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Abstract: Landslide susceptibility assessment is presently considered an effective tool for landslide
warning and forecasting. Under the assessment procedure, a credible index weight can greatly
increase the rationality of the assessment result. Using the Beijiang River Basin, China, as a case study,
this paper proposes a new weight-determining method based on random forest (RF) and used the
weighted linear combination (WLC) to evaluate the landslide susceptibility. The RF weight and eight
indices were used to construct the assessment model. As a comparison, the entropy weight (EW) and
weight determined by analytic hierarchy process (AHP) were also used, respectively, to demonstrate
the rationality of the proposed weight-determining method. The results show that: (1) the average
error rates of training and testing based on RF are 18.12% and 15.83%, respectively, suggesting
that the RF model can be considered rational and credible; (2) RF ranks the indices elevation (EL),
slope (SL), maximum one-day precipitation (M1DP) and distance to fault (DF) as the Top 4 most
important of the eight indices, occupying 73.24% of the total, while the indices runoff coefficient
(RC), normalized difference vegetation index (NDVI), shear resistance capacity (SRC) and available
water capacity (AWC) are less consequential, with an index importance degree of only 26.76% of
the total; and (3) the verification of landslide susceptibility indicates that the accuracy rate based on
the RF weight reaches 75.41% but are only 59.02% and 72.13% for the other two weights (EW and
AHP), respectively. This paper shows the potential to provide a new weight-determining method
for landslide susceptibility assessment. Evaluation results are expected to provide a reference for
landslide management, prevention and reduction in the studied basin.

Keywords: landslide susceptibility; index weight; random forest; weighted linear combination;
geographical information system; the Beijiang River Basin

1. Introduction

The occurrence frequency of natural disaster has increased in recent decades on the background
of global warming [1–9]. Rainfall-induced landslides are considered one of the most common
natural disasters resulting in significant economic damage and devastating loss of life [10,11].

Water 2018, 10, 1019; doi:10.3390/w10081019 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-5506-5317
http://www.mdpi.com/2073-4441/10/8/1019?type=check_update&version=1
http://dx.doi.org/10.3390/w10081019
http://www.mdpi.com/journal/water


Water 2018, 10, 1019 2 of 20

Large-scale landslide occurrences are estimated to have led to at least 60,000 deaths with losses
of more than US $9.7 billion worldwide from 1900 to 2016 [12]. Changing climatic patterns and
increased anthropogenic activities (e.g., deforestation, land reclamation, slope excavation and reservoir
construction) in mountainous regions have contributed to a global increase in the occurrence of
landslide events [13–16]. Defining optimum preventive and palliative measures for appropriate
landslide defense and management is essential within this context as landslide-induced losses may be
reduced by nearly 90% at an estimated cost of 10.3% of the potential losses [17].

The occurrence of landslide is regarded as a comprehensive result of many determinants such as
precipitation, topography, morphology, lithology and land-use type [18]. The exact location of such
geological disaster implies all varieties of information of hazard inducing environment factors [19].
Therefore, landslides are not reciprocally irrelevant events; there are some correlations between hazard
inducing environment factors and location in a certain region. The occurrence probability can be
expected if such correlations are properly revealed and estimated. Landslide susceptibility assessment,
one of most important measures analyzing the correlations, becomes a vital parameter for landslide
early warning systems and is a necessary component of natural and urban planning for government
policies worldwide [20–26]. Benefitting from development of computer technique, the convenience
in application and compatibility of geographical information systems (GIS), numerous assessment
methods have been applied to evaluate the landslide susceptibility. These methods can be generally
categorized into two groups. The first is a deterministic or engineering approach based on
mathematical models of the physical mechanisms that control slope failure, e.g., TRIGRS [27,28].
The significant limitation of this kind method is the requirement for material data (mechanical
properties, water saturation, etc.) that are difficult to obtain over large areas [29]. The second general
approach is statistical and thus does not posit mechanisms that control slope failure, but assumes
rather that occurrences of past landslides can be related arbitrarily to measurable characteristics
of the landscape [30–32]. In turn, these characteristics can be used to predict future landslide
occurrence and then many common algorithms were applied including weighted linear combination
(WLC), multiple regression model [33–35], artificial neural network model [36,37], and support vector
machine [38,39]. All these statistical methods could properly present the probability distribution
at spatial scale and show a prefect effect in practice. Among these methods, WLC, first introduced
by Voogd [40], has been intensively applied, benefitting from high precision, easy comprehension,
simple use and convenience when combining with GIS [41–43]. However, the determination of a
suitable index weight is a significant step when applying the WLC method because a group of suitable
weights helps to better and more sensitively assess the susceptibility level. Generally, subjective weight
(SW) and objective weight (OW) are two main weight-determining methods used in the evaluation
system [44]. SW is typically determined by the decision maker’s intentions and strongly affected by
expert knowledge and biases, resulting in high subjectivity [45,46]. For example, analytic hierarchy
process, a method of quantitative and qualitative analysis, is able to determine a comprehensive weight
by expert score; however, such weight may not be proper if the experts lack enough experience or
neglect some implicit information. A suitable index weight in landslide susceptibility assessment
should objectively reflect each index’s real contribution/importance and should not be affected by
the decision maker’s intentions when considering the objective existence of a landslide event. In this
case, OW is regarded as a more suitable weight than SW. Deficiencies are still featured in currently
common OW methods, which include entropy theory [47,48], technique for order preference by
similarity to ideal solution method (TOPSIS) [49,50], gray relational analysis (GRA) [51] and the criteria
importance though intercriteria correlation method (CRITIC) [52,53]. These traditional methods could
fetch objective information of sample data using self-contained mathematical theory and analysis;
however, they depend on sample data excessively and are easy to get disturbed by data fluctuation,
resulting in many deficiencies including complicated calculations, poor relevance and even overlooking
practical situations [54].
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Random forest (RF) is a machine-learning algorithm proposed by Breiman in 2001 that
provides estimates regarding hierarchy of variables in classification and evaluation and features
the capability of estimating index importance to total susceptibility level [55]. The method has
been applied to fields including genomic ranking [56], neuroscience prediction [57], T-cell epitope
classification [58], soil parent material mapping [59], vegetable oil analysis [60], and flood hazard
risk assessment [61]. Theoretical and empirical studies have demonstrated that RF may perform
classification work effectively and quantitatively give objective estimates of what variables are
important in the classification. The quantitative estimate of variable importance is consistent to
the idea of index weight, implying that the OW could, in theory, be computed using the importance
of the variables predicted by RF. However, no study has focused on determining OW utilizing RF in
the field of landslide susceptibility assessment. Therefore, this study aims to apply this novel OW
(i.e., weight determined by RF) in the field of landslide susceptibility assessment.

