
water

Article

Irrigation Salinity Risk Assessment and Mapping in
Arid Oasis, Northwest China

Jumeniyaz Seydehmet 1,2,3, Guang-Hui Lv 1,2,*, Abdugheni Abliz 1, Qing-Dong Shi 1,2,
Abdulla Abliz 4 and Abdusalam Turup 2,5

1 Institute of Arid Ecology and Environment, Xinjiang University, Shengli Road 666, Urumqi 830046, China;
jumeniyaz@xju.edu.cn (J.S.); abdugheni.abliz@xju.edu.cn (A.A.); shiqd@xju.edu.cn (Q.-D.S.)

2 Ministry of Education Key Laboratory of Oasis Ecology, Xinjiang University, Shengli Road 666,
Urumqi 830046, China; a_turup_xjugeo@126.com

3 Hotan Regional Environmental Monitoring Station, Hotan Regional Environmental Protection Bureau,
Gujan South Road 277, Hotan 848000, China

4 College of Tourism, Xinjiang University, Yanan Road 1230, Urumqi 830046, China; abdulla.abliz@xju.edu.cn
5 College of Resources and Environmental Science, Xinjiang University, Shengli Road 666,

Urumqi 830046, China
* Correspondence: ler@xju.edu.cn; Tel.: +86-991-858-2055

Received: 16 April 2018; Accepted: 17 July 2018; Published: 23 July 2018
����������
�������

Abstract: Irrigation salinity is a common environmental threat for sustainable development in the
Keriya Oasis, arid Northwest China. It is mainly caused by unreasonable land management and
excessive irrigation. The aim of this study was to assess and map the salinity risk distribution
by developing a composite risk index (CRI) for seventeen risk parameters from traditional and
scientific fields, based on maximizing deviation method and analytic hierarchy process, the grey
relational analysis and the Pressure-State-Response (PSR) sustainability framework. The results
demonstrated that the northern part of the Shewol and Yeghebagh village has a very high salinity
risk, which might be caused by flat and low terrain, high subsoil total soluble salt, high groundwater
salinity and shallow groundwater depth. In contrast, the southern part of the Oasis has a low risk
of salinity because of high elevation, proper drainage conditions and a suitable groundwater table.
This achievement has shown that southern parts of the Oasis are suitable for irrigation agriculture;
for the northern area, there is no economically feasible solution but other areas at higher risk can be
restored by artificial measures. Therefore, this study provides policy makers with baseline data for
restoring the soil salinity within the Oasis.

Keywords: PSR framework; composite risk index; combination of traditional and scientific
knowledge; subjective and objective weighting; Northwest China

1. Introduction

The arid northwestern China, particularly Xinjiang Uyghur Autonomous Region (XUAR), is one
of the most critical areas for agricultural and cotton production. The total area of salt-affected cultivated
land in XUAR is about 1.47 M ha, which accounts to 31.1% of the total cultivated land which suffered
from wide-spread salinized soil [1,2]. The irrigation salinity mainly results from unreasonable land
reclamation and excessive irrigation due to the promotion of groundwater salinity moving along
the soil capillary pores to the surface and a lack of enough drainage for the leaching of salts [3–5],
supposing that groundwater salinity moves to the surface due to the replacement of native vegetation
with shallow rooted crops, then dry land salinity occurs [6,7], they both are belongs to secondary
salinization. They are different from primary soil salinization, which occurs naturally when salt stored
in the soil or groundwater is mobilized to the land surface in the natural processes of a landscape [7,8].
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The secondary salinization, especially irrigation salinity is common environmental problem in the
arid China.

Irrigation salinity is an important factor threatening agricultural safety and regional stability in
the arid Oasis. Negative impacts of irrigation salinity on environmental quality and human welfare are
including the decrease of food production, deterioration of stream water quality, loss of biodiversity,
increase of flood risk, increase of infrastructure failure risk and desertification [9–11]. In the future,
to meet the demand of an increasing world population, more lands will be converted into farmland,
thus expanding the area at risk of irrigation salinity [12].

The irrigation salinity is a one of the complex environmental problem of sustainability,
which occurs mainly due to pressures of the anthropogenic activities with the interactions between
climate, hydrology, topography and geology [8,13–15]. Apparently, the irrigation salinity is very
complex and a dynamic environmental problems [16], including four dimensions of timeframe,
biophysical risk, management risk and assets. The concept behind the salinity research is very similar
to the concepts of diagnosis used by physicians for diseases [17]. For this reasons, to promote the
understanding and to achieve more effective and accurate estimations, many scholars have been
developed the various concepts of a composite risk index of the soil salinity hazards [7,8,10,18,19].
But the knowledge of the extent, variations and controlling of land salinization is generally poor [20].
And there are no perfect indicator sets that apply to all region’s environmental sustainability
assessment [21].

In the recent decades, the salinization affects the 31.1% of the total catchment area, which became
a constant threat for the socio-ecological sustainability. Particularly, the land reclamation and land
abandonment has been common behavior due to drought or salinity events [22]. The inefficient
irrigation and irrational use of water and land resources aggravated this crucial problem [1,2].
Previous studies about the Oasis have focused on monitoring the spatial distribution of salinization [1],
the spatial distribution of land use, land cover change and its anthropogenic drivers [22], the interaction
of ground water salinity and top soil salinity distribution [2] and soil quality under different land
use type [23]. However, those studies either focus on surface salt content, or the dynamic relation
of groundwater and surface salinity. Essentially, salinity hazard assessment requires composite
assessments of multiple criteria from anthropogenic and natural systems [13,24]. Thus, previous
studies are not enough to determine salinity risk map rationally. Consequently, decision makers faced
huge challenges in salinity management and regional ecological designing.

