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Abstract: This paper compares the removal degrees of selected contaminants of emerging concern
in water solutions during advanced oxidation processes (AOPs), such as H2O2, O3, UV, UV/TiO2,
UV/H2O2, and UV/O3. The tested micropollutants belong to the following groups: pharmaceuticals,
dyes, UV filters, hormones, pesticides, and food additives. The highest removal rate of pharmaceutical
compounds was observed during the UV/TiO2 process. The decomposition of hormones in this
process exceeded 96% and the concentration of the UV filter dioxybenzone was reduced by 75%.
The pesticide triallat and the food additive butylated hydroxytoluene were most effectively oxidized
by the UV process and their removal degrees exceeded 90%. The lowest removal degree in all
examined processes was observed in the case of caffeine. Toxicological analysis conducted in
post-processed water samples indicated the generation of several oxidation by-products with a
high toxic potential. The presence of those compounds was confirmed by the GC-MS analysis.
The performance of the UV/O3 process leads to the increase of the toxicity of post-processed water
solutions, especially solutions containing degradation by-products of carbamazepine, diclofenac
sodium salt, acridine, trialatte, triclosan, and β-estradiol were characterized by high toxicity.
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1. Introduction

Water is a very valuable resource, and has a high impact on the whole ecosystem, including on
human beings. The water environment is particularly vulnerable to pollution by several contaminants
of emerging concern. The occurrence of those compounds has been reported by many authors [1,2].
Particular attention should be paid to compounds which are considered to be hardly biodegradable and
are most commonly identified in water streams, such as pharmaceuticals (carbamazepine, benzocaine,
diclofenac, ibuprofen), dyes (acridine), UV blockers (dioxybenzone), pesticides (triallat, triclosan,
oxadiazon), hormones (β-estradiol, 17α-ethinylestradiol, mestranol, progesterone), and food additives
(butylated hydroxytoluene). Their negative impact on the environment was also investigated in several
articles in the last decade [3,4].

Advanced oxidation processes (AOPs) provide a good opportunity for the decomposition
of different kinds of micropollutants, especially hardly biodegradable or non-biodegradable
compounds [5]. The main assumption of those processes is the complete mineralization of organic
compounds to H2O and CO2. However, under actual process conditions, micropollutants degraded to
different biologically active transformation products [6]. The decomposition of pollutants occurs as a
result of the reaction between high reactive oxidation species, such as O3, H2O2, and free radicals [7].
Organic compounds show varying susceptibility to chemical or photochemical decomposition.
Therefore, it is necessary to select an optimal process for the degradation of each individual group
of compounds.
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One of the most commonly used AOP methods is heterogeneous photocatalysis, which uses
various types of semiconductors to catalyze the formation of highly reactive hydroxyl radicals (OH•)
and the decomposition of compounds [8–10]. The major photocatalysts used to remove organic
contaminants are TiO2, ZnO, SnO2, CeO2, Fe2O3, WO3, and ZnS [11,12]. However, some metal
oxides may have a negative effect on living organisms [13]. UV-based AOPs supported by oxidation
compounds also give very interesting results in terms of the decomposition of a large number of
micropollutants [14].

Due to the high costs of running AOPs and the ability to generate many decomposition
by-products, chemical or photochemical decomposition of contaminants should be the last option
for water treatment. Micropollutants should be recovered or recycled during the process in which
they are used in order to minimize the environmental impact. The implementation of membrane
processes, nanofiltration, or reverse osmosis gives such possibilities. Fodi et al. proposed the coupling
of a nanofiltration module to a continuous-flow rector for in situ solvent and reagent recycling in
the pharmaceutical sector [15]. This system allows recycling 90% of solvents and reagents during
manufacturing processes. Moreover, the integration of diafiltration processes allows obtaining a high
purity product and leads to a reduction in the general production costs [16]. It should be mentioned
that the so-called green technology membrane process is quite far from green. Membrane production
generates large streams of toxic solvent-water mixtures [17] which become a major problem for
conventional wastewater treatment plants based on activated sludge. During membrane filtration, two
streams are always produced: permeate and retentate, one of which is a waste product and requires
further processing. Nevertheless, the application of such technologies is not always possible.

Sustainable wastewater treatment methods are also a promising solution for the removal of
hazardous organic contaminants. The concept of these methods is based on the natural-energy
operation, balanced investment and economic output and stable high-quality treatment performance
without a negative impact on the environment [18,19]. AOPs with some operation modifications can
also be an opportunity during the sustainable wastewater treatment method development. Hence,
there is the need to study and describe the effects of the implementation of advanced methods for the
elimination of micropollutants from environmental streams.