Primary objectives of this study were to: (1) adopt the Beijiang River Basin where located in humid
region in Southern China as a case study and construct a landslide susceptibility assessment model
utilizing the WLC; and (2) demonstrate that RF can estimate an objective and suitable index weight
at basin scale. The study was intended to provide a scientific reference for index weight calculation,
landslide prediction, warning, and management, as well as for soil and water conservation planning
in the studied basin.

2. Methodology

Taking the Beijiang River Basin as a study case, we first selected 11 indices closely related to
landslide and determined 181 rainfall-induced landslide spots. We then divided these spots into
training dataset and validation dataset. The RF algorithm was executed to compute the weight
of indices and the results should pass the five-fold cross validation. Afterwards, the landslide
susceptibility was assessed by combining the RF weight and weighted linear combination method.
As a comparison, the entropy weight (EW) and weight determined by analytic hierarchy process (AHP)
were also used to further demonstrate the rationality of RF weight.

2.1. Weighted Linear Combination

Weighted linear combination (WLC), the best known and most commonly used multi criteria-GIS
method [40], was applied to calculate landslide susceptibility in this study. The WLC method is
a simple but effective method where susceptibility indices affecting a landslide may be combined
by applying weights [62]. Assuming there are m indices and weights in the assessment system,
the calculation formula of WLC is as follows:

y =
m

∑
j=1

wjxj (1)

where y is the comprehensive landslide susceptibility value; wj is the weight of the jth index with a
range of 0 to 1 and meets the condition of ∑m

j=1 wj = 1 (j = 1, 2, . . . , m); and xj is the normalized value
of the jth susceptibility index that may be calculated in the following formulas:

xj =
x− xmin

xmax − xmin
or xj =

xmax − x
xmax − xmin

(2)

where x is the raw value of the susceptibility index, and xmin and xmax are the minimum and maximum
values, respectively. The former formula is available for the positive indices, as, the larger the value is,
the greater the occurrence probability of a landslide. The latter formula is available for the negative
indices, as, the larger the value is, the smaller the occurrence probability of a landslide.
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2.2. Weight Definition

2.2.1. Random Forest Weight

Suitable weights greatly improve the accuracy and quality of landslide susceptibility assessment.
This study utilized a random forest (RF) to determine the index weight. An RF is a classifier consisting
of a collection of tree-structured classifiers {h(x, Θk), k = 1, . . .}, where {Θk} are independent,
identically distributed random vectors, and each decision tree (DT) casts a unit vote for the most
popular class at input x [55]. Multiple samples are drawn in a RF utilizing the resampling bootstrap
method, and classification and regression trees (CARTs) are built corresponding to each bootstrap
sample (Figure 1).
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Figure 1. Random forest operating principle.

Classification and regression trees (CARTs) (Figure 2), consist of root node (t1), internal node
(ti, i = 1, 2, 3 and 4) and leaf node (NT). The root node is split into two internal nodes according to a
certain split standard when the tree begins to grow. The internal node then becomes root node and is
split again and the splitting process repeats constantly until the terminal leaf node generates. If there
are M input variables (i.e., susceptibility indices in this study), a number m << M is specified so that,
at each node, m variables are selected at random out of M, and the best split of these m is applied to
split the node. The value of m remains constant during the forest’s growth. The minimum Gini value
is the split standard of the node, with the corresponding variable considered as the optimal variable.
The Gini value is calculated as follows:

Gini(t) = 1−
k

∑
j=1

[p(j|t)]2 (3)

where p(j|t) is the probability of class j at node t. Each time a node split is made on variable i, the Gini
impurity criterion for the two descendent nodes is less than that of the parent node, which provides
Mean Gini Decrease (MGD) after each split. Combining the MGD for each individual variable over
all the trees in the forest rapidly provides an importance parameter named Gini importance that is
typically consistent with the permutation importance measure [60,61]. Thus, this study proposes the
random forest weight (RFW) as:

wi =
Di

∑M
i=1 Di

(4)

where wi and Di are the ith variable weight and MGD value, respectively. The RFW equation is
therefore based on MGD without involving subjective factors. The RFW equation measures the
importance of the variables and is available for providing reasonable weights for the WLC.
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2.2.2. Entropy Weight

Entropy was utilized as a commonly applied method of OW to compare with the RFW. The concept
of entropy, as a parameter measuring the degree of disorder or randomness, originates from
thermodynamics and represents heat energy that cannot be utilized to generate work [63]. Entropy was
first applied to the information theory in 1948 by Shannon, which became the measurement of ordering
of one system [64]. Entropy weight (EW) is based on the information entropy theory and reflects useful
information content offered by each variable [44,47].

A judgement matrix Y with m evaluation objects and n variables is constructed for the calculation
of EW as:

Y =
(
yij

)
m×n (i = 1, 2, . . . , n; j = 1, 2, . . . , m) (5)

The influence of variable dimension and numerical range is eliminated when Y is normalized
to a standard matrix X =

(
xij

)
m×n (i = 1, 2, . . . , n; j = 1, 2, . . . , m) by Equation (2). According to

information theory, the variable’s entropy value Hi is calculated as:

Hi = −
1

Ln m ∑m
j=1 fij Ln fij (i = 1, 2, . . . , n; j = 1, 2, . . . , m) (6)

where fij =
xij

∑m
j=1 xij

and 0 ≤ Hi ≤ 1. The EW may then be computed as:

wi =
1− Hi

n−∑n
i=1 Hi

(7)

where the EW should meet the condition ∑n
i=1 wi = 1. A smaller entropy value obviously relates to a

larger EW, indicating the variable is more crucial.