Therefore, the study was conducted with the following objectives: (1) To identify the
environmental composite risk index for irrigation salinity using the PSR conceptual framework;
and (2) to map the spatial distribution of salinity risk by using the CRI values and spatial analyst tool
of Arc GIS10.1. Finally provides policy makers with the baseline data for ecological designing of land
and water resources and improving the soil salinity over the area.

2. Composite Risk Index for Irrigation Salinity Hazard

In multiple criteria problems as soil salinization assessment, two problems need to be considered.
The first problem is the development of the composite risk index. The first composite indices

were composed of five risk factors including the current presence and extent of salinity, soil drainage,
aridity, topography and land use, later it was modified and updated in the context of assessing soil
quality and its impact on agricultural sustainability in the Canadian Prairies [25]. For example, the nine
major relevant indicators for soil salinization were proposed during the study about features of soil
salinity, land degradation and its global causes [21,26,27]. The eleven socio-industrial parameters
were determined during the study of soil salinization in the Yellow River Delta [28]. The fourteen
parameters as a composite risk index of Irrigation salinization was proposed and employed in the
assessment of salinization in the Yinchuan Plain [8,24]. Although these studies have identified the
main anthropogenic and natural causes of salinity and the mechanisms behind them [29]. However,
sustainable development is the holistic approach, including the three major divisions of economy,
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social and environment, so there is a huge requirement to excavate the indicators [30–33]. Therefore,
scientific effort should not only be put into scientific indicator sources but should also be directed
towards traditional information sources, since traditional knowledge may be holistic in outlook and
adaptive by nature. The indigenous groups could offer alternative knowledge and perspectives to
scientific knowledge based on their own locally developed practices of resource use and monitoring
the status of it [34,35].

The second problem is that the weight determination for every selected factor of CRI is a critical
stage of the whole assessing process. There are two main categories of weight assignment as subjective
and objective. In the subjective weight assignment, the weights of relative importance of the parameters
may be assigned based on the expert’s preferences for the considered application, it has poor sense
of interdependent criteria [36–38]. In the objective weight assignment, the weights of parameter’s
relative importance can be calculated by means of conventional statistical measures, it has poor sense
of expert’s preferences [33,34]. Therefore, it is rational to suppose that the combined use of subjective
and objective weight assignment in soil salinity risk assessment is an interesting attempt.

2.1. Developing a PSR Based Risk Index for Irrigation Salinity

The PSR sustainable framework indicates the categorization of indicators and mechanism between
them, the definition of each PSR component clearly states the concept of each category. The pressures
are consequences of human activities and bio-physical agents, which contribute to adverse effects on
the environment. The states are the quantity of biological, physical and chemical features of ecosystems
and their functions, the response is an action, which attempts to eliminate, prevent, compensate, reduce
or adapt to states and their consequences [39]. Identifications of parameters for each component of
the PSR not only rely on these definitions but also depend on the research scale. Taking population
growth as an example, it can be categorized into the pressures in the scale of the whole Keriya Oasis;
but, in the background of village scale for a Keriya County, it can be attributed to the responses group.
In addition, the biggest advantage of using the PSR framework is that it purposely selects a set of risk
parameters rather than randomly selecting and availability, representativeness, understandable and
measurable was considered during selecting the parameter sets [8].

2.2. Calculating Grey Relational Coefficients for Risk Parameters

After a set of risk parameters were identified for Keriya Oasis under the PSR framework [8],
weighted linear model were used for calculation of the composite risk index (CRI) as below in
Equation (1) [37,40–42].

CRIi =
m

∑
j=1

rij × wj (1)

where CRIi represents the composite risk index; m is the total number of risk parameters selected; wj is
the weight assigned to the jth risk variable; and the rij’s are the grey relational coefficients between
the two normalized sequences Ai0 and Aij. The rij reflects the closeness between the two sequences,
calculated by the gray model [43]. In gray model, Ai0 is often termed the parent sequence and Aij is
called to as the offspring sequence. In the context of this study, Aij is the normalized sequence of the
jth risk variable that affected soil salinization; Ai0 is the normalized sequence of top soil salinization
(an impact receptor). The rij’s of a grey model are calculated by using Equation (2) [40,44]:

rij = r
(

Ai0, Aij
)
=

miniminj
{∣∣Aij − Ai0

∣∣}+ bmaximaxj
{∣∣Aij − Ai0

∣∣}∣∣Aij − Ai0
∣∣+ bmaximaxj

{∣∣Aij − Ai0
∣∣} (2)

Apparently, the rij’s take values interval of 0 and 1, with higher values explaining a stronger
relationship between Aij and Ai0. Where distinguishing coefficient b taking values between 0 and
1. Its aim is to weaken the influence of the maximum absolute difference between Aij and Ai0 in
Equation (2), value of 0.5 was used for the b in generally [8,45,46].
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Before calculating the rij, these series data can be dealt with by pre-processing with normalization
by maximum value and minimum objective value [8,45,46]. In this study, according to field
investigation, it is recognized that the A1, A2, A4, A5, A8, A11, A13, A15 and A16 were related
to AA negatively and A0, A3, A6, A7, A9, A10, A12 and A14 were related to AA positively, for details
refer to Section 3.3.3.

2.3. Determining Weights for Risk Parameters

Generally, the weights of relative importance of the parameters may be determined by three kinds
of approaches, first kind is subjective weight assignment, second kind is objective weight assignment
and last kind is comprehensive weight assignment from subjective and objective weight, these three
cases are explained below.

