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Abstract: The development of an ecosystem health index to assess health status in freshwater
lakes is urgently needed in China, especially in polluted lakes. This study developed a specific
Ecosystem Health Index (LP-EHI) for Lake Poyang in China. LP-EHI quantified lake health from
the perspectives of physical, chemical, biological integrity and social service. Physical integrity
indices included hydrological conditions (water level and runoff), basic morphometric characteristics
(lake area and shoreline), and tributary connectivity. Chemical integrity indices used water quality,
nutrition, and toxicity to quantify chemical impairment. Biological integrity indicators covered
six major components of the aquatic food chain, namely, phytoplankton, zooplankton, benthic
macroinvertebrates, wetland plants, fish, and wintering birds. Social service indices included drinking
water, pathogenic potential, flood storage capacity, sand mining, and dish-shaped sub-lake areas
under management to measure whether the lake fulfilled the needs of human society. Reference
and impaired conditions for each metric were defined by “historical” conditions, “least disturbed”
conditions, national standards and expert opinions. The value of LP-EHI ranging from 0 to 1 was
divided into five health conditions: excellent (≥0.8), good (0.6–0.8), fair (0.4–0.6), poor (0.2–0.4)
and bad (<0.2). The metrics’ reliability was further validated using a box-and-whisker plot test.
The developed index (LP-EHI) is so far the most comprehensive index to evaluate ecosystem health
for Lake Poyang, and is well reflected in the unique characteristics of Lake Poyang. It can enhance
our understanding of lake health conditions and thus guide lake management to achieve better
health conditions.

Keywords: ecosystem health index; health assessment; Lake Poyang

1. Introduction

Freshwater ecosystems are important water sources for human society. However, due to human
activities (e.g., population growth), aquatic communities have suffered from significant declines of
abundance and natural diversity in recent years [1,2]. Quantifying the ecological status of freshwater
ecosystems can support water managers to identify the main perturbations responsible for impaired
conditions, and thus propose regulations and recommendations towards ecosystem recovery [3].
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Ecosystem health was defined as the preferred state of ecosystems that have been modified by
human activity [4]. Ecological integrity, a core concept of ecosystem health, originally proposed by the
U.S. Clean Water Act in 1972, was defined as “the state of being whole, entire or undiminished” [5].
It was widely used to identify whether the compositional and structural diversity and the natural
function of the affected ecosystems are maintained [6]. Ecological integrity could be measured
through several methods. Proposed indices focus on biological and ecological aspects, using biotic,
physical and chemical parameters to assess the ecological status of the ecosystem. Biological integrity
indices (BII) have been widely applied in rivers and streams and include the saprobe index (SI),
family-level biotic index (FBI), and biological monitoring working party (BMWP) [7]. However, these
biological indices might not be suitable for large lakes impaired by human populations due to their
difficulty in determining reference conditions [8]. Moreover, the BII, which concentrates on biological
populations, poorly reflects other aspects of lake ecosystems, including physical, chemical, and social
service functions.

Ecological integrity index (EII) has been increasingly used to evaluate the anthropogenic
impairment of lake ecosystems [8–10]. An example is the assessment of the Great Lakes in North
American conducted by the International Joint Commission of Canada and USA since 1987. Indicators
of this assessment are divided into three subject areas based on physical, chemical, and biological
integrity. In China, ecological integrity metrics have also been widely applied in many lake ecosystems,
including Lake Poyang [11], Lake Taihu [8,12,13], Lake Chaohu [9], Lake Doting [14], and Lake Dianchi
Basin [10]. Researchers focused on pollution impacts with the measurement of total phosphorus,
chlorophyll a, and water clarity [15]. Biological indicators were part of these studies, but these studies
focused on the lower food web, including phytoplankton [9,11], and ignored higher trophic levels,
such as macro-benthos, fish, and birds. There is also a growing need for integrating a human dimension
with progress in restoration [16]. Social science factors relevant to human activities also need more
explicit descriptions because lake ecosystem health refers to the state of a lake that both supplies
services for people and maintains its function and complexity [12].