2.2.3. Analytic Hierarchy Process

The weight determined by Analytic hierarchy process (AHP) was also utilized as a comparison.
AHP is regarded as an ideal SW method featuring efficient and flexible framework based on psychology
and mathematics. Its multi-criteria decision-making technique provides a systematic approach for
assessing and integrating the effects of various factors, involving several levels of dependent or
independent qualitative and quantitative information [65,66].

By analyzing the relations among indices, this method builds a hierarchical organization, including
goal, criterion and sub-criterion levels, to objectively form a multi-level analysis model. The goal level
is a problem’s objective, and the criterion level includes factors which have influence on the objective
decision. The sub-criterion level contains indices subordinated to those belonging to the criterion level.
Judgment matrices are established, and a weight vector is determined according to these matrices.
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3. Case Study

3.1. Study Area

The Beijiang River is the second largest river in the Pearl River system located in the Guangdong
Province, China [67], and is approximately 582 km long with a drainage area of 46,649 km2 (Figure 3).
The Beijiang River Basin predominantly constitutes two cities and sixteen counties and features a
subtropical monsoon climate with a multi-year average precipitation of 1800 mm. The flood season of
the basin is from April to September, and the dry season is from October to March of the next year [68].
Approximately 70–80% of the annual rainfall is concentrated in the flood season with the rainfall
fastigium from May to July [69]. Main soil type of the basin is red soil, typical to hilly topographical
areas of south China, and converted to a soft soil once infiltrated by rain. Geological structure of the
basin includes 68 lithology types and a substantial number of small faults in the middle and upper
reaches, composing a complicated and adverse geological environment with potential for geological
instability [70]. The characteristics of high-intensity rainfall, poor agrotype, complicated landform,
and complicated and adverse geological environment in the basin can lead to a high probability of
landslide hazard. Examples of occurrences in the area include a serious landslide in Qingxin County
resulting from continuously heavy rain in March 2012, causing 7 deaths and 1 injury; four people
of Nanxiong County were buried by a rainstorm-triggered landslide in May 2013; a landslide in
Huaiji County caused by continuous heavy rain then killed 2 villagers and injured 3 children in May
2014; etc. The accidents suggest the Beijiang River Basin is facing great challenges in prevention and
reduction of landslides. Taken together, the studied area is considered as a typical case for landslide
susceptibility assessment.
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3.2. Data and Pre-Processing

The index selection varies among study areas according to the specific characteristics of each
location [71]. One index can have significant impacts on the landslide susceptibility in a specific
area but may have a limited influence in another area. First, we selected 11 indices representing the
conditions of rainfall, topography, geology, and human activity; afterwards, we estimated these indices
by the RF methods and then abandoned three indices (i.e., slope aspect, topographic wetness index
and distance from stream) featuring smaller rate of Gini importance (less than 2%) for the purpose of
convenient calculation and redundancy elimination [72,73]. The remaining eight indices are as follows:

The maximum one-day precipitation: Intensive rainfall acted as a trigger factor causing most
landslide events in the study basin [74–76]. Short duration precipitation exerts greater influence in the
studied area on landslide formation and development than average yearly or monthly rainfall [77,78].
The maximum one-day precipitation (M1DP) was selected finally among the maximum 6 h, 12 h,
one-day and three-day precipitation because we found most of the historical landslides occurred
in the study area after a consecutive one-day rainstorm [79]. Precipitation data (1961–2005) were
provided by 48 rainfall observation stations scattered across the Beijiang River Basin and were
accessed from the Hydrology Bureau of Guangdong Province (http://www.gdsw.gov.cn/wcm/gdsw/
index.html). Kriging interpolation was then employed to generate the layer based on the rainfall
observation stations.

Elevation (EL, m): Most landslides occur in mountainous areas with a large drop with elevation
reflecting characteristics of a discontinuous terrain [80–82]. Digital elevation model (DEM—30 m) was
utilized to represent the elevation index. The range of DEM is 48–1871 m, with an average elevation of
365.25 m in the study basin. Mountainous areas are typically located in the northern basin, whereas the
southern basin features lower elevations. The DEM dataset was provided by Geospatial Data Cloud
site, Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn).

Slope angle (SL, degree): Slope angle is frequently applied as an index reflecting the degree of
topographic change in landslide susceptibility studies as landslides are directly related to slope
angle [78–82]. SL was generated by DEM using the “Slope” tool of Arc.GIS9.3 and it meets
(Degree of slope = θ, tan θ = rise/run). Areas with steep slopes feature high occurrence probabilities
for landslides. The range of SL in the Beijiang River Basin is from 0◦ to 71.5◦, with an average slope of
11.8◦, and steep slopes mainly located in the central basin.

Normalized difference vegetation index (NDVI): The condition of vegetation cover is represented
by this index. A large NDVI value indicates the area is comprised of luxuriant vegetation, providing a
well-developed root system to maintain and stabilize soils. Areas with high vegetation cover are
then generally safer than are bare areas. Average NDVI value in the Beijiang River Basin is 0.50,
suggesting that vegetation cover is at a moderate level. This index was calculated for each Landsat
5 TM image data. Landsat data in 2005 acquired from the USGS Global Visualization Viewer was
terrain-, radiometrically-, and geographically-corrected, and formatted to fit in an 8-bit number
(ranging from 0–255). NDVI is expressed by NDVI = (band 4 − band 3)/(band 4 + band 3) where
band 4 and 3 represent near-infrared band and infrared band, respectively, with a spatial resolution of
30 m × 30 m. Use the Raster Calculator tool in the Spatial Analyst toolbar to perform the calculation.

Distance to fault (DF, m): The geological fault areas are highly susceptible to landslides because the
surrounding rock strength decreases due to tectonic breaks [83]. DF is utilized in this study to reflect the
degree of landslide susceptibility, thus the closer to the fault, the more dangerous exists [78]. Fault data
(1:250,000) were obtained from the National Geological Archives of China (http://www.ngac.org.cn).