2.3.1. Subjective Weight Assignment

The weights of relative importance of the parameters were assigned based on the expert’s
preferences over the parameters for the considered application. They may assign the weights of
importance arbitrarily as per their preferences or may use any of the systematic methods of assigning
relative importance such as analytic hierarchy process (AHP) method [8,36,47], this study applying the
AHP to calculate the weights for parameters.

To solving the multi-criteria decision making problems as salinization, it is reasonable to use
the AHP is a decision analysis method, which decomposing a complex problem into a hierarchical
structure and estimates the relative importance of decision criteria (alternatives), a typical AHP has
a three-level hierarchy, pairwise comparisons were using for setting priorities at each level [36]. In this
study, a two-level hierarchy was developed (Figure 1)—the irrigation soil salinity risk is level 1 and
the selected risk parameters are level 2. Employing AHP involves the following steps, for details refer
to Reference [36]:

Step1: Structuring the issue in to a hierarchical model, this stage includes decomposing a complex
issue into elements based on their characteristics and compose different level of model.

Step2: Making pair-wise comparison and obtaining a judgement matrix—at this stage, comparison
of a pair of elements on each level by applying a nine-point scale. Due to some degree of subjectivity,
the consistency of the pair-wise comparison matrix is checked, called consistency ratio (CR).

Step3: Aggregate the expert’s judgement, since each expert produce his or her own pair-wise
comparison matrix, therefore, it is necessary to aggregate them into a group comparison by using
weighted mean of comparisons is expressed as below in Equation (3):

eij =

(
n

∏
k=1

wk × ek
ij

)1/
n
∑

k−1
wk

(i, j = 1, 2, . . . , m) (3)

where, the kth expert’s pair-wise comparison value is presented by ek
ij, the number of expert is n and

the kth expert’s weight is wk. In this work, all experts were assumed that they have equal expertise in
their judgements. Then the final weight of all seventeen elements were obtained.

2.3.2. Objective Weight Assignment

In the objective weight assignment, the weights of relative importance of the parameters were
calculated based on the curtain statistical method [33,48], that gives invaluable information about the
data distribution. In this study, the maximizing deviation method (MDM) is selected to calculate the
weights for parameters, because of the best reliability than method of standard deviation between
classes, criteria importance through inter-criteria correlation and entropy method. Detailed information
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about this method can be found here [49,50]. The attribute weight W is equivalent to solving
Equation (4), where Z is attribute matrix of data set to variable set.

Wj =

n
∑

i=1

n
∑

k=1

∣∣∣zij − zkj

∣∣∣
m
∑

j=1

n
∑

i=1

n
∑

k=1

∣∣∣zij − zkj

∣∣∣ (j = 1, 2, . . . , m) (4)
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Figure 1. Two-level structure of the AHP model for the Irrigation Salinity Risk Assessment and Mapping.

2.3.3. Comprehensive Weight Assignment

The method of subjective assignment has randomness, while the objective method cannot reflect
the importance of the index itself relative to the evaluation results [38]. Therefore, this study combines
these two kinds of weights to get the comprehensive weights of each variable, attempt to makes a good
use of measured data and to avoid the artificial effects on assessment, provide the decision maker with
more accurate options to depend on.

The subjective and objective combination weighting were calculated by following methods
(Equation (5)) [51]:

Wi
j = WoWo

j + WsWs
j (5)

where, Wj
i is the integrated weight of jth variable and Ws and Wo are the weightages given to the

objective and subjective weights respectively in different scenarios and the values of Ws and Wo are
between 0 and 1. It indicates how much importance to assign to the objective and subjective weights
of the jth variable. Under the different scenario, the few salinity risk maps were resulted, so to identify
the most accurate salinity risk map, the scenario validation is necessary.
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3. A Case Study on Keriya Oasis

3.1. Material and Methods

3.1.1. Study Area

The Keriya Oasis is a County of the Xinjiang Uyghur Autonomous Regions. The Oasis is located
on the alluvium and diluvium plain area between the southern margin of Taklimakan desert and the
northern slope of Kurum (Kunlun in Chinese pinyin) mountain (Figure 2). The Oasis is surrounded
by wide ecotone, which referring to the areas that located belt between neighboring deserts and an
oasis in arid regions (Figure 2C). The ecotone are interactive zones between the natural ecosystem
and irrigation activities [52]. The Oasis is characterized by dry warm climate (11.7 ◦C annually),
scarce precipitation (45 mm annually), intensive potential evaporation (2500 mm annually), loose soil,
highly mineralized underground water, high salt concentrations, lack of soil fertility and relatively
flat topography [23]. The basin consists of five major landforms which include, in ascending order
from north to south, the high mountains, low hills, piedmont gobi, alluvium and diluvium plain area
and a large desert (Figure 1B). The agriculture providing most of the income and employment for
population approximately about 250,000, the main crops are wheat, maize, cotton, rice and grapes.
Agricultural activities mainly depends on water resources of the Keriya River, which is supplied by
430 glaciers in the Mountains [53]. The river disappears in the Derya Boyi village after approximately
700 km of flow [2]. Increasing socio-economic development have driven the expansion of the Oasis
deep into the marginal ecotone zone [54,55]. Irrational using of water and land resources has caused
water shortages in some areas, meanwhile caused soil salinization in others in the Oasis.