This paper presents a comparison of removal degrees of organic micropollutants in water solutions
during selected AOPs, such as H2O2, O3, UV, UV/TiO2, UV/H2O2, and UV/O3. To determine
the susceptibility of particular types of micropollutants to oxidation processes, different groups of
contaminants of emerging concern were tested, i.e., pharmaceuticals, dyes, UV blockers, pesticides,
hormones, and food additives. The experiments were carried out on micropollutant solutions in
deionized water to identify decomposition by-products, which are the result of only oxidizing agents’
action. GC-MS (EI) analysis was used to identify potential oxidation by-products formed during
the implemented treatment processes. The oxidation processes were also evaluated according to the
potential toxic effect of post-treated water solutions using the Microtox® bioassay.

2. Materials and Methods

2.1. Material and Reagents

The analytical standards of pharmaceutical compounds, i.e., carbamazepine, benzocaine,
diclofenac sodium salt, and ibuprofen sodium salt; dye—acridine; UV blocker—dioxybenzone;
pesticides—triallat, triclosan, and oxadiazon; hormones—β-estradiol, 17α-ethinylestradiol, mestranol
and progesterone; food additives—butylated hydroxytoluene and caffeine of purity grade >97.0%
were supplied by Sigma-Aldrich (Poznań, Poland) (Table 1). Hydrogen peroxide (H2O2) as a 30%
solution in water (purity grade >99.8%) was supplied by the same company. Titanium dioxide with
the acronym P25 was purchased from Evonik Degussa GmbH (Hanau, Germany). The particle size
of the applied catalyst (mixture of anatase and rutile 75:25 v/v) according to the producer is about
21 nm. Disposable SPE cartridges Supelclean™ ENVI-8 and Supelclean™ ENVI-18 for the extraction
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of the analytes from water solutions were supplied by Sigma-Aldrich (Poznań, Poland). In the study
methanol (MeOH), acetonitrile (ACN), and dichloromethane (DCM) of purity grade >99.8%, obtained
from Avantor Performance Materials Poland S.A. (Gliwice, Poland), were also used.

Table 1. Characteristics of the tested organic compounds [20].

Group Name Molecular
Formula

Molecular
Weight, g mol−1

Solubility in
Water, mg L−1 pKa

Pharmaceuticals

Carbamazepine, CBZ C16H12N2O 236.30 17 2.30
Benzocaine, BE C9H11NO2 165.19 1310 2.51

Diclofenac sodium salt, DCF C14H10Cl2NNaO2 318.13 50 4.15
Ibuprofen sodium salt, IBU C13H17NaO2 228.26 100 4.91

Dyes Acridine, ACR C13H9N 179.22 38.4 5.6

UV blockers Dioxybenzone, BZ8 C14H12O4 244.24 Insoluble 6.99

Pesticides
Triallat, TRI C10H16Cl3NOS 304.66 4.1 - 1

Triclosan, TCS C12H7Cl3O2 289.54 0.1 7.9
Oxadiazon, ODZ C15H18Cl2N2O3 345.22 0.7 - 2

Hormones

β-Estradiol, E2 C18H24O2 272.38 3.6 10.33
17α-Ethinylestradiol, EE2 C20H24O2 296.40 11.3 10.33

Mestranol, EEME C21H26O2 310.43 1.13 17.59
Progesterone, P4 C21H30O2 314.46 8.81 18.92

Food additives Butylated hydroxytoluene,
BHT C15H24O 220.35 0.6 12.23

Other Caffeine, CAF C8H10N4O2 194.19 21600 14.0
1 no data; 2 non-ionizable.

2.2. Water Samples

Deionized water (conductivity of 18 MΩ cm−1) solutions with the addition of the tested organic
micropollutants standards, at the concentration of 500 µg L−1, constituted the subject of the study.
The compound standard solutions were prepared by dissolving 10 mg of each analyte in 10 mL of
methanol. Compound standard solutions were used due to the weak solubility of some micropollutants
in water solutions, especially in deionized water. High concentrations of micropollutants that exceeded
the usual environmental concentrations were applied in order to increase the accuracy of the analytical
measurements. The pH of the prepared water solutions were adjusted to 7 using 0.1 mol L−1 HCl
(purity grade >99.8%) or 0.1 mol L−1 NaOH (purity grade >99.6%). Preliminary studies indicated no
influence of the used acid and alkali on the decomposition of the tested micropollutants before the
implementation of oxidation processes. The experiments were carried out on micropollutant solutions
in deionized water to identify decomposition by-products, which are the result of only oxidizing
agents’ action. Therefore, the experiments for all tested compounds were carried out separately and
repeated three times.