Shear resistance capacity (SRC, MPa): Lithology is an important index for the susceptibility
assessment [80]. Lithological variations often result in strength and permeability differences in rocks
and soils, significantly affecting the occurrence of landslides. Thus, this research used SRC to quantify
the lithology. A large SRC value indicates that lithology can withstand a large collapsing force. A total
of 68 lithology types exist in the study basin and each type was assigned a SRC comprehensive value
according to the Design code for engineered slopes in water resources and hydropower projects of China

http://www.gdsw.gov.cn/wcm/gdsw/index.html
http://www.gdsw.gov.cn/wcm/gdsw/index.html
http://www.gscloud.cn
http://www.ngac.org.cn


Water 2018, 10, 1019 8 of 20

(SL 386-2007). The design code is a national normative criterion based on a significant number of tests
and experiments in different areas of China, thus a SRC value is recommended for use that directly
corresponds to a certain lithology type. Lithology data (1:250,000) were obtained from the National
Geological Archives of China (http://www.ngac.org.cn).

Available water storage capacity (AWC): Topsoil plays a key role in the formation of landslide [84].
Soil-type data used in this study include information related to AWC, an index reflecting the maximum
water amount that is held per unit of earth column. A classification value could be consulted directly
from the Harmonized World Soil Database (2009) [85] as it provides a standard between classification
value and AWC value (Table 1), thus AWC was used to represent and quantify the soil type. A large
AWC value indicates soil absorbs more water with the absorption likely to weaken and break the soil
structure, increasing the probability of landslides. Seven AWC measurement values were assigned
to each soil type according to the Harmonized World Soil Database (2009) (Table 1). Soil-type data
(1 km × 1 km) were obtained from the Food and Agriculture Organization of the United Nations
(http://www.fao.org/home/en/).

Table 1. Available water capacity (AWC) value and classification.

Class 1 2 3 4 5 6 7

AWC (mm/m) 150 125 100 75 50 15 0

Runoff coefficient (RC): Land-cover types (LCT) are often affected by human activities, including
bare land, open forest land and rural residential areas, and present high landslide potential [86,87].
A runoff coefficient (RC), measuring the runoff quantity that is converted by rainfall [61], was applied
to quantify the LCT. A large RC value indicates that more rainwater is converted into surface runoff
and less water infiltrates into the underground environment, significantly reducing probability of
soil structure breakdown. Twenty-four land cover types exist in the study basin and were assigned
corresponding RC values (Table 2) according to the Code for Design of Building Water Supply and
Drainage of China (GB 50015-2003) and the Code for Design of Outdoor Wastewater Engineering of China
(GB 50014-2006). The two design codes were similar to SL 386-2007 as well as national normative
criteria, thus the recommended value could be applied directly. Land-cover type data for 2005 were
employed and provided by the Resources and Environment Science Data Center of the Chinese
Academy of Sciences (http://www.resdc.cn/Default.aspx).

Table 2. Land-cover type and the corresponding runoff coefficient (RC).

Land-Cover Type Runoff Coefficient Land-Cover Type Runoff Coefficient

Paddy field 0.98 Water body 1
Non-irrigated farmland 0.6 intertidal zone 0.4

Open forest land 0.15 Mudflat 0.5
Shrubbery 0.18 Urban land 0.9

Closed forest land 0.22 Rural residential area 0.8
High coverage grassland 0.2 Construction land 0.85

Moderate coverage grassland 0.25 Sand 0.1
Low coverage grassland 0.3 Bare land 0.7

Positive factors among the eight indices are M1DP, EL and SL, while NDVI, DF, SRC, AWC and
RC constitute the negative factors. Figure 4 presents spatial distribution characteristics of the indices
with all indices converted into grid format with a cell size of 30 m × 30 m using the GIS technique and
the Beijiang River Basin consisting of approximately 52 million grids. Data-processing tools included
the open source software R, Arc. GIS 9.3 and MS Excel.

http://www.ngac.org.cn
http://www.fao.org/home/en/
http://www.resdc.cn/Default.aspx
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3.3. Landslide Susceptibility Assessment Model

Training and validation datasets must be created prior to employing RF. Historical landslide spots
were utilized as the dataset for the ability to accurately reflect the characteristic and spatial distribution
of landslides. Historical landslide inventory (1995–2005) was available from comprehensive field
surveys, including field evaluation, air photo/satellite image interpretations, the China Geological
Environment Information Network landslide database (http://www.hbgec.org/), and news report
records. Only the rainfall-induced landslide spots occurred after extreme rainfalls were considered;
spots caused by artificial actions, including slope excavation, mine excavation and reservoir
construction were not considered in this study. Altogether 181 landslide spots (Figure 5) distributed
over the basin were finally utilized for the dataset. The five-fold cross validation and the final validation
accuracy of susceptibility map are the two important criteria for dividing the sample for training and
validation. Among the 181 landslide spots, a random sample of two-thirds (120) was applied to create
a training dataset with the remaining (61) employed as validation data for the final susceptibility map.
The 120 spots were classified as first category and marked with “1” while 120 non-landslide spots
were classified as second category and marked with “0”. The non-landslide spots were of the same
sample size with intense human activities and no recorded landslides and were drawn randomly and
uniformly to contribute to the training dataset. Samples were then created by extracting normalized
values of the eight indices based on the 240 spots using the tool “Sample” of Arc.GIS 9.3. The total
240 samples, including eight normalized values (EL, SL, M1DP, DF, RC, NDVI, SRC and AWC) and a
category value (0 or 1), constitute a complete training dataset.
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The total 240 samples were input into the RF package of the software R to train the training
data. The number of classification trees and variables attempted at each split was set to 2500 and
3, respectively, following multiple attempts. Effects of calculation occasionality were then reduced
utilizing the five-fold cross validation, a common model-checking algorithm [59]. The stable and

http://www.hbgec.org/
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reliable performance of the model can be checked by this validation technique. After training, the Gini
decrease value of each index can be obtained, and the RFW can be calculated by Equation (4).