Lake Poyang, the largest Yangtze-River-connected freshwater lake in China, has suffered from
increasing eutrophication and water quality degradation with significantly increasing total phosphorus
and nitrogen [1]. The lake has shrunk in size with its surface area reduced from 5200 km2 (1949) to
3287 km2 (21st century). In addition to natural causes including soil erosion, embanking was the
most significant driving force for the lake shrinking [17], which artificially reduced the natural lake
volume and affected the hydrological process, with the sediment deposition rate resulting in a decline
in its capacity for flood storage and regulation [18]. Seasonal water shortages also occurred frequently
mainly induced by Three-Gorges-Dam reducing discharge [19], and threatened the lives of fish,
birds, and humans [20]. In recent years, the seasonal fluctuations of the water level in Lake Poyang
changed dramatically, resulting in an early seasonal drying in the wetland areas [21]. Therefore,
some native communities were prone to be replaced by upland vegetation, affecting the lake and
wetland ecosystems. The Lake Poyang wetland ecosystem was gradually degraded, and the structure
and distribution of wetland plants has become mutable and fragile, dislocating and segregating
habitats [22]. To understand these degradation issues, an approach to assess the lake health is needed.

Under this context, this study aimed to develop an ecosystem health index to assess Lake Poyang’s
ecological health status. Metrics were selected based on the specific characteristics of Lake Poyang.
Weights, reference conditions, standardization, and categorization of each metric were estimated.
A box-and-whisker plot test was carried out to evaluate the consistency of LP-EHI. To our knowledge,
this is so far the most comprehensive index reflecting the ecological health status of Lake Poyang. It is
worth noting that this is Part I of a two-part effort, and Part II focus on assessing the health status of
overall lake and indicator components based on the developed LP-EHI [23].
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2. Materials and Methods

2.1. Study Area

Lake Poyang (surface water area, 3287 km2), the largest natural freshwater lake in China, is located
in the middle reach of the Yangtze River (Figure 1), with many wetlands in it. The lake included
five inflows (Rivers Xiushui, Ganjiang, Fuhe, Xinjiang, and Raohe), and one outflow connected
to the Yangtze River. Influenced by a combination of climate, hydrology, bathymetry, and human
activities, the water level fluctuates dramatically (>10 m). For example, the water level at Hukou
station increased from 7.32 m (11 February 2014) to 18.58 m (26 July 2014). This large water level
fluctuation enhances rich biodiversity and the lake’s role in ecological conservation (Lai et al., 2014).
As one of the world’s seven major wetland systems, Lake Poyang is a unique and important ecosystem
in the world [21]. Lake Poyang has a mean hydraulic retention time of 20.9 days and experiences
a subtropical monsoon climate with a mean annual precipitation of 1542 mm and evaporation of
1170 mm. The annually-averaged temperature is 16.5–17.8 ◦C.
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2.2. Metric Selection

The concept of lake ecosystem health refers to the state of a lake that both supplies services for
people and maintains its function and complexity [12], LP-EHI was developed from two aspects:
natural properties and social service functions. Given the connotation of ecosystem health [24],
characteristics of Lake Poyang [18,20,25] and previous assessments [8,11,12], natural indicators were
divided into three subject areas for measuring physical, chemical, and biological integrity.

Five indicators were selected to assess physical integrity including water level, tributary
connectivity, lake area, runoff and coastal habitat. Water level in Lake Poyang varied considerably
(Table 1). The drying and wetting process imposed significant influences on the biological communities.
Too high or too low water level both affects growth and the structure of wetland plants [25], leading to
difficulties in feeding for migratory birds [26] and spawning for fish [27]. Therefore, the average of
the highest and lowest 10-day water level defined in the supplementary material were both selected
to measure its fluctuations. The average of the two sub-indicators’ scores was used to measure the
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water level condition. The percentage of entrances connected directly to the lake was used to measure
tributary connectivity and often applied in large lakes’ assessments [8]. These blocked entrances
induced by dams might affect mass and energy exchange between lake and rivers [8,28]. Shrinking
rate of the lake area was a basic morphometric parameter and indicator for human activities, such as
land reclamation via filling of wetlands due to the economic development [17]. Reclamation played
a supplementary role in the increasing severity of floods [29]. The lake area was calculated when the
water level (at only one outflow station: Hukou) reached 19 m, the maximum lake area. The area
of the current lake at 19 m was then compared with the historical lake area at the same water level
to determine the area shrinking rate. Runoff could directly affect water volume, and cause flooding
or drought. Hydrological processes had also long been interacting with and influencing wetland
ecosystems [26]. Total runoff of Hukou station over an entire year was chosen as one of the physical
indicators. Coastal habitat was described by the shoreline alteration index (SAI), proposed by the
Great Lakes in North America [28]. It was critical to measure the degree of artificial transformation
or damage of shoreline. Physical coastal changes could affect lakeshore processes and near-shore
circulation patterns, altered or destroyed wetland plants distribution and threatened lakeshore habitats.
Further SAI can be found in the supplementary material.