3.1.2. Risk Parameters of Composite Risk Index for Irrigation Salinity

The seventeen risk parameters were selected from the socio-environmental dimension but the
economical dimension was ignored, since there is no noticeable difference in economic conditions
among neighbor villages in the Oasis, which was proven by local official statistical data. The seventeen
risk parameter include sixteen impacted factors and one impact receptor; among them, the eleven
parameters as A0, A1, A2, A7, A8, A11, A12, A13, A14, A15 and A16 were identified from previous
study; the five parameters as A3, A4, A6, A9 and A10 were suggested by stake holders; and one
parameter as A5 was determined by expert suggestion (Table 1).
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Table 1. Risk parameters within Pressure-State-Response (PSR) categories for irrigation salinity risk assessment and mapping in the Keriya Oasis.

PSR Parameters and Symbols Explanations Sources Data Types

Pressures (Natural)

Evapotranspiration (A0)

The actual evapotranspiration (ET) was calculated based on
Granger’s equation [56]; the common equation can be written
as below:

ET =
∆

Rn − G
λ

+ γEα

∆ +
γ

g

In the equations, ET is the daily actual evapotranspiration
(mm day−1), ∆ is the gradient of vapor pressure curve (kP ◦C−1),
Rn is the net radiation at the crop surface (MJ m−2 day−1), G is
the soil heat flux density (MJ m−2 d−1), λ is the latent heat of
vaporization (MJ kg−1), γ is the psychrometric coefficient
(kP ◦C−1), Eα is the drying power of the air (mm d−1), g is the
relative evaporation (–)

This study Combination of mathematical
model and Landsat-8 ETM+ *

Relative elevation (A1) Height above sea level (m) This study GTOP30/DEM *

Distance to drainage (A2) Strait distance to River course (drainage is one of rivers’ dual
functions due to seasonality) or natural drainage ditches (m) This study Landsat-8 ETM+ *

Flash flood impact (A3)

Flash flooding (termed “Sel” in local) usually caused by heavy
rain in the mountains, is always unexpected, fast-moving and
destructive. Generally, it creates a natural powerful drainage at a
relatively higher area by eroding the earth surface. It leads to a
decrease of land slope by bringing mud sedimentation to the
low areas

This study Stakeholder’s opinion

Pressures (Human)

Irrigation area (A4) The cultivated area is irrigated frequently, reducing the salt by
salt leaching and natural area [22], This study Stakeholder’s opinion,

Landsat-8 ETM+ *

Ratio of farmland to natural area (A5) The ratio of total farmland area of each village to its total area
except desert area (%) [57] Statistical data, expert’s opinion

Neighbor village impact (A6)
A village in the Oasis subject to the influences of its neighbor due
to the catchment slopes from south to north. More farmland at
higher elevation causes higher risk to its lower neighbor

This study Stakeholder’s opinion

Aquiculture area (A7) Fish pond area of each village (ha) [57] Statistical data

Distance to aquiculture area (A8) Strait distance to the center of the fish pond or water reservoir (m) This study Landsat-8 ETM+ *

Ratio of reused irrigation water (A9)
Irrigation time of reused water to not reused irrigation water
(“Kara water/Aq water” in local term) (%), Kara water saltier
than Aq water

This study Stakeholder’s opinion
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Table 1. Cont.

PSR Parameters and Symbols Explanations Sources Data Types

States

Ratio of salt-affected farmland (A10)

Percentage of salt-affected farmland to fertile farmland (%).
Salt-affected farmland was determined by field symptoms: The
field is relatively wet but crops wither easily; and the field has a
shallow groundwater table but requires regular irrigation. At
maximum impact, fields would die entirely if they lost only one
year of irrigation chance

This study Stakeholder’s opinion

Ground water depth (A11) Vertical distance from the soil surface to ground water table (m) [2], This study Field measured data

Ground water salinity (A12) Electric conductivity of groundwater (mS/cm) [2], This study Field measured data

Groundwater fluctuation (A13) Annual difference between the maximum value and minimum
value (m/year) [2], This study Field measured data

Total soluble salt in subsoil (A14) Average total soluble salt content in the subsoil layer (0.4–0.6 m,
0.6–0.8 m, 0.8–1.0 m, depth) (g/Kg) This study Field and Lab. measured data

Responses
NDVI (A15)

Normalized difference vegetation index,
NDVI = (NIR − R)/(NIR + R), NIR is Near infrared band, R is
red band

This study Landsat-8 ETM+ *

Density of agro-population (A16) Village labor number to total village arable area (person/per ha
farmland) [57] Statistical data

Total soluble salt in tap soil (AA) Average total soluble salt content in the topsoil layer (0.0–0.1 m,
0.1–0.2 m, 0.2–0.4 m, depth) (g/Kg) This study Lab. measured data

Note: “*” were available at http://glovis.usgs.gov/; http://www.gscloud.cn/ resolution 30, cloud 0% for the selected study area, download date: 21 July 2015.

http://glovis.usgs.gov/
http://www.gscloud.cn/
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3.1.3. Data Collection and Analysis

Traditional Knowledge

Stakeholder suggestions can provide supplemental sources of knowledge. To achieve traditional
knowledge, semi-structured questionnaires were used during group consultations. This technique
not only extracts useful potential information but also corrects and verifies information discussed
in the group [58]. To achieve the effective interviewing, the volunteer assistants (students whom
local to the Keriya Oasis) were organized. The 354 male farmers (according to traditional values,
farm work is done by men) were visited randomly during February 201. A total of 51 interviews
were held, with 6–9 attendees for each (Figure 1C). Farmer ages were <40 years (21%), 40–60 years
(56%) and >60 years (23%), all people had a primary education at least. The main question discussed
was, “what is the Oasis’s soil salinization trend during 1950–2010s?” Based on the stakeholder’s
opinion, feedback questions were asked about the trend, locations and reasons for the trend of each
observation—for instance, asking them if they think the soil salinization in the oasis is expanding and
if the response is yes, to then ask them where. And what reasons caused this trend. The Figure 3
illustrates the steps and routines of collecting stakeholder’s opinion.
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Figure 3. Diagram of the consultation of stakeholders in order to investigate traditional knowledge
and irrigation salinity knowledge, adapted from [59].