Normalized grid layers and the weight were then input into Equation (1) utilizing the raster
calculator of GIS to calculate landslide susceptibility value and generate a susceptibility map.
The landslide susceptibility map was classified into five susceptibility levels—very high, high,
moderate, low and very low—by the quantile method as contained by an equal number of features.
The flow chart of the assessment is shown in Figure 6.
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4. Results

4.1. Five-Fold Cross Validation

The 240 samples, the training data of five-fold cross validation in this case, were randomly divided
into five sub-samples. A single sub-sample was retained as the model validation data, whereas the
other four sub-samples were used to train the model. Each sub-sample was only validated once during
the process of five-fold cross validation and then we can obtain five sets of results [61].

Table 3 demonstrates that the error rate of training and testing ranges 14.06–20.83% and
10.42–20.83%, respectively. The average error rates are 18.12% and 15.83%, respectively, indicating that
average accuracy reaches 81.88% and 84.17%, respectively. Generally, the verification accuracies of
both training and testing present stable and reliable performance, suggesting that the model can be
considered rational and credible [88] and the weight calculated by RF can be used for the next step.
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Table 3. Error rate (%) of five-fold cross validation.

Fold 1 2 3 4 5 Average

Training 18.23 17.19 20.31 20.83 14.06 18.12
Testing 16.67 12.50 10.42 18.75 20.83 15.83

4.2. Random Forest Weight Analysis

Five sets of Gini decrease values were obtained after the five-fold cross validation and an
average RFW was calculated. Table 4 confirms that indices EL, SL, M1DP and DF are the Top 4
most-important of the eight indices, occupying 73.24% of the weight and suggesting these specific
indices contribute overwhelmingly to total landslide susceptibility. EL is the most important index
comprising approximately 35.00% of the total. High elevation indicates a mountainous region location
as the Beijing River Basin is naturally characterized by hilly terrain, significantly increasing the
probability of a landslide event. Figure 5 illustrates that most landslide spots are located in the
mountainous regions of the central and northern basin, verifying that the high impact index EL,
as identified by RF, bears significance in landslide susceptibility. SL is similar to EL and is considered
to be the second-most-important index by RF. A large drop provides significant potential energy to
cause earth-body sliding. Figures 4c and 5 also illustrate that most landslide spots are located in
areas with a large SL value (substantial drop), verifying that SL also plays a vital role in landslide
susceptibility. M1DP is regarded as the third-ranked index, with a percentage of 12.09%. Figure 4a
demonstrates that M1DP in the south basin, especially in the southeast, is greater than in the north,
suggesting the spatial variation of M1DP is quite notable, and is the primary explanation for the RF
model ranking the index in third place. Certain landslide spots are in locations with relatively slight
rainfall, yet the rainfall amount may be sufficient enough (minimum value still reaches 85 mm) to
trigger a landslide. Many faults exist in the central basin where most landslide spots are concentrated;
thus, the RF model ranks DF as the fourth-ranked index. Indices RC, NDVI, SRC and AWC are less
consequential, with only a 26.76% index weight of the total.

Table 4. Index weights determined by RF, entropy and analytic hierarchy process.

Index EL SL M1DP DF RC NDVI SRC AWC

RF 0.3500 0.1564 0.1209 0.1051 0.0853 0.0820 0.0760 0.0243
EW 0.0513 0.0346 0.0945 0.0132 0.1459 0.1925 0.1365 0.3315

AHP 0.1806 0.2344 0.1705 0.0796 0.1030 0.0797 0.0541 0.0981

4.3. Spatial Distribution of Landslide Susceptibility

Landslide susceptibility map based on RF weight was generated finally. Figure 7 illustrates the
high- and very-high-susceptibility areas are principally located in the central and northern basin in
mountainous terrain areas; the low- and very-low-susceptibility areas are distributed in the southern
and northeast basin in flat areas; and the moderate-susceptibility zones are typically located in
transition areas between high and low susceptibility zones. Zone proportions of each class, from very
low to very high, are 19.75%, 20.19%, 20.62%, 20.22% and 19.22%, respectively. Dangerous zones,
including the high- and very-high susceptibility zones, occupy approximately 39.44%.

Sixty-one historical landslide spots, approximately one-third of the 181 landslide spots,
were utilized to validate reliability of the assessment results. Table 5 demonstrates that 46 historical
landslide spots (75.41%) exist in the dangerous zones, 9 spots (14.75%) in the moderate-susceptibility
areas and only 5 spots (9.84%) exist in the low- and very-low-susceptibility zones. Fifteen spots
(24.59%) remain in the non-dangerous zones (including the moderate-, low- and very-low-susceptibility
zones) with data errors, including the historical landslide spot data and index data errors, offering a
potential explanation. Some flaws may exist in the dataset of historical landslide spots, for example,
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in comprehensive field surveys, locations of landslides may not always be exact, and may even be
mistakenly recorded, decreasing precision of validation. For the index data errors, the index NDVI was
interpreted and generated based on remote-sensing imagery; however, considerable uncertainty and
subjectivity exists in the process, significantly decreasing the index precision [14]; the proportional scale
of index DF is only 1:250,000, omitting smaller faults and may also decrease precision. The percentage
of spots located in the Dangerous zones attained 75.41%, satisfying accuracy requirements for landslide
susceptibility assessments overall.Water 2018, 10, x FOR PEER REVIEW  13 of 20 
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Table 5. Number of validation spots in different susceptibility areas based on different index weights.

Weight Amount Very Low Low Moderate High Very High Dangerous 1

RF
Num. 1 5 9 22 24 46

Per. (%) 1.64 8.20 14.75 36.07 39.34 75.41

AHP
Num. 1 7 9 20 24 44

Per. (%) 1.64 11.48 14.75 32.79 39.34 72.13

EW
Num. 2 14 9 18 18 36

Per. (%) 3.28 22.95 14.75 29.51 29.51 59.02
1 Dangerous areas include the high- and very-high susceptibility areas.

To further verify the rationality of the susceptibility map based on RFW, we also collected 16
other landslide samples occurred after May 2005. These samples are from news report and have been
verified by the open remote sensing images (Sentinel-2(ESA) and Baidu Map). As shown in Table 6,
altogether 12 landslides (75%) locate in the dangerous zones while only 4 spots in the non-dangerous
zones, which indicates the map still presents high applicability, even though the indices are mainly
based on 2005 (e.g., NDVI and RC).
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Table 6. Verification sample occurred in the Beijiang River Bain after May, 2005.