2.3. Advanced Oxidation Processes

A laboratory glass batch reactor with a volume of 0.7 L, obtained from Heraeus (Hanau, Germany),
was used for the implementation of all oxidation processes (Figure 1). To eliminate the influence of
UV light on the reaction mixtures during the H2O2 and O3 processes, the reactor was placed in a dark
chamber. The dose of H2O2 was equal to 3, 6, 9, and 12 mg L−1. The oxidizing reagent was introduced
to the reaction mixture in the form of a 30% solution. The O3 system consisted of an Ozoner FM500
ozone generator by WRC Multiozon (Sopot, Poland) and a ceramic diffuser (Figure 1a). The O3 dose
was set to 1, 3, 5, and 10 mg L−1. The O3 concentrations were measured photometrically using the
Spectroquant® Ozone Test by Merck KGaA (Darmstadt, Germany). The contact time between the
oxidizing reagents and the prepared water solutions was 30 min.
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Figure 1. Reactor for the (a) H2O2, O3, and (b) UV, UV/TiO2 [21] processes.

In order to carry out the UV, UV/TiO2, UV/H2O2, and UV/O3 processes, the reactor was equipped
with a medium-pressure mercury vapor UV lamp with a power of 150 W (Figure 1b). The lamp was
placed into the reactor 90 s after lighting it up. This ensured a stable intensity of irradiation from the
first second of the process. Additionally, the UV lamp was placed in a glass cooling jacket cooled by tap
water of 15 ± 1 ◦C. Therefore, the temperature of the reaction mixtures was kept constant at 20 ± 1 ◦C.
The radiation that emanated from the UV lamp, according to the data given by the producer Heraeus
(Hanau, Germany), had a wavelength λexc equal to 313, 365, 405, 436, 546, and 578 nm. The reactor
was also aerated by an aeration pump with the capacity of 4 L air per minute. Thus, the oxygen flow
rate applied to the reactor was 0.84 L min−1. The oxygen concentration measured in the aerated water
solution was equal to 6.32 mg L−1.

The dose of the TiO2 catalyst in the UV/TiO2 process was 50 mg L−1. To ensure the adsorption of
micropollutants on the surface of the catalyst, the contact time of TiO2 with the mixtures before the
implementation of the UV irradiation process was set to 15 min. This step was also carried out in a
dark chamber. The separation of catalyst particles from the post-processed suspensions was conducted
through a microfiltration set equipped with membrane filters with a 0.45 membrane pore size from
Merck Millipore (Darmstadt, Germany).

The dose of H2O2 during the implementation of the UV/H2O2 process was equal to 12 mg L−1,
while the dose of O3 was set to 10 mg L−1.

Both UV-based oxidation processes were carried out at 10, 30, and 60 min. To ensure proper
mixing of the reaction water solutions, the reactor was placed on a magnetic stirrer during all
oxidation processes.

2.4. Analytical Procedure and Toxicity Assestment

The analytical procedure of tested compounds was performed using GC-MS chromatography
with electron ionization preceded by solid phase extraction (SPE). The volume of analyzed water
samples was equal to 20 mL. The pH of each sample after the oxidation process was adjusted to 7.
The pH of some samples (especially after the UV/TiO2 and UV/O3 processes) ranged from 7.10 to 8.25.
Details of the used SPE cartridges and the organic solvents for the extraction of different compound
groups are listed in Table 2. Recovery of the tested compounds using the SPE procedure exceeded 95%.
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Table 2. Solid phase extraction details for different compound groups.