Soil and Groundwater Data

Ten field surveys were carried out between 2011 and 2015, mainly during dry seasons (from May to
October). Thirty-five field investigation sites were selected for soil sampling (Figure 1C), which covers
a range of land covers and soil characteristics. Each time the 50 g soil samples were collected in
aluminum sampling boxes of 35 soil–sampling profiles (0.0–0.1 m, 0.1–0.2 m, 0.2–0.4 m, 0.4–0.6 m,
0.6–0.8 m and 0.8–1.0 m depth); electrical conductivity (EC) was measured by a field instrument (Hydra
probe II, ds/m) for verification with laboratory measurements. In the laboratory, the total soluble salt
content (in g/kg) was calculated by using a regression equation established between EC and total
soluble salt [1]. The data from the first field survey were used for this study, others were referenced
with this. In addition, in October 2015, another sixty soil samples were taken randomly from the
topsoil (0–20 cm) (Figure 1C); they were used for validation and accuracy assessment of the scenario
results. The 24 groundwater observation wells were used to collect the groundwater salinity (mS/cm)
and depth (m), each well was equipped with HOBO U24-002-C and HOBO Barometric Sensor, all of
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them drilled in April 2012, sampling range of about 4–8 km. The datasets for the period of May 2012 to
May 2013 are compiled in this study. The soil sampling sites and groundwater observation wells were
positioned with a handheld GPS (Garmin, eTrex H, Olathe, KS, USA) [2] (Figure 1C).

3.2. Spatial Distribution of Risk Parameters

In this research, we used Arc GIS 10.1 and ENVI 5.1 for producing visualized spatial distribution
of salinity risk parameters (in Figure 4); the data sources are presented in Table 1. In detail, the granger
method was employed for estimating A0, which applied a conventional evapotranspiration model,
estimates daily actual evapotranspiration, further details and steps referring to this can be found in
Reference [56]. The A1 is built from freely available online data in 3D analysis tool (Table 1). The A0,
A1 and A15 were visualized in the raster calculation tool. For example, the A2 and A8 were visualized
by following steps: Spatial analyst→ distance→ straight line. The A3, A4, A6 were qualified and
A5, A7, A9, A10, A16 were quantified thematic maps. Regarding the qualified maps, the literature
was translated into numbers (in A6, strongest, strong, moderate and less were represented by 4, 3, 2
and 1, respectively). The kriging method (Spherical model) for spatial interpolation was performed
with the geostatistical Wizard to calculate the Oasis-wide distribution of A11, A12, A13, A14 and
AA [2], it estimates the value of parameters at unsampled locations based on the weighted average
of the samples around it. In here, Gaussian distributions test was conducted for data sets in SPSS
20 before being used in the Spherical model, results that each Sig. of A11, A12, A13, A14 and AA
were all less than 0.55, statistically acceptable. Then model predictions accuracy was estimated by the
root-mean-square error (RMSE) which should be as small as possible and the standardized mean error
(ME) which should be close to zero, in this work, the each RMSE and ME of A11, A12, A13, A14 and
AA were all less than 6.0 and −0.25, respectively.

3.3. Calculation of Parameter and Weights

3.3.1. Weights of AHP

The pairwise comparison matrix was established by interviewing fourteen relevant specialists in
the topic field and used for calculation of the weights of seventeen parameters (Table 2), each of the
hierarchical level be weighted in terms of an overall criterion in a direct comparison between pairs
of criteria. 1 is the equal significance; 2 is somewhat more significant; 5 is considerable significant;
7 is extremely more significant; 9 is absolutely dominant significance; and 2, 4, 6, 8 were intermediate
values [60]. In this study, the issue decomposed into seventeen elements, so sub-points were inserted
into the nine-point scale (Table 2).

3.3.2. Parameter Calculation

When spatial distribution of each parameter was completed in Arc GIS 10.1 [61], the risk receptor
(total soluble salt of 35 sampling point) were added into the each parameter in Arc GIS10.1, then used
the extraction tool, calculate the A0, A1, A11, A12, A13, A14 and A15; used the distance measuring
tool to calculate the A2 and A8; and the A3, A4, A5, A6, A7, A9, A10 and A16 were the thematic
maps in village level, means all point placed in a village has equal futures but during the field
observation, we witnessed that a village also has diverse features of eco-environment, in order to
match to real condition, the 35 sample points were assigned the values at by following principle: first
step was divided the 35 sample point in to curtain group by value of thematic map, assign them equal
value, then according to expert suggestions whose familiar well to the Oasis and attended the field
investigation, the minor adjustment to sampling point of each group were conducted subjectively.
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3.3.3. Calculation of MDM, rij and CRI

The MDM, rij and CRI were calculated by Equations (1)–(3) from various sources of data,
those data sets were in different units and in different feature. So for this reason, normalization
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is crucial for rational statistics and comparison. There are many normalization methods, in this work,
we normalized the data sets by using the Equations (5) and (6) as following [61]:

Zij =
ymax

j − yij

ymax
j − ymin

j
i = 1, 2, . . . , n; j ∈ m (6)

Zij =
yij − ymin

j

ymax
j − ymin

j
i = 1, 2, . . . , n; j ∈ m (7)

According to actual correlation of each parameter with top soil salinity, the parameters were
grouped in to two groups, one is negatively related to top soil salinity (e.g., A1, A2, A4, A5, A8, A11,
A13, A15 and A16); another is positively related to it (e.g., A0, A3, A6, A7, A9, A10, A12 and A14).
The Equation (5) was used in first group, since negative impacts became larger, then the salinity risk is
lower; and The Equation (4) was used in second group, since positive impact became larger, then the
salinity risk is lower.