Date County Longitude and Latitude Susceptibility Level Location Attribute

20 June 2005 Fogang 113.706518, 24.035404 High Dangerous
15 July 2006 Lechang 113.293654, 25.370019 Moderate Non-dangerous
15 June 2008 Renhua 113.755737, 25.087949 Highest Dangerous
6 July 2009 Renhua 113.756085, 25.085997 High Dangerous
30 July 2009 Lechang 113.057948, 25.296335 Highest Dangerous
10 May 2010 Wengyuan 113.840344, 24.464006 High Dangerous
6 March 2012 Qingxin 112.734159, 23.884612 High Dangerous
7 March 2012 Shixing 114.19523, 24.998393 Highest Dangerous

18 August 2013 Ruyuan 113.292056, 25.018527 High Dangerous
16 May 2013 Yingde 112.576285, 24.037433 Moderate Non-dangerous
20 May 2014 Huaiji 112.033168, 23.553957 Low Non-dangerous

23 January 2015 Wengyuan 113.702506, 24.547739 High Dangerous
18 April 2016 Shixing 114.079513, 24.837004 High Dangerous

12 August 2016 Guangning 114.079513, 24.837004 Moderate Non-dangerous
12 August 2016 Yangshan 112.571464, 24.204037 Highest Dangerous

9 June 2018 Ruyuan 113.354181, 25.0129 Highest Dangerous

5. Discussion

To further verify the rationality of RFW, another objective weight (OW), i.e., entropy weight (EW),
and a subjective weight determined by AHP were applied as comparisons. With normalized values of
the eight indices, the 120 spots that classified as first category and marked with “1” were applied to
calculate the EW, while the 120 non-landslide spots classified as second category and marked with “0”
did not add to the calculation because the entropy method could not differentiate the landslide and
the non-landslide spot data if mixed together. Table 4 shows the EW considers AWC and SL as the
most and least critical indexes with values of 0.3315 and 0.0346, respectively. For the weight of AHP,
a two-level analysis model with one criterion level (eight indices) and one goal level (weight) was
constructed and ten experienced experts were invited to score. The average weight of the ten experts
was determined as a final weight (Table 4) featuring SL (0.2344) and SRC (0.0541) as the most and least
important indexes, respectively. Overall, the weights based on the tree methods vary considerably.

The landslide susceptibility maps based on EW and weight of AHP were generated and
five categories were classified by the quantile method. Except the very-high-susceptibility areas,
spatial distributions of the other four categories are visually different among the three maps (Figures 7
and 8). Among the three maps, approximately 53.92% areas have the same susceptibility level between
weight of AHP and RFW while only occupying 29.97% between EW and RFW. The 61 historical
landslide spots were also employed to validate susceptibility of the two weights. Approximately 44
(AHP, 72.13%) and 36 (EW, 59.02%) historical landslide spots, respectively, locate in the dangerous
zones, which are fewer than those found with RFW. Different index weights then were typically
observed to produce large differences among the three landslide susceptibility maps.

The EW belongs to OW and its disadvantages, i.e. it only reflects the data law of landslide spots
and it fails to reflect the information of non-landslide spots, are obvious. In this case, the EW has
difficulty measuring the internal law between landslide and non-landslide and thus results in relatively
worse performance. In this case, the AHP has good performance, featuring a total of 44 verification
spots (72.13%) located in the dangerous zones, implying the experts of this case were well experienced
and grasped key points. However, this weight is experience-dependent and strongly determined
by the decision maker’s intentions, which means the more experience and information the experts
have, the more reasonable is the weight that will be obtained. Conversely, a ridiculous weight may be
obtained if the expert’s experience and level of understanding could not meet the requirements.
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The Random Forest method is an efficient and straightforward classifier applied in this study
to calculate index weights to provide a new reference for the weighted method. Unlike the common
OW and SW, the RF method is able to deal with multi-category samples and is able to identify the
internal law between landslide and non-landslide spots and provide contribution rate of each index
to susceptibility. This function provides the possibility for determining a comprehensive weight
that reflects the real contribution of each index. Additionally, the RF method could be expediently
implemented by the open source software R. Only two key parameters are required for proofreading
during the assessment, the number of classification trees and the number of variables tried at each split,
unlike other machine learning algorithms [61]. The application effect is satisfactory, most importantly,
due to the high validation precision. This method is a novel approach for landslide susceptibility
assessments; however, certain issues remain. The weight calculation of this study requires many
historical landslide sites, for example, and increasing the number of spots would significantly improve
accuracy of the results as data limitations restricted the spots to only 181. Some of the indices may not
provide accurate enough data, for example, proportional scale of index DF is only 1:250,000 and the
accuracy may be improved if using a more accurate DF. Although the quantile method was used to
classify into five susceptibility levels, whether there is a better way to reduce the error rate (24.59% in
this study) is still worthy of research. Additionally, we only evaluated the basin with drainage area of
46,649 km2, whether it would be more effective for the study area with a larger or smaller spatial scale
requires further discussion.

The application of RF for weight determination demonstrates significant potential in this study,
despite a few drawbacks. RFW is then recommended for use in the field of landslide susceptibility
assessment and other fields dealing with hazard assessment.