Compound Group Pharmaceuticals;
Food Additive

Dyes; UV Blocker;
Pesticides; Other Hormones

Cartridge type Supelclean™ ENVI-8 Supelclean™ ENVI-18

Cartridge bed
silica gel base material

with C8 (octyl) bonding,
polymerically bonded

silica gel base material with C18 (octadecyl)
bonding, polymerically bonded

Bed weight (mg) 1000

Bed pore size (Å) 60

Bed surface area (m2 g−1) 475

Material of cartridge filter PE frit (20 µm porosity)

Conditioning 5.0 mL of MeOH 5.0 mL of ACN;
5.0 mL of MeOH

3.0 mL of DCM;
3.0 mL of ACN;

3.0 mL of MeOH

Washing 5.0 mL of deionized water

Sample flow (mL min−1) 1.0

Vacuum drying time (min) 5.0

Extract elution 3.0 mL of MeOH 1.5 mL of MeOH;
1.5 mL of ACN

2.0 mL of DCM;
1.5 mL of ACN;

1.5 mL of MeOH

The 7890B GC-MS(EI) chromatograph by Perlan Technologies (Warszawa, Poland) was
incorporated for micropollutant determination. An SLBTM—5 ms 30 m × 0.25 mm capillary
column of 0.25 µm film thickness, obtained from Sigma-Aldrich (Poznań, Poland), was used for
the micropollutants analysis. The oven temperature program was as follows: 80 ◦C (6 min), 5 ◦C/min
up to 260 ◦C, 20 ◦C/min up to 300 ◦C (2 min). A helium flow rate of 1.1 mL/min was used as the
carrier gas. The temperature of the ion trap was equal to 150 ◦C, the temperature of the ion source
was set at 230 ◦C and the injector temperature was set at 250 ◦C. The mass detector operated in the
ion recording mode in the range of 50 to 400 m/z. All post-processed water samples after the SPE
extraction were analyzed twice, in the SIM mode (monitoring of the compound concentration) and
in the TIC mode (identification of generated by-products). The analysis in the SIM mode allowed
obtaining lower detection limits of the analyzed compounds.

The percentage of removal of each micropollutant after AOP application was calculated according
to Equation (1), where Ci and Cp are the initial and post-processed compound concentrations (mg L−1),
respectively [22]:

Removal (%) =
Ci − Cp

Ci
·100 (1)

Assignment errors were estimated on the basis of the standard deviation for three repetitions of
each test.

2.5. Toxicity Assestment

The Microtox® test was used to determine the toxic potential of the micropollutant water solutions
before and after the tested oxidation processes. The bioassay was based on the measurement of the
intensity of light emission by selected strains of luminescent bacteria Aliivibrio fischeri. These bacteria
are considered to be highly sensitive to a broad range of toxic substances, including organic
micropollutants [23]. The test procedure assumes that the estimation of the toxic effect of the tested
sample is comparative to a reference nontoxic sample (2% NaCl solution). Based on the obtained
results, the micropollutant water solutions were classified to particular toxicity classes according to
guidelines given by Mahugo Santana et al. [24] and Werle and Dudziak [25].
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3. Results and Discussion

3.1. Degradation of Micropollutants in Single AOP

Figure 2a,b presents the rates of concentration decrease of selected organic micropollutants in
water solutions in the presence of such oxidizing agents as H2O2 and O3. It was observed that
the concentration of micropollutants decreased with the increase of the dose of oxidation agent.
The oxidation supported by H2O2 was most favorable for butylated hydroxytoluene (Figure 2a).
The concentration of this micropollutant decreased by over 42% in the reaction mixture that contained
3 mg L−1 of H2O2 and reached 62% in the presence of 12 mg L−1 of H2O2. The highest removal degree,
which exceeded 81%, was observed for the hormone mestranol in the presence of 12 mg L−1 of H2O2.
The decrease of progesterone also reached 60%. H2O2 had the least effect on the decomposition of
caffeine. The decomposition of this compound did not exceed 3%.

O3, at doses of 1 and 3 mg L−1, does not have a significant impact on the decomposition of tested
micropollutants. Only the concentration of triclosan decreased by over 25% at the concentration of
3 mg L−1 of O3. The dose of 5 mg L−1 of O3 had the most beneficial impact on the decomposition of
carbamazepine. However, the highest removal degree in the reaction mixture containing 10 mg L−1 of
O3, which reached 52%, was noted for triclosan. In the presence of those doses of O3, ibuprofen was
oxidized by over 40%.
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The literature indicated that UV-based processes are among the most effective advanced oxidation
processes to remove various types of organic micropollutants [13]. Additionally, the presence of
inorganic catalysts or other oxidation agents supports the generation of highly-reactive radicals,
which are able to degrade organic micropollutants. Therefore, the next part of the study is focused
on the evaluation of the oxidation of tested contaminants of emerging concern in the presence of UV
light. The obtained results are presented in Figure 2c. The implementation of UV light significantly
increases the decomposition of tested organic micropollutants. Only after 10 min of UV irradiation did
the concentration of all tested pesticides—triallat, triclosan, and oxadiazon—decrease significantly by
85% (Figure 3). The same removal degree was also observed for butylated hydroxytoluene. With the
increase of the irradiation time, a constant decrease of micropollutants was reported. Only caffeine
and dioxybenzone, which belong to the group of compounds perceived as UV blockers, did not
show any susceptibility to the photochemical decomposition. The removal rate of pharmaceutical
compounds after 60 min of UV irradiation ranged from 12% for acridine to 35% for ibuprofen. On the
other hand, the concentration of hormones decreased 73% for β-estradiol to above 96% for mestranol.
High removal degrees of environmental hormones after single UV irradiation, especially progesterone,
were also reported by AlAani et al. [26].

3.2. Degradation of Micropollutants in UV-Based AOP

The impact of the addition of TiO2 catalyst, H2O2, or O3 to the reaction mixture on the decrease of
micropollutants was also examined (Figure 3). The presence of the TiO2 catalyst contributed to the
increase of the micropollutant removal (Figure 3a). Firstly, the adsorption efficiency of the investigated
compounds on the catalyst surface was checked. The contact of the catalyst with the reaction mixture
is necessary for the distribution of the catalyst in the total volume of the micropollutant water
suspensions and to initiate the adsorption in active centers of TiO2. The oxidation of micropollutants
by highly-reactive OH• formed in this process occurs mainly on those micropollutants which are
adsorbed on the catalyst surface or are in direct proximity to the active centers [27]. The adsorption
process allowed obtaining high removal rates of dioxybenzone (removal degree of 70%), triclosan
(removal degree of 95%), and mestranol (removal degree of over 90%). The start of UV irradiation
initiated a rapid decomposition of hormones and some pharmaceutical compounds. In general,
the UV/TiO2 process resulted in a much more efficient removal of different contaminants than the
UV process. After 60 min of UV irradiation, the removal degree of hormones exceeded 96% and the
removal of pharmaceuticals from different therapeutic groups ranged from 21% for acridine and 36%
for benzocaine to 77% for the ibuprofen sodium salt.
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Figure 3. Degradation of micropollutants in the (a) UV/TiO2, (b) UV/H2O2, and (c) UV/O3 processes
(the doses of TiO2, H2O2 and O3 were equal to 50, 12 and 10 mg L−1 respectively).
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For all UV-based oxidation processes, it was observed that the concentration of micropollutants
decreased with the increase of the irradiation time. The UV-irradiation time, which corresponds
to the radiation dose, therefore, plays a significant role in the decomposition of micropollutants.
This dependency is particularly evident in the reduction of pharmaceutical compounds and hormones.

The highest removal rate of BE, which reached 51%, was observed in the water solution after
60 min of the UV/O3 process (Figure 3c). Other pharmaceuticals, such as carbamazepine, diclofenac,
and ibuprofen sodium salt, were more effectively removed during the UV/TiO2 process. The process
of UV decomposition supported by the presence of O3 also allows for more than a 51% reduction
of acridine concentration. In addition, the UV process in the presence of other oxidizing agents also
promoted the decomposition of oxadiazone, butylated hydroxytoluene, and caffeine. The removal
degree of those compounds reaches 98%, 91%, and 10%, respectively, for 60 min of the UV/H2O2

process (Figure 3b), whereas, for the 60 min of the UV/O3 process the concentration of oxadiazone
was reduced by more than 95%, butylated hydroxytoluene by over 90%, and caffeine by 8%. Therefore,
it can be concluded that the highest removal degree of caffeine was obtained by UV/H2O2 treatment.

Differences in the removal rates of the examined compounds, which were observed in all
conducted AOPs, results mainly from the different chemical structures of the decomposed compounds.
Suzuki et al. [28] reported that aromatic compounds were slower to degrade than the open-chain
compounds. Additionally, the number of carbon atoms and the presence of functional groups
determine the ability of a compound to decompose [28]. The type of chemical bonds between the atoms
of the compound molecule and their energy also determines the emerging decomposition by-products
and their future mineralization.