3.3.4. Spatial Distribution of CRI

When the values of CRI were calculated by the methods of the above section, then a spatial
visualization of CRI was performed in Arc GIS10.1 according to the following steps: the first step was
to reclassify the seventeen parameters presented in Section 3.2; the second step was to calculate the CRI
of each scenario by using Equation (4); the third step was to combine the reclassified spatial parameters
and calculate the CRI by using the raster calculator in a spatial analyst tool with Equation (7).

Goal = A1 × CRIA1 + A2 × CRIA2 + . . . + An × CRIAn n = 0, 1, 2, . . . , 16 (8)

where Goal represents the spatial distribution of CRI of irrigation salinity, An represents the spatial
distribution of every parameter and CRIAn represents the CRI value of the An parameter.

3.4. Scenario Validation

The definition of risk is “possibility of loss or injury” that inferred the risk has prediction means
of result. In this study, for validating the most accurate salinity risk map from seven maps of scenarios,
additional 60 surface soil samples (0~20 cm) were collected in October 2015 (Figure 1C), four years
later than research data (sampled in May 2011), this time gap produces a rational time interval of
predicting the trend of soil salinity risk. The grey relational coefficients (rij) in Equation (2) were used
to analyze the closeness between the CRI value and measured salt content and the higher rij value
means higher accuracy.
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Table 2. Pairwise comparison matrix and the normalized relative importance weight vector for the irrigation salinity risk assessment and mapping in the Keriya Oasis.

Variable Symbols A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

A0 1.00
A1 2.00 1.00
A2 0.50 0.43 1.00
A3 0.14 0.20 0.67 1.00
A4 0.60 0.33 0.63 1.75 1.00
A5 0.17 0.67 0.80 1.13 0.33 1.00
A6 0.20 0.25 0.40 1.25 0.20 0.40 1.00
A7 0.50 1.50 1.33 1.17 1.14 1.13 1.33 1.00
A8 0.17 0.90 0.83 1.40 0.67 1.40 2.00 0.50 1.00
A9 0.13 0.67 0.67 0.80 0.14 0.33 4.00 0.33 1.33 1.00

A10 0.17 0.33 1.10 0.67 0.17 0.25 4.00 0.33 0.60 0.25 1.00
A11 3.50 3.00 5.50 6.50 1.50 4.50 4.00 1.50 3.00 6.00 7.00 1.00
A12 4.00 3.50 6.00 7.00 2.00 6.00 4.50 2.00 3.33 6.50 7.50 1.33 1.00
A13 2.33 2.00 4.00 5.00 1.00 4.00 2.50 1.00 2.00 4.00 5.00 0.78 0.43 1.00
A14 3.00 2.67 5.00 6.00 1.13 4.33 3.33 1.25 2.33 5.00 6.00 0.88 0.60 0.80 1.00
A15 0.13 0.75 0.50 2.00 0.89 0.88 3.00 0.20 0.33 1.00 0.67 0.13 0.14 0.17 0.14 1.00
A16 0.20 2.00 0.33 0.33 0.50 2.00 0.67 0.17 0.25 0.33 4.00 0.20 0.25 0.33 0.50 4.00 1.00

Notations: CR = 0.08395.
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4. Results

4.1. Composite Risk Index Values MDM, rij and CRI

The values for CRI are shown in Table 3. The evapotranspiration (A0), ground water depth (A11),
ground water salinity (A12) and total soluble salt in subsoil (A14) have the greatest weight in calculation
by AHP. Whilst aquiculture area (A7), ratio of reused irrigation water (A9) and ground water salinity
(A12) have the greatest weight in calculation by MDM. This differences between AHP and MDM may
be caused by subjectivity and objectivity of weight assignment. In addition, the greatest rij are found
in total soluble salt in subsoil (A14), evapotranspiration (A0), irrigation area (A4), aquiculture area
(A7), ratio of salt-affected farmland (A10), ground water salinity (A12), subsoil salinity (A14), those
signifies the irrigation-induced salinity in the Oasis.

4.2. Scenario Validation

The CRI value was calculated using comprehensive assignment from the objective and subjective
weight (Figure 5). Notably, in scenario 1, the CRI value was calculated using objective weights, and in
scenario 7, it was calculated using subjective weights. The validation result indicated that (Figure 6),
the map of scenario 5 reflected a higher rij than others, which means that it has higher closeness to
reality of salinity risk distribution.

Figure 7 displays the spatial distribution of the CRI values of seven scenarios calculated using the
comprehensive weights methodology for the Keriya Oasis. When looking at the spatial distributions,
it is evident that salinity risk of the seven scenarios has regional characteristics of distribution;
the general trend is similar among them. However, there is an obvious difference in salinity intensity
between them. This explains that the salinity risk distribution maps are sensitive to changes of variable
weights; simultaneously, it requires validation of these maps for determining the most accurate map.

This map of scenario 5 was most accurate one, characterized by clear grade in distribution of
CRI density, soil salinity is very sensitive to earth surface, it is proved even one meter differences in
surface can cause huge differences in salt content [62]. In addition, during field-work it was found
that the Keriya Oasis ground surface is uneven. Thus, we are confident to say that the map of scenario
5 is the best map. Besides, this result proved that the combination of 40% of objective weight and
60% of subjective weight is the best weight assignment approach to salinity risk assessment in the
Keriya Oasis.
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Table 3. Weights of the analytic hierarchy process (AHP) and maximizing deviation method (MDM); values of grey relational coefficients (rij) and the composite risk
index (CRI) for secondary salinity risk assessment and mapping in the Keriya Oasis.

Variable Symbols AHP Weights MDM Weights rij
CRI Value

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7

A0 0.0840 0.0582 0.8402 0.0489 0.0518 0.0561 0.0582 0.0603 0.0645 0.0706
A1 0.0519 0.0532 0.7718 0.0411 0.0408 0.0406 0.0405 0.0404 0.0402 0.0401
A2 0.0462 0.0430 0.6961 0.0299 0.0303 0.0308 0.0310 0.0312 0.0317 0.0322
A3 0.0201 0.0602 0.6759 0.0407 0.0415 0.0351 0.0319 0.0288 0.0224 0.0136
A4 0.0527 0.0561 0.8193 0.0459 0.0453 0.0448 0.0445 0.0442 0.0437 0.0432
A5 0.0162 0.0625 0.7559 0.0472 0.0390 0.0322 0.0288 0.0254 0.0186 0.0122
A6 0.0155 0.0623 0.7267 0.0452 0.0379 0.0312 0.0278 0.0245 0.0178 0.0113
A7 0.0603 0.0727 0.8373 0.0609 0.0587 0.0566 0.0556 0.0546 0.0525 0.0505
A8 0.0348 0.0426 0.7022 0.0299 0.0288 0.0277 0.0271 0.0266 0.0255 0.0244
A9 0.0196 0.0807 0.7703 0.0621 0.0494 0.0406 0.0362 0.0318 0.0229 0.2252

A10 0.0197 0.0511 0.8294 0.0424 0.0351 0.0302 0.0278 0.0253 0.0204 0.0164
A11 0.1453 0.0653 0.6850 0.0447 0.0558 0.0668 0.0723 0.0778 0.0888 0.0995
A12 0.1708 0.0910 0.8177 0.0744 0.0891 0.1024 0.1091 0.1157 0.1290 0.1396
A13 0.0831 0.0453 0.7137 0.0323 0.0377 0.0431 0.0458 0.0485 0.0538 0.0593
A14 0.1365 0.0461 0.8713 0.0402 0.0601 0.0770 0.0855 0.0940 0.1109 0.1189
A15 0.0191 0.0474 0.7170 0.0340 0.0299 0.0259 0.0238 0.0218 0.0178 0.0137
A16 0.0242 0.0624 0.7992 0.0498 0.0437 0.0376 0.0345 0.0315 0.0254 0.0193
Total 1 1 - - - - - - - -
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When reclassifying the process of evapotranspiration, the lowest value was given for values greater
than 15 mm; values of 15 mm and higher were placed in the irrigation area. Irrigation activity reduces
salt salinity risk largely by the salt leaching function.

4.3. Spatial Distribution of Salinity Risk Index

The spatial distribution of the CRI values for the Keriya Oasis was displayed in Figure 8.
The values of CRI ranged between 1.484 and 5.416. To achieve effective analysis, the continuous
CRI values were classified into ten classes. The distribution map of CRI indicated that irrigation
salinity risk in the Keriya Oasis has regional features. The northwestern region has highest salinity
risk, particularly, northern part of Shewol and Yeghebagh village (CRI is 4.985–5.416). The southern
part of Shewol and the northeast part of Karkey and some areas of Yengebagh have a high risk of
salinity (CRI is 4.599–4.985). And northern part of Karkey and sheep firm has moderate salinity
risk (CRI is 4.291–4.599). Yet other regions (CRI of 4.291–3.349) has less salinity risk, these regions
were characterized by the shallowest and constant groundwater table, low and flat enclosed terrain,
large aquiculture area, lowest NDVI values, highest total soluble salt in subsoil and groundwater
(refer to Figure 3). The southern region of the Oasis has lowest salinity risk with CRI of 3.349–1.484,
where has higher relative elevation, deep high groundwater table, low soluble salt in subsoil and
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groundwater, all of them is former cultivated land (referring to Figure 3). Namely, the Lenger, Arish,
Kokya, Aral, Shenbazar, Mughulla, Jay and southern part of Toghrighaz were more favorable to natural
conditions for irrigation agriculture by low salinity risk.

Summing up, salinity risk of Keriya Oasis characterized by less salinized and severe salinized
areas occupy minor areas respectively and moderate salinized area form majority of whole Oasis
(Figure 9).
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5. Discussion

The Keriya Oasis’s ecosystem is very fragile and salinization and desertification threatens
Oasis constantly, it has experienced frequent land reclamation and land abandonment due to soil
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salinity events [1,2,22]. The aim of our study was to show the spatial distribution of salinity hazard,
the methodology combined use the maximizing deviation method and the analytical hierarchy process
during integration of traditional and scientific knowledge by using the PSR framework and the grey
relational analysis. The idea of this study is the first attempt to combined use subjective and objective
weight assignment in the topic [34,35,63,64]. With diverse parameters by observing within broader
view of study, this results even close to the actual situation of salinity risk.

It is proved again that the PSR framework not only has a systematic way to select parameters for
irrigation salinity risk assessment and mapping but also helps to describe the threating problem for
regional sustainability across the full spectrum rather a few individual parameters that only explains
a portion of the issue (Table 4) [14,17,19,21,65]. However, using the PSR framework for risk index
development has some limitations as well, over simplification may fail to indicate how the mechanism
between parameters in real multi-level problems [66]. For instance, an irrigation area can be considered
as a pressure if it is perceived to increase the ground water table, or a state of salinity hazard when
it is thought to reflect the land's favorability for agriculture but these limitations can be solved by
reviewing relevant research results.

The employed methodology is that it combines the objective weight assignment (MDM) and
subjective weight assignment (AHP) to derive a weight calculative method for irrigation salinity risk
assessment and mapping. in the AHP, the relative importance of risk parameters perceived by expert
preference subjectively, lack of randomness and objectivity [8] and in the MDM, the relative importance
of risk parameters calculated by curtain statistical approach objectively, lack of expert knowledge
and experience about the local salinity problem [49]. Therefore, our proposed method combines the
knowledge-based AHP and data-driven MDM, attempt to complement one another in approaches.

The Keriya Oasis’s salinity risk map (Figure 6) developed in this study is more reasonable than
less accurate data derived remote-sensing images (Table 4) but this result can be improved if the data
were collected in further high resolution, for example, Karkey village is so large in area, this may
produce some bias in risk mapping when using the anthropogenic data. Although the salinity risk
map of Keriya Oasis (Figure 6) was determined from seven maps (Figure 5) by validation approach
and by actual measured data, result shows that the combination of objective and subjective weight
assignment is the best weight assignment approach. However, there is some imparity between the
risk data and the measured data, it is worth considering further validation when the new approaches
were available.

The salinity risk map provides basic data for ecological designing and managing the Keriya Oasis.
It is evident that different level of salinity risk must be applied different salinity control measures.
Our results demonstrated that the northern part of the Shewol and Yeghebagh village have very high
levels of salinity (Figure 6) which might be caused by a combined influence of flat and low enclosed
terrain, shallow groundwater table, high total soluble salt in subsoil and groundwater. From above,
we can conclude that the Oasis had inherent salinity problem, which may pose very big challenge
for us that it is economically unfeasible to restore the salinized lands in this region. In comparison,
the region with high salinity risk caused by excessive water logging and large aquiculture area
(Figure 6), the main approach is to decrease the water body area by reducing water inlet to the area and
increase water withdrawing by pumping or build drainage channel. In addition, the areas (Figure 6)
were mainly subjected to a higher groundwater table, reused irrigation water (poor in quality) and
poor drainage. The best approach may be to withdraw water by pumping, building drainage and plant
salt tolerant plants. Besides, another approach to controlling salinity in this Oasis may be to reduce the
use of irrigation water quantity, so deep percolation was decreased to maintain groundwater table
depth whole oasis scale. For example, in the rice basin, rice cultivation is the dominant land use, it is
suggested that alter the basin to dry land crops. In addition to this, according to stakeholders, irrigation
activities in the southern part of Oasis can increase salinity risk to the northern part by water seepage,
therefore, it is necessary to implement ecological designing plan about irrigation and drainage [52].
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Table 4. Properties of the related issues of secondary soil salinity assessment and mapping compared with the presented work.

Issue Scale Data Types Index Scenario Test Approach Reference

Secondary soil salinization risk assessing
and mapping Keriya Oasis, NW China Scientific, traditional 17 Yes DPSIR, rij, AHP, MDM This study

Assessing secondary soil salinization risk Yinchuan Plain, NW China Scientific 14 Yes DPSIR, rij, AHP [8]

Impact of land uses on land salinization Yellow River Delta, NW
China Scientific 11 Yes Spatial statistical model [28]

Monitoring soil salinization Keriya Oasis, NW China Scientific 6 Yes Passive Reflective and Active
Microwave Remote Sensing Data [1]

Salinity on soil salt dynamics Keriya Oasis, NW China Scientific 2 - Decision tree, Statistical analyses [2]

Salt assessment under different land
use type Keriya Oasis, NW China Scientific 11 - Statistical analyses [23]

Soil salinity related to physical soil
characteristics and irrigation management

Mediterranean irrigation
districts Scientific 17 - Electromagnetic induction

techniques [9]

Prediction of soil salinity risk Canadian prairies are Scientific 5 - Concept of accumulation,
transition and dissipation zone [64]

Ecotone soil salinization causes Fubei Oasis, NW China Scientific 1 - Mathematical equation [52]

Environmental factors of soil salinity Khorezm, Uzbekistan Scientific 11 - Geo-statistical Analysis [13]
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6. Conclusions

Our research assessed and mapped the spatial distribution of irrigation salinity risk in the Keriya
Oasis by using seventeen relative parameters from traditional and scientific knowledge along with
interdisciplinary and comprehensive methodology. The northern part of the Shewol and Yeghebagh
village has a very high salinity risk; this might be caused by a combination of flat and low enclosed
terrain, high total soluble salt in subsoil and groundwater and a shallow groundwater level. It is
suggested that there is no economically feasible solution to this problem. In addition, a few other
regions in the northern part of the Oasis have a relatively higher salinity risk. It is possible to restore
the salinized area by artificial measures such as building drainage and decreasing the water logging.
Therefore, the outcome is basic data for regional salinity management in the Keriya Oasis. In addition,
the southern part of the Oasis has a relative low salinity risk and is suitable for irrigation agriculture.
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