6. Conclusions

Landslide susceptibility assessment is an appropriate approach for predicting and analyzing
the spatial distribution of susceptibility. Determination of a suitable index weight is a key step for
assessment results accuracy, thus a new weight-determining method based on random forest (RF) was
proposed in this study. Eight indices were utilized to construct the susceptibility index system utilizing
the Beijing River Basin as a case study. In total, 240 training samples, including 120 landslide spots and
120 non-landslide spots, were utilized to calculate the weight based on RF. Landslide susceptibility
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was calculated by the weighted linear combination (WLC) method employing the RF weight as an
index weight. EW and weight determined by AHP were also applied for comparisons to demonstrate
the reasonability and feasibility of the RFW. Results indicate that: (1) Average training and testing
error rates of the 240 samples are 18.12% and 15.83%, respectively, suggesting that the RF model
can be considered rational and credible. (2) The RF model ranks EL, SL, M1DP and DF as the Top 4
most critical of the eight indices, occupying 73.24% of the total weight, while the indices, RC, NDVI,
SRC and AWC are less consequential, with an index importance degree of only 26.76% of the total.
(3) The landslide susceptibility map based on RFW was exceptionally different from the maps based
on EW and weight of AHP; a total of 46 spots among the 61 validation spots are located in dangerous
areas based on RF weight with the accuracy rate reaching 75.41%; however, only 59.02% and 72.13%
of the spots are in the dangerous areas based on the other two weights, respectively. Sixteen other
landslide samples occurred after May 2005, further verifying the rationality of the susceptibility
map based on RFW. The proposed weighted method could be expediently implemented with few
parameters while producing a satisfactory practical application. Application of the weight based on RF
to landslide susceptibility assessment provides a scientific reference for weight definition and reveals
significant potential.
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38. Marjanović, M.; Kovačević, M.; Bajat, B.; Vozenilek, V. Landslide susceptibility assessment using SVM
machine learning algorithm. Eng. Geol. 2011, 123, 225–234. [CrossRef]

39. Su, C.; Wang, L.L.; Wang, X.Z.; Huang, Z.C.; Zhang, X.C. Mapping of rainfall-induced landslide susceptibility
in Wencheng, China, using support vector machine. Nat. Hazards 2015, 76, 1759–1779. [CrossRef]

40. Voogd, H. Multicriteria Evaluation for Urban and Regional Planning, 1st ed.; Pion Ltd.: London, UK; Princeton
University: Princeton, NJ, USA, 1983.

41. Jiang, H.; Eastman, J.R. Application of fuzzy measures in multi-criteria evaluation in GIS. Int. J. Geogr. Inf. Sci.
2000, 14, 173–184. [CrossRef]

42. Akgün, A.; Bulut, F. GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region.
Environ. Geol. 2007, 51, 1377–1387. [CrossRef]

43. Sakkas, G.; Misailidis, I.; Sakellariou, N.; Kouskouna, V.; Kaviris, G. Modeling landslide susceptibility in
Greece: A weighted linear combination approach using analytic hierarchical process, validated with spatial
and statistical analysis. Nat. Hazards 2016, 84, 1873–1904. [CrossRef]

44. Lai, C.G.; Chen, X.H.; Chen, X.Y.; Wang, Z.L.; Wu, X.S.; Zhao, S.W. A fuzzy comprehensive evaluation model
for flood risk based on the combination weight of game theory. Nat. Hazards 2015, 77, 1243–1259. [CrossRef]

45. Zou, Q.; Zhou, J.Z.; Zhou, C.; Song, L.X.; Guo, J. Comprehensive flood risk assessment based on set pair
analysis variable fuzzy sets model and fuzzy AHP. Stoch. Environ. Res. Risk Assess. 2013, 27, 525–546.
[CrossRef]

46. Stefanidis, S.; Stathis, D.R. Assessment of flood hazard based on natural and anthropogenic factors using
analytic hierarchy process (AHP). Nat. Hazards 2013, 68, 569–585. [CrossRef]

47. Jesmin, F.K.; Sharif, M.B. Weighted entropy for segmentation evaluation. Opt. Laser Technol. 2014, 57, 236–242.
48. Zhao, H.L.; Yao, L.H.; Mei, G.; Liu, T.Y.; Ning, Y.S. A fuzzy comprehensive evaluation method based on AHP

and entropy for a landslide susceptibility map. Entropy 2017, 19, 396. [CrossRef]
49. Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and

TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [CrossRef]
50. Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art

survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [CrossRef]
51. Jia, X.L.; Li, C.H.; Cai, Y.P.; Wang, X.; Sun, L. An improved method for integrated water security assessment

in the Yellow River basin, China. Stoch. Environ. Res. Risk Assess. 2015, 29, 2213–2227. [CrossRef]
52. Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems:

The critic method. Comput. Oper. Res. 1995, 22, 763–770. [CrossRef]
53. Li, L.H.; Mo, R. Production task queue optimization based on multi-attribute evaluation for complex product

assembly workshop. PLoS ONE 2015, 10, e0134343. [CrossRef] [PubMed]
54. Deng, Z.; Zhang, H.; Fu, Y.; Wan, L.; Lv, L. Research on intelligent expert system of green cutting process and

its application. J. Clean. Prod. 2018, 185, 904–911. [CrossRef]
55. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
56. Chen, X.; Ishwaran, H. Random forests for genomic data analysis. Genomics 2012, 99, 323–329. [CrossRef]

[PubMed]
57. Smith, P.F.; Ganesh, S.; Liu, P. A comparison of random forest regression and multiple linear regression for

prediction in neuroscience. J. Neurosci. Methods 2013, 220, 85–91. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10346-006-0047-y
http://dx.doi.org/10.5194/nhess-17-1091-2017
http://dx.doi.org/10.1016/S1002-0160(15)60047-9
http://dx.doi.org/10.1007/s002540100440
http://dx.doi.org/10.5194/nhess-6-687-2006
http://dx.doi.org/10.1016/j.enggeo.2011.09.006
http://dx.doi.org/10.1007/s11069-014-1562-0
http://dx.doi.org/10.1080/136588100240903
http://dx.doi.org/10.1007/s00254-006-0435-6
http://dx.doi.org/10.1007/s11069-016-2523-6
http://dx.doi.org/10.1007/s11069-015-1645-6
http://dx.doi.org/10.1007/s00477-012-0598-5
http://dx.doi.org/10.1007/s11069-013-0639-5
http://dx.doi.org/10.3390/e19080396
http://dx.doi.org/10.1016/S0377-2217(03)00020-1
http://dx.doi.org/10.1016/j.eswa.2012.05.056
http://dx.doi.org/10.1007/s00477-014-1012-2
http://dx.doi.org/10.1016/0305-0548(94)00059-H
http://dx.doi.org/10.1371/journal.pone.0134343
http://www.ncbi.nlm.nih.gov/pubmed/26414758
http://dx.doi.org/10.1016/j.jclepro.2018.02.246
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.ygeno.2012.04.003
http://www.ncbi.nlm.nih.gov/pubmed/22546560
http://dx.doi.org/10.1016/j.jneumeth.2013.08.024
http://www.ncbi.nlm.nih.gov/pubmed/24012917