3.3. Decomposition By-Product Identification

The AOPs are based on the attack of compound bonds with the weakest dissociation energy,
which easily loses electrons, by high-reactive species [29]. This happens in accordance with the bond
dissociation energies theory and leads to the formation of several decomposition by-products of
parent compounds. The conducted chromatographic analysis of the post-processed water solutions
indicated the formation of such intermediates. Based on the mass spectra of the newly-formed
compounds and the NIST 17 database software, an attempt has been made to identify the by-products.
Figures 4–17 present the possible degradation pathways of selected contaminants of emerging
concern. All by-products shown in the figures were detected in both H2O2, O3, UV, UV/TiO2,
UV/H2O2, and UV/O3 processes. Therefore, the identified compounds do not clearly indicate the
exact degradation mechanism of the tested compounds. They were formed as a direct reaction of
primary oxidants on the compounds or as a result of reactions between compounds and the generated
high-reactive species, like the hydroxyl radical OH•.

The benzocaine decomposition is a good example of the correctness of the bond dissociation
energies theory. The C–N bond has the weakest bond energy of 305 kJ·mol−1 [30] and this was the first
to be dissociated. This reaction allows the formation of ethyl 4-hydroxybenzoate (Figure 5). During the
AOPs conducted on the last tested pharmaceutical compound, ibuprofen sodium salt water solution,
three by-products were identified, i.e., 1-hydroxyibuprofen, 4-acetylbenzoic acid, and 4-oxohexanoate
(Figure 7). It can be assumed that the cyclic intermediate 4-oxohexanoate was generated by successive
hydroxylation of 4-acetylbenzoic acid. da Silva et al. [31] drew the same conclusions.

The decomposition of acridine resulted in the formation of two intermediates:
acridine-N-oxide and 2-hydroxyacridine (Figure 8), whereas during the oxidation of dioxybenzone
2,2′,4-trihydroxybenzophenone was detected (Figure 9).
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The analysis of post-processed hormone water solution pointed that all newly-formed
intermediates still remain endocrine disrupting compounds (Figures 13–16). For example,
the decomposition of progesterone resulted in the generation of corticosterone, aldosterone,
and cortisone. Barron et al. [33] reported during the O3 of progesterone two non-named major
by-products, which are the result of successive progesterone ozonide formation, hydration of the
compound and, finally, the loss of the hydrogen peroxide molecule or Baeyer–Villiger rearrangement.
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2,6-di-tert-butylhydroquinone.

The largest number of by-products were detected in solutions containing carbamazepine
(Figure 4). The decomposition process of this pharmaceutical compound leads to the
formation of five intermediates: 3-hydroxycarbamazepine, 10,11-dihydro-10-hydroxycarbamazepine,
dihydrocarbamazepine-10,11-trans-diol, 9-acridone, and acridine. Four by-products were identified
during the decomposition of diclofenac sodium salt (Figure 6). Previous studies on the identification of
oxidation by-products formed during the UV/TiO2 process of water solution containing carbamazepine
and diclofenac sodium salt at a higher concentration of 1 mg L−1, indicating the formation of more
by-products [21].

Only during the decomposition of caffeine no by-products were identified. The presence of
newly-formed biologically-active compounds suggests that the toxicity of post-process solutions
increased significantly. The toxicological assessment of all water solutions was undertaken in the next
stage of this study.
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3.4. Toxicological Assessment of Post-Processed Water Solution

Toxicological analysis of water solutions is not only a method of assessing the biological effect of
the tested samples, but also leads to an indirect assessment of the formation of oxidation by-products of
the tested parent compounds. Firstly, the influence of the micropollutant water solutions, before their
treatment in several oxidation processes, on the indicator organisms was tested. Figure 18 presents the
obtained results of the toxicological assessment and classification of water samples to toxicological
classes. Mahugo Santana et al. [24] proposed four classes of solution toxicity. Water solutions,
which incur an inhibition of bacterial bioluminescence of over 75% are classified as highly toxic.
The triclosan water solution was characterized by such a toxicity effect. Solutions that cause a toxic
effect from 50 to 75% are considered as toxic and solutions that cause a toxic effect from 25 to 50%
are considered to have low toxicity. Such properties were observed for the acridine, dioxybenzone,
and 17α-ethinylestradiol water solutions. The toxic effect of the remaining solutions was under 25%
and they were classified as non-toxic.
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Figure 18. Toxicity of micropollutant water solutions.

The treatment of micropollutant water solutions in chosen oxidation processes resulted in an
increase in their toxicity. Figure 19 summarizes the toxic effect of the treated water solutions after the
H2O2 process (the dose of the oxidizing agent was equal to 12 mg L−1), O3 (10 mg L−1), UV, UV/TiO2

(60 min of irradiation), UV/H2O2 (60 min), and UV/O3 (60 min). The highest toxicity effect increase
was observed for the carbamazepine and acridine solution after all oxidation processes. In addition,
after the O3 process, the triclosan solution incurred an inhibition of bacterial bioluminescence of over
99%. On the other hand, the UV/TiO2 process led to a decrease of the triclosan post-process solution
and it was classified as toxic. In previous research on the decomposition of pharmaceutical compounds
(diclofenac and ibuprofen sodium salt solutions) during the UV/TiO2 process, the formation of toxic
transformation products was indicated [21]. The highest toxicity effect of pharmaceutical post-process
solutions was observed after the UV/O3 process.

The significant increase in the toxicity of the diclofenac sodium salt water solution
after UV/O3 treatment may by the result of the formation of several by-products, such as
2-(2-chloro-phenylamino)-benzaldehyde [34]. Schulze et al. [35] reported that this intermediate is
10 times more toxic than diclofenac. 2-(2-chloro-phenylamino)-benzaldehyde was not detected by
the applied analytical methodology, but it can still occur in the post-processed diclofenac sodium
salt water solution. For example, Kovacic et al. [36] reported by the use of high-performance
liquid chromatography–electrospray ionization-tandem mass spectrometry (HPLC–ESI-MS/MS) the
formation of (8-hydroxy-9H-carbazol-1-yl) acetic acid and (8-chloro-9H-carbazol-1-yl) acetic acid
during UV-based diclofenac sodium salt degradation. Subjecting water solutions of hormonal
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compounds to the UV/O3 process also led to a significant increase of their toxicity. For example,
β-estradiol water solution after the 60 min of UV/O3 process were classified as low toxic, whereas
mestranol and progesterone post-processed solutions became toxic. The highest toxicity among
hormones, was noted for 17α-ethinylestradiol. The intermediates of this compound inhibited the
metabolic processes of the test indicator organisms by over 86%. Therefore, this solution must be
considered as highly toxic. A similar high toxicity for the 17α-ethinylestradiol post-processed water
solution was observed after the UV/H2O2 treatment.

Calza et al. [37] and Juretic et al. [38] reported that dihydroxy-derivatives of some
organic compounds with their corresponding quinone structures are more toxic than their
monohydroxy-precursors. Moreover, open-ring by-products are generally less toxic than aromatic
compounds [39]. In general, the oxidation of micropollutants does not lead to a complete mineralization
and the formed transformation products are still biologically active compounds.
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Figure 19. Change in the toxicity of the micropollutant water solution after (a) single oxidation
processes (dose of H2O2 = 12 mg L−1; dose of O3 = 10 mg L−1; 60 min of UV irradiation) and
(b) selected combinations of AOPs (60 min of UV irradiation).
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4. Conclusions

Based on the decomposition assessments of different groups of organic micropollutants in selected
oxidation processes, it can be concluded that UV-based oxidation processes are more effective for the
micropollutants decomposition than H2O2 and O3 processes. The tested compounds have different
oxidation capacities in the examined processes:

• The highest removal rate of pharmaceutical compounds was observed during the UV/TiO2

process. Only acridine and benzocaine were more effectively oxidized by the UV/O3 process.
• The TiO2-supported process also allows 96% removal of hormones. Triallat and the food additive

BHT were most effectively oxidized by the UV process and their removal degrees exceeded 90%.
Triclosan was reduced by 98% during the UV/TiO2 process and oxadiazon reached the highest
removal degree during the UV/H2O2 process.

• Dioxybenzone was mainly reduced by the process of adsorption on the surface of the TiO2

catalyst—70% removal was achieved.
• The lowest removal degree in all examined processes was observed in the case of caffeine.

The removal of this compound requires the implementation of different types of treatment
processes, such as membrane technologies.

The toxicological analysis of post-processed water samples indicated the generation of several
oxidation by-products with a high toxic potential. Especially the performance of the UV/O3 process
leads to the increase of the toxicity of post-processed water solution. The conducted GC-MS analysis
allowed for the identification of several formed intermediates and the estimation of possible compound
degradation pathways.

Funding: The studies were performed within the framework of the project founded by the Polish Ministry of
Science and Higher Education.
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