Table 1. Water level at five hydrological stations in 2014.

Station Highest Water
Level (m)

Date for Highest
Water Level

Lowest Water
Level (m)

Date for Lowest
Water Level

Average Water
Level (m)

Hukou 18.58 26 July 7.29 11 February 12.60
Xingzi 18.57 26 July 7.32 31 January 12.72

Duchang 18.58 26 July 7.60 1 February 12.94
Tangyin 18.58 27 July 11.04 3 February 14.12

Kangshan 18.53 26 July 12.17 5 February 14.78

Chemical integrity was represented by water quality, nutrition, and toxicity. Water quality
included three indicators: total phosphorus (TP), total nitrogen (TN), and electrical conductivity
(EC). Phosphorus and nitrogen were the drivers of eutrophication that could lead to the disaster of
harmful algal blooms [30]. EC represented the concentration of water-soluble inorganic salts and
indirectly reflects the intensity of industrial production [31]. Nutrition conditions were represented
by the nutrient indictor of trophic level indices (TLI). TLI had been used in assessing the ecological
status of Lake Poyang to examine the ability of the ecosystem to resist external perturbations [11].
Organochloride pesticides (OCPs) including HCH, DDT were highly concerned pollutant in China.
Water solubility of organic pollutant is among the most important physical properties controlling the
chemical transport and fate in the aquatic ecosystem [32]. Therefore, including these toxic chemicals
was necessary to better represent the health status in Lake Poyang. In addition, Jiangxi Province
had considerable mining of heavy metal resources [33]. Thus, these indices were collected to reflect
pollution of toxic chemicals and heavy metals found in Lake Poyang [34]. For those site-scale indices,
like TN, which were collected in seasonal measurement periods in an individual year, a straight
average of all sites for each time period was calculated and then the time periods were averaged again
to get the annual health value.

Biological integrity assessment covered six main components in the aquatic food chain
including phytoplankton, zooplankton, benthic macroinvertebrates, wetland plants, fish and birds.
Phytoplankton (algae) was the primary producer and responded quickly to water chemistry and
environmental quality. Blue-green algae bloom was one of the most visible indicators of impaired water
quality and presented harmful socioeconomic and ecological effects [11]. Diversity and composition
indices including ratio of blue algae biomass and Berger-Parker index (percentage of the most-dominant
taxa) were constructed to measure the health condition of phytoplankton (the supplementary material).
Berger-Parker index was one of the most widely accepted and even metrics for measuring the diversity
and stability of the ecosystem [8]. Berger-Parker index and density of large Daphnia are two indices for
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zooplankton. Daphnia had been introduced in the restoration area to graze algae and thus controlled
eutrophication [35]. High density of large Daphnia was inverse to blue-green algae blooms. Benthic
macroinvertebrates, as bottom level consumers, played an important role in aquatic recycling [36].
Berger-Parker index was chosen and FBI had been widely used to reflect water quality contaminated to
varied extents [37]. Aquatic plants were able to absorb harmful substances and pollutants, functioned
as an indicator of the eutrophic status of a water body [38] and provided a habitat and shelter for
a variety of shellfish and small invertebrates [39,40]. Areal coverage was selected as a parameter to
describe the status of wetland plants. Fish were a higher level of consumers in the aquatic food chain.
Biomass and community structure directly reflected the health of the entire lake ecosystem. In recent
years, fish in Lake Poyang were observed to be younger, smaller and of low quality [41]. Therefore,
the weight ratio of 1 year to two fish was selected as one index. Grass carp, black carp, silver carp,
and bighead carp are four domestic fish species in China, which are commercially important species
and could also reflect spawning conditions [8,42]. Thus, the weight ratio of the four famous high
values to local communities’ Chinese carps was also selected. Lake Poyang was popularly known
as a bird sanctuary for thousands of migratory birds in winter. The total number of wintering birds
directly indicated the lake’s ecological richness. Previous studies widely suggested that Lake Poyang
was an ideal wintering habitat for the Siberian Crane and these cranes are primarily distributed across
two national nature reserves, with a maximum number of 722, accounting for 18.05% of the global
population size [43]. However, a continuous low water level during spring and early summer in
Lake Poyang had resulted in long-term drought and decreased availability of food for these water
birds [44]. This dramatic reduction of the Siberian Crane was widely concerning, because they were
listed in the first category of the nationally protected wildlife species in China, and were regarded
as an extremely endangered species by the IUCN (International Union for Conservation of Nature).
Therefore, they were selected to reflect the health status of birds.

Five indicators were selected to assess the state of social service functions. The attainment rate of
water function zones could measure directly whether Lake Poyang provided the high-quality drinking
water. Schistosoma in Lake Poyang was highly pathogenic and threatened livestock and human health.
Snails were the primary host of schistosomiasis. Therefore, the ratio of infected snails and the ratio
area of marshland with snails was selected to measure its pathogenic potential. Flood storage capacity
represented the regulation capacity for avoiding flooding disasters. Difference of discharge during the
flood period (April to June) reflected the flood volume adjusted by the lake. Lake Poyang had probably
the largest sand mining operation in the world. Sand extraction had an obvious negative influence on
biodiversity and water quality [45]. Thus, the amount of sand mining was chosen as an indicator of
human disturbance. The dish-shaped sub-lake referred to the large dished depression that seasonally
appeared in the bottomland during dry season [46]. These sub-lakes were important for maintaining
the biodiversity of this globally important wetland ecosystem. Thus, the ratio of dish-shaped sub-lakes
that were officially protected by the local government was included as a response indicator.

Four-level metrics (A: Target level, B: Sub-target level, C: Element level, D: Assessment indicator
level) were listed in Table 2 and Figure 2. The fifth level (E: Individual index level) indices and their
corresponding equations were given in the supplementary material. LP-EHI was more comprehensive
compared with other indices in previous studies (Table 3) and better reflected factors most relevant
to the characteristics of Lake Poyang. A series of indices including unique hydrodynamic regime,
chemical toxics, and pathogenic potential had been involved in the LP-EHI.
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Table 2. Ecological indicators and their relative health status, methods and data source.

Target
Level A

Sub-Target
Level B

Element
Level C Assessment Indicator Level D

Relative Health Status 1 Method for
Indicator Values 2

Data
Source 3

Good Bad

LP-EHI
A1

Natural
properties

B1

Physical
integrity C1

Water level D1 ↑↓ ↑↓ a, b I
Tributary connectivity D2 ↑ ↓ a, b VI
Lake area D3 ↑ ↓ a, b III
Runoff D4 ↑↓ ↑↓ a, b I
Coastal habitat D5 ↑ ↓ a, b IV

Chemical
integrity C2

Water quality D6 ↓ ↑ a I
Nutrition D7 ↓ ↑ a, b I
Toxicity D8 ↓ ↑ a VI

Biological
integrity C3

Phytoplankton D9 ↓ ↑ a, b II
Zooplankton D10 ↑↓ ↑↓ a, b II
Benthic macroinvertebrate D11 ↓ ↑ a, b II
Wetland plants D12 ↑ ↓ a VI
Fish D13 ↑↓ ↑↓ a, b VI
Bird D14 ↑ ↓ a III

Social
service

B2

Human
health C4

Drinking water D15 ↑ ↓ a, b V
Pathogenic potential D16 ↓ ↑ a, b VI

Regulation
C5 Flood storage capacity D17 ↑ ↓ a, b I

Human
activity C6 Sand mining D18 ↓ ↑ a V

Response C7 Dish-shaped sub-lake areas
under management D19 ↑ ↓ a, b III

1 ↑/↓: the indicator has positive/negative relationship with health status; ↑↓: the indicator has no fixed positive and
negative relationship with health status; 2 a: measure; b: calculate; 3 data from I:field observation by Jiangxi Province
Poyang Lake hydrology bureau; II: field observation by Lake Poyang Wetland Observation and Research station;
III: field observation by Jiangxi Ecological Civilization Research and Promotion Association; IV: field observation by
Jiangxi Normal University; V: statistical data by Jiangxi Hydraulic Research Institute; VI: literature.

Table 3. Comparison of indicators for the Great Lakes in North American and five largest freshwater
lakes in China.

Used in LP-EHI

The Great Lakes in North American Large Lakes in China

Lake
Superior

Lake
Michigan

Lake
Huron

Lake
Erie

Lake
Ontario

Lake
Poyang

Lake
Dongting

Lake
Taihu

Lake
Chaohu

Lake
Hongze

Water level Y 1 Y Y Y Y Y N N N N
Tributary Y Y Y Y Y Y Y Y Y N
Lake area Y Y Y Y Y Y Y Y Y N
Runoff N N N N N N Y N N N
Coastal habitat Y Y Y Y Y N N N N N
Water quality Y Y Y Y Y Y Y Y Y Y
Nutrition Y Y Y Y Y Y Y Y Y Y
Toxicity Y Y Y Y Y N N N N N
Phytoplankton Y Y Y Y Y Y Y Y Y N
Zooplankton Y Y Y Y Y N N N Y N
Benthic macroinvertebrate Y Y Y Y Y Y Y Y Y N
Wetland plants Y Y Y Y Y N Y N Y N
Fish Y Y Y Y Y Y Y Y Y N
Birds Y Y Y Y Y N N N N N
Drinking water Y Y Y Y Y N N N N N
Pathogenic potential Y Y Y Y Y N Y N N N
Flood storage capacity N N N N N N N N N N
Sand mining N N N N N N N N N N
Sub-lake N N N N N N N N N N

1 Y: used; N: not used.
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2.3. Weight Estimation

The weight of the selected indicator in LP-EHI was estimated using analytic hierarchy process
(AHP). AHP could be implemented by four steps: structuring the decision problem, measurement
and data collection, determination of normalized weights, and synthesis toward-finding solution to
the problem [47]. Its formulas and detailed descriptions could be found in several studies [48,49].
After AHP modeling, giving out fuzzy weighing determined by the priority of a set of alternatives and
the relative importance of attributes in a multiple criteria decision-making problem, the weights were
readjusted to attain an approximate actual status (Figure 2). The concept of lake health is incorporated
in the weighting, which depends not only on whether the ecosystem can maintain, but also on whether
it can meet the reasonable needs of human society. In order for the environment to continue to meet
the needs of society, the system must be maintained. Therefore, the weight of natural properties is
higher than social service. And the various indices of social service attributes are believed to have the
same feedback. For example, both drinking water and flood storage capacity are necessary for living
safety of residents and it is hard to say which is more important so the weights are equal. Physical
integrity reflects the basic properties of the lake and the degree of human disturbance or damage,
which is of less importance than chemical integrity that directly reflects water quality and pollution,
and biological communities which exchange material and energy with the whole ecosystem at any time.
Therefore, the weight ratio of physical, chemical, and biological aspects is set at 1:4:4. Lake Poyang has
significant hydrological characteristics [50] including fluctuating water levels and runoff, and these
five physical indicators are regarded of the same importance. Water quality directly reflects pollution
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and human disturbance, so the weight is higher than for indicators of the nutritional status and
toxicity. The biological integrity consists of phytoplankton, zooplankton, benthic macroinvertebrate,
wetland plants, fish, and birds. The weight of each biological indicator is related to a series of factors
including self-restoring capacity, the order in the aquatic biological food chain, and sensitivity to
pressure or disturbance [28].

2.4. Reference Condition Definition

As a result of high population density, human disturbance has a profound impact on the
ecosystem [7]. An important component of ecological assessment is an evaluation of the direct or indirect
effects of human activities or disturbances. The concept of a reference condition is increasingly used to
describe the standard or benchmark against which the current condition is compared. The following
specific terms have been used to define reference conditions [51]: “Historical” condition (HC) describes
the condition of lakes at some point in their history under very low pressure, without the effects of
major industrialization, urbanization, and intensification of agriculture. “Least disturbed” condition
(LDC) is ideally described by evaluating data collected at sites selected according to a set of explicit
criteria that define what is least disturbed by human activities. These criteria vary from region to
region and are developed iteratively with the goal of establishing the least amount of ambient human
disturbance (e.g., <1% agricultural). “Best attainable” condition (BAC) is equivalent to the expected
ecological condition of least-disturbed sites if the best possible management practices were in use for
some period of time [51].

HC has been used to define some reference conditions, including vegetation, fish, and birds. In
1983, Jiangxi Province conducted the first comprehensive scientific expedition for Lake Poyang [25].
At that time, as the reform and opening-up policy in China had just begun and Jiangxi Province’s
less economically developed, the lake was under relatively low pressure, and only minor impairment
of physical, chemistry, lake morphology, and biology occurred, without the effects of major
industrialization and intensification of urbanization. This study uses the historical survey data in 1983
to represent a reference condition.

National standards for surface water environment quality (GB3838-2002) provide benchmarks for
BAC of water quality and toxicity. When both historical data and authoritative standards are lacking for
specific indices, e.g., phytoplankton, zooplankton, and benthic macroinvertebrates, the LDC was used.
Adhering to the literature [7,14], the reference site approach was adopted. The 5th/95th best percentile
of the candidate sites increasing/decreasing with disturbance was used to select the reference sites
(e.g., <5% blue-green algae biomass or >95% large Daphnia density). Expert opinion, achieved through
interview and intensive discussion, was also considered in defining the reference condition of specific
metrics, such as water level fluctuation (Figure 2).

2.5. Metric Standardization and Categorization

Considering the different ranges of the raw values of selected metrics, each metric was rescaled to
a score between 0 and 1 using upper and lower anchors. The upper anchor (expected value) is the “best”
value of the reference condition. The lower anchor (threshold value) represents the “worst” value of the
most unexpected or impaired status with high population density and human disturbance. It could
be calculated by the same methods to obtain the reference values. For example, the upper anchor of
the total number of wintering birds was 7.1 × 105 in 2005, which was the largest in history. In contrast,
the lower anchor had the lowest abundance (1.7 × 105) in 1998. For metrics using BAC including TN,
TP, the water quality standard of Grade I was the upper anchor and Grade V was the lower anchor.
Metrics that use LDC and decrease with the disturbance set the 95th percentile of the site values as the
upper anchor and the 5th percentile values as the lower anchor. If the metric increased with disturbance,
then the 5th percentile of the site values was set as the upper anchor, and the 95th percentile of the
values was set as the lower anchor [52]. The metric was rescaled as follows [7]. For example, TN, whose
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average site value for a year, upper anchor, and lower anchor were respectively 1.17, 0.20, 2.00 mg L−1,
the metric score was: 1 − |1.17 − 0.20|/|2.00 − 0.20| = 1 − 0.97/1.80 = 0.46.

Metric score (MS) = 1−|Site value−Upper anchor|/|Lower anchor−Upper anchor| (1)

The final score of LP-EHI was the sum of the scores for each individual metric with each weight
(Equation (2)), where n is the number of metrics, MSk is the score value of metric k, and Wk is the
weight of each metric k.

LP− EII =
n

∑
k=1

MSk ∗Wk (2)

The score is expressed as a numerical value ranging from 0 to 1. This range can be subdivided
into any number of categories that correspond to various levels of impairment. The metrics are scaled
to reference conditions or expectations for the lake classes, and any decision on subdivision should
reflect the distribution of the scores for the reference sites. This paper proposes classes with equal
ranges to provide five ordinal rating categories for assessment of impairment in accordance with the
requirements of the European Water Framework Directive [53], that is, excellent (≥0.8), good (0.6–0.8),
fair (0.4–0.6), poor (0.2–0.4), and bad (<0.2).

3. Results and Discussion

3.1. LP-EHI

The LP-EHI included a total of five levels and 32 individual indices with their corresponding
equations provided in the supplementary material. Each metric’s weight, expected or threshold value,
and methods for defining reference conditions were listed in Figure 2. Status of health conditions can
thus be calculated according to Figure 2.

3.2. Index Testing and Validation

The evaluation results were tested and validated to confirm the discrimination between reference
and impaired values for metrics using the approach proposed by Barbour et al. [54]. Once significant
differences were identified, the reference condition was scientifically defined, and the difference could
then be used to measure the current status. Box-and-whisker test plots, recommended by Huang et al. [7]
and Wu et al. [55], were performed on each metric, and reference values were compared with impaired
values for discrimination power analysis. The discrimination power of each metric was judged according
to the degree of Inter-Quartile (IQ) overlap in the box plots. Table 4 was used to improve the clarity and
specificity of the discrimination power. The metrics with an IQ value equal and higher than 2 satisfied
the testing [55].

For those metrics determined by HC and BAC, the reference and impaired values were
unchangeable or had an annual timescale. For example, the reference and impaired values for TN,
defined by BAC (GB3838-2002), were consistent and were 0.20 and 2.00 mg L−1, respectively. For those
metrics defined by HC, such as wintering birds, the reference and impaired values were defined as the
historical minimum (in 1998) and maximum values (in 2005), respectively. Therefore, discrimination
existed and did not need further testing. Site-scale seasonal metrics determined by LDC including
phytoplankton, zooplankton, and benthic macroinvertebrate, needed to be tested. Results showed
significant differences between the reference and impaired sites of these metrics (IQ ≥ 2, Figure 3),
thereby indicating that the developed LP-EHI was reliable.
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between reference and impaired sites; 25–75% percentiles). Range bars represent maximum and
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Table 4. Inter-Quartile (IQ) classes in the box-and-whisker plots.

IQ Description

3 No overlap of interquartile ranges.
2 Some overlap of interquartile ranges but both medians are outside the interquartile range overlap.
1 Moderate overlap of interquartile ranges but at least one median is outside the interquartile range overlap.
0 (a) Extensive overlap of interquartile range or (b) both medians within the overlap.

3.3. Determination of Reference Condition

The determination of the appropriate reference condition was a critical step in developing LP-EHI.
It was illustrated that identifying a truly undisturbed or “perfect” reference condition was not practical
because most aquatic ecosystems were disturbed by long-term human activities. LDC was the most
common method of determining reference conditions for the health assessment of streams and rivers [8].
However, the majority of inland lakes in China are disturbed to different degrees [56]. Lake Poyang
is frequently affected by human activities, including sand mining, fishing, agriculture, and industry.
Loss of species and habitats, ecosystem degradation caused by pollution, and overexploitation occur
on rapid timescales. Thus, reference condition in the study was defined as the combination of HC, BAC,
and LDC. The evaluation results based on the combination of HC, BAC, and LDC may overvalue the
ecological status of Lake Poyang in comparison with the true or “perfect” natural condition. However,
the reference conditions constructed for LP-EHI successfully reflected the structure and characteristics
of biochemical processes, and were sufficient and sensitive in their ability to distinguish reference sites
from impaired sites through box-and-whisker plot tests.

3.4. Indicator Selection for LP-EHI

Suitable indicator selection establishes a solid foundation for reliable assessment. Lake Poyang,
as the largest freshwater lake naturally connected to Yangtze River in China and one of seven
globally important wetlands, has a series of complicated hydrological and bio-chemical characteristics.
BII, which is widely used in the assessment of rivers and lakes, insufficiently describes the health status
of Lake Poyang. Therefore, this study used ecosystem health indices to construct the LP-EHI from
physical, chemical, biological, and social function aspects. Considering a large amount of previous
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valuable assessments, recent health status, and expert opinion, effort was made to gather numerous
scientific indicators to ensure that LP-EHI reflects the structure and characteristics of the lake. Given the
unique hydrological characteristics of Lake Poyang, seldom-used indices such as water level and
runoff were developed to measure physical integrity.

Phytoplankton, benthic macroinvertebrate, fish, and aquatic plants are commonly used to measure
the health of a lake ecosystem [8]. LP-EHI expanded the biological indices to include zooplankton and
birds. Zooplankton, as bottom-level consumers, maintains a balanced exchange of material and energy
in the food chain. Birds, as the highest-level consumers, reflect the richness of vegetation, water quality,
and even hydrological process. LP-EII also includes social function indices that were rarely used in
previous assessments to decide whether the lake meets reasonable requirements of human beings.
LP-EHI reflects the health of the ecosystem to the greatest extent, and its use is considerably time
consuming and complex. Collecting a sufficient amount of data was a time-consuming work; however,
doing so enabled more information to be obtained, thereby reflecting the real situation of the lake.

Although LP-EHI comprised of many indicators, it is still difficult to cover every aspect of the
entire lake ecosystem. Sediment plays a major role in the transportation and transformation of materials
in freshwater ecosystems. Especially the palaeo-data from sediment reflect the accumulation of the
internal load spanning long decades, which can be significant such that it prevents improvements in
a lake, even when the external load has been greatly reduced [57]. However, the goal of this study is to
assess the current health status of Lake Poyang, thus the slight and slow change of health status within
a relatively short temporal scale was hard to be reflected from palaeo-data from sediment. For Lake
Poyang, frequent hydrological alteration, intensive wind-wave disturbance, and the relatively weak
water current in some protected bays, resulted in great spatial heterogeneity in organic content and
fine-grain size of sediments [58]. These non-human-induced distributions of sediment were difficult
to define the reference conditions. Also limited by the ability to access the palaeo-data, including
multi-proxy data from sediment cores, LP-EHI has not included the sediment indicator temporarily.
Fortunately, the concentrations of water solution used in this study could reflect the situation of
sediment partly. In the future, the ecosystem health change research in longer periods, the sediment
indicator would be acquired maximally.

3.5. Comparison with Previous Ecosystem Health Indices

In order to quantitatively assess ecosystem health, various indices covering different aspects
of ecosystem health have been suggested. These indices range from single species indicators
(e.g., Huang et al. [7]) to composites of species to measures of biodiversity, to system level measures of
ecosystem structure, function, and organization (e.g., Xu et al. [59]). Compared with single species
indicators, the composite indicators could better reflect the more comprehensive assessment.

LP-EHI, as a total index of five levels and 32 individual indices, covered most ecological realms,
which need an indeed tough data collection and analysis, and have been seldom constructed in
other larger freshwater lakes, especially in China (Table 3). LP-EHI also went beyond the biophysical
realm to include a number of human socio-economic factors, with which there are more concerns
on analysis of the linkages between the human pressures and response on ecosystem, and have
been explicitly avoided by conventional science [7,11,59–61]. Indeed, effective diagnosis requires an
exploration for, and identification of, most critical of these links of human alterations and societal
responses. Additionally, for the goal of assessing the current health status of the largest freshwater
lake, Lake Poyang, more indicators have better reflected its characteristics, like changeable water
level, pathogenic potential, and dish-shaped sub-lake areas under management have been taken
into consideration (Table 2). Undoubtedly, the comprehensive index can bring significantly higher
confidence to master the health status from a global perspective and it works well as demonstrated
in Part II [23]. However, it also lead to a huge data demand, increasing the difficulties to make
comparisons of ecosystem health status among different lakes based on LP-EHI.
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Limited by the temporal and spatial resolution of conventional assessments based on sample
sites, it is one of the leading efforts related to developing dynamic models to calculate indicators in
assessment to expand the dimension [61]. LP-EHI made lots of efforts to select suitable indicators which
could not only reflect the health status of the lake, but easily be combined with the mechanism models,
laying a solid foundation for further modeling. Supported by Jiangxi Water Resources Department
(Grant No. KT201406), the dynamic models to simulate ecological indicators including water level, TN,
TP, Chlorophyll a have been built successfully and would be useful for predicting the changes of the
lake ecosystem health following the changes in environmental conditions [61]. Such a complex index
would provide ample dynamic simulation to serve for refined evaluation; however, the difficulty of
constructing comprehensive models and validating parameters is also conceivable.

4. Conclusions

This study developed an Ecological Health Index (LP-EHI) that consists of five levels and 32
individual indices. Physical, chemical, biological, and social service indices were used to reflect the
ecological health of the aquatic ecosystem. The developed index (LP-EHI) provided five ordinal rating
categories (excellent, good, fair, poor, and bad) to describe ecological health conditions. The developed
index is a valuable reference for complex large lake ecosystem assessments, and enhances our
understanding on health management of the lake ecosystem. A further application of LP-EHI is
provided in Part II.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/10/7/943/s1,
Table S1: Equations for calculating the fifteen level individual indices.
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