Water 2018, 10, 1019 19 of 20

58. Huang, J.H.; Xie, H.L.; Yan, J.; Lu, H.M.; Xu, Q.S.; Liang, Y.Z. Using random forest to classify T-cell epitopes
based on amino acid properties and molecular features. Anal. Chim. Acta 2013, 804, 70–75. [CrossRef]
[PubMed]

59. Heung, B.; Bulmer, C.E.; Schmidt, M.G. Predictive soil parent material mapping at a regional-scale:
A Random Forest approach. Geoderma 2014, 214–215, 141–154. [CrossRef]

60. Ai, F.F.; Bin, J.; Zhang, Z.M. Application of random forests to select premium quality vegetable oils by their
fatty acid composition. Food Chem. 2014, 143, 472–478. [CrossRef] [PubMed]

61. Wang, Z.L.; Lai, C.G.; Chen, X.H.; Yang, B.; Zhao, S.W.; Bai, X.Y. Flood hazard risk assessment model based
on random forest. J. Hydrol. 2015, 527, 1130–1141. [CrossRef]

62. Eastman, R. Multi-criteria evaluation and GIS. In Geographical Information Systems; Longley, P.A.,
Goodchild, M.F., Maguire, D.J., Rhind, D.W., Eds.; Wiley: New York, NY, USA, 1999.

63. Li, X.G.; Wei, X.; Huang, Q. Comprehensive entropy weight observability–controllability risk analysis and
its application to water resource decision-making. Water Res. 2012, 38, 573–579. [CrossRef]

64. Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 5, 3–53.
65. Saaty, T. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980.
66. Saaty, T. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; RWS Publications:

Pittsburgh, PA, USA, 1988; 287p.
67. Lai, C.G.; Chen, X.H.; Wang, Z.L.; Wu, X.S.; Zhao, S.W.; Wu, X.Q.; Bai, W.K. Spatio-temporal variation in

rainfall erosivity during 1960–2012 in the Pearl River Basin, China. Catena 2016, 137, 382–391. [CrossRef]
68. Wang, Z.L.; Zhong, R.D.; Lai, C.G.; Chen, J.C. Evaluation of the GPM IMERG satellite-based precipitation

products and the hydrological utility. Atmos. Res. 2017, 196, 151–163. [CrossRef]
69. Wu, C.H.; Huang, G.R.; Yu, H.J. Prediction of extreme floods based on CMIP5 climate models: A case study

in the Beijiang River basin, South China. Hydrol. Earth Syst. Sci. 2015, 19, 1385–1399. [CrossRef]
70. Wang, Z.L.; Zhong, R.; Lai, C.G. Evaluation and hydrologic validation of TMPA satellite precipitation

product downstream of the Pearl River Basin, China. Hydrol. Process. 2017, 31, 4169–4182. [CrossRef]
71. Lai, C.G.; Shao, Q.X.; Chen, X.H.; Wang, Z.L.; Zhou, X.W.; Yang, B.; Zhang, L.L. Flood risk zoning using a

rule mining based on ant colony algorithm. J. Hydrol. 2016, 542, 268–280. [CrossRef]
72. Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ.

2011, 115, 2564–2577. [CrossRef]
73. Chen, W.T.; Li, X.J.; Wang, Y.X.; Chen, G.; Liu, S.W. Forested landslide detection using LiDAR data and the

random forest algorithm: A case study of the Three Gorges, China. Remote Sens. Environ. 2014, 152, 291–301.
[CrossRef]

74. Jiao, J.J.; Wang, X.S.; Nandy, S. Confined groundwater zone and slope instability in weathered igneous rocks
in Hong Kong. Eng. Geol. 2005, 80, 71–92. [CrossRef]

75. Miller, S.; Brewer, T.; Harris, N. Rainfall thresholding and susceptibility assessment of rainfall-induced
landslides: Application to landslide management in St Thomas, Jamaica. Bull. Eng. Geol. Environ. 2009,
68, 539–550. [CrossRef]

76. Lei, T.C.; Huang, Y.M.; Lee, B.J.; Hsieh, M.H.; Lin, K.T. Development of an empirical model for
rainfall-induced hillside vulnerability assessment: A case study on Chen-Yu-Lan watershed, Nantou, Taiwan.
Nat. Hazards 2014, 74, 341–373. [CrossRef]

77. Wang, Z.L.; Li, J.; Lai, C.G.; Huang, Z.Q.; Zhong, R.D.; Zeng, Z.Y.; Chen, X.H. Increasing drought has
been observed by SPEI_pm in Southwest China during 1962–2012. Theor. Appl. Climatol. 2018, 133, 23–38.
[CrossRef]

78. Frodella, W.; Ciampalini, A.; Bardi, F.; Salvatici, T.; Di Traglia, F.; Basile, G.; Casagli, N. A method for
assessing and managing landslide residual hazard in urban areas. Landslides 2018, 15, 183–197. [CrossRef]

79. Dahal, R.K.; Hasegawa, S.; Nonomura, A.; Yamanaka, M.; Dhakal, S.; Paudyal, P. Predictive modelling
of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence.
Geomorphology 2008, 102, 496–510. [CrossRef]

80. Yalcin, A.; Reis, S.; Aydinoglu, A.C.; Yomralioglu, T. A GIS-based comparative study of frequency ratio,
analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility
mapping in Trabzon, NE Turkey. Catena 2011, 85, 274–287. [CrossRef]

http://dx.doi.org/10.1016/j.aca.2013.10.003
http://www.ncbi.nlm.nih.gov/pubmed/24267065
http://dx.doi.org/10.1016/j.geoderma.2013.09.016
http://dx.doi.org/10.1016/j.foodchem.2013.08.013
http://www.ncbi.nