively. The highest mean
concentration measured, 360 ng/L, was for caffeine. The maximum concentrations for acetaminophen,
theophylline, and caffeine were 122, 108, and 1190 ng/L, respectively. The frequency of detection
was 100% for theophylline and caffeine and 50% for acetaminophen in hospital effluent, with the
highest maximum concentrations of 3314, 628, and 2860 ng/L, respectively. Actually, the frequent
detection of caffeine and theophylline in water samples is not surprising, as it is widely available in
many drinks such as tea, coffee, cocoa, sport drinks, and soft drinks. Al-Qaim et al. reported that
caffeine was detected in different beverages and tea drinks in Malaysia [26]. Pedrouzo et al. and
Huggett et al. reported that caffeine was detected at a maximum concentration, reaching up to 9945
and 1056 ng/L, in wastewater and surface water, respectively [27,28]. In the same way, acetaminophen
(prescribed and/or non-prescribed drug) was detected at a high concentration as well in all water
samples. This finding may be due to its high levels of consumption by people as a therapeutic drug.
However, the mean consumption of acetaminophen from 2011 to 2014 was 261,577 kg/y.
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Table 6. Concentration of detected pharmaceuticals from surface water, STP influent and effluent, and HSP effluent.

Comp.

Influent STP/4 Points,
3 Replications (n = 12)

Effluent STP/4 Points,
3 Replications (n = 12)

Effluent Hospital/2 Points,
3 Replications (n = 6)

Surface Water/2 Points,
3 Replications (n = 6)

Frequency
Detection

Mean
(ng/L)

Range
(ng/L)

Frequency
Detection

Mean
(ng/L)

Range
(ng/L)

Frequency
Detection

Mean
(ng/L)

Range
(ng/L)

Frequency
Detection

Mean
(ng/L)

Range
(ng/L)

ATN 12:12 561 152–1009 12:12 89 20–181 6:6 216 61–485 6:6 35 19–55
ACM 12:12 3305 1891–4919 9:12 96 ND–122 3:6 1938 ND–3314 3:6 74 ND–110
THF 12:12 1805 902–2722 12:12 82 55–108 6:6 204 33–628 6:6 38 19–60
CAF 12:12 3900 980–8700 6:12 360 ND–1190 6:6 1600 73–2860 6:6 540 91–821
MTP 12:12 78 11–153 9:12 23 ND–36 6:6 221 44–606 6:6 124 34–190
SMX 9:12 308 ND–650 9:12 39 ND–52 3:6 147 ND–333 3:6 62 ND–118
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Six prescribed pharmaceutical compounds were less frequently present in water samples.
Two prescribed pharmaceuticals, prednisolone and glibenclamide, were not detected in all samples,
while they are considered the top consumed pharmaceuticals in Malaysia. The reason may be attributed
to their low consumption of 613 and 475 kg/y within four years (2011–2014). Ketoprofen and
sulfamethoxazole were not listed as the top consumed pharmaceutical compounds from 2011 to
2014. Ketoprofen was also not detected in all samples. Although sulfamethoxazole was not listed
as a top consumed compound in Malaysia, it was detected with 75% in STP influent and effluent.
The mean concentration for sulfamethoxazole ranged between 52 and 650 ng/L in STP influent and
effluent. Atenolol and metoprolol were the most prescribed pharmaceuticals present in water samples,
and both compounds are the top consumed pharmaceutical in Malaysia. Atenolol was consumed by
the human body, averaging 8485 kg/y within four years; it was frequently detected in STP influent
and effluent, hospital effluent, and surface water. The highest concentration detected for atenolol was
1009 ng/L in STP influent. The mean concentration ranged from 35 to 561 ng/L.

The concentration of atenolol was 273 ng/L in the River Taff sample and 2702 ng/L in the
wastewater effluent sample in the UK [29].

Metoprolol was frequently detected at 100%, 75%, 100%, and 100% in STP influent, STP effluent,
HSP effluent, and surface water, respectively. The highest concentration detected for metoprolol was
606 ng/L in HSP effluent followed by 190 ng/L in surface water, 153 ng/L in STP influent, and 36 ng/L
in STP effluent; however, these results were in line with the previous study [30].

4. Conclusions

The analysis and determination of pharmaceutical compounds within sewage treatment plant
influent and effluent, hospital effluent, and surface water using SPE and LC-ToF/MS has been observed
to be practical and effective. The prescription and non-prescription pharmaceuticals most likely
found in Malaysian wastewater and surface waters were investigated and determined. The method
performance presented indicates that the SPE and LC-ToF/MS techniques applied to routine analysis of
sewage treatment plant influent and effluent, hospital effluent, and surface water for pharmaceuticals
is sensitive and accurate for the majority of compounds tested, with detection limits averaging 29, 16,
7, and 2 ng/L in STP influent and effluent, surface water, and drinking water, respectively.

Re-constituted concentration and sample preparation were achieved by a solid phase extraction
method after optimization of elution solvent. All studied pharmaceuticals were analyzed in the positive
ionization mode, and they were separated in 16.1 min. Caffeine-13C3 was applied as an internal
standard to investigate the method extraction efficiency; however, recovery was quite acceptable,
wherein the means of the most analyzed pharmaceuticals ranged 50.1 to 100%, 61.2 to 106.9%, and 70.2
to 109.9% in STP influent, STP effluent, and surface water, respectively. The matrix effect was high for
most of the compounds, especially those eluted after 7 min.

The results showed that six out of nine pharmaceuticals, namely atenolol, acetaminophen,
theophylline, caffeine, metoprolol, and sulfamethoxazole, were detected in STP influent, STP effluent,
and surface water. However, the mean of concentration was 561, 3305, 1805, 3900, 78, and 308 ng/L for
atenolol, acetaminophen, theophylline, caffeine, metoprolol, and sulfamethoxazole, respectively, in
STP influent.

The highest prescribed compounds detected in water samples were atenolol and metoprolol, with
levels of 1009 and 606 ng/L, respectively. Non-prescription pharmaceuticals, caffeine, acetaminophen,
and theophylline, were detected frequently and at high concentrations of 8700, 4919, and 2722 ng/L,
respectively, in STP influent.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/10/7/916/s1:
Figure S1: Calibration curve graphs for all studied pharmaceuticals; Figure S2: LC chromatograms and mass
spectra of some detected pharmaceuticals in STP influent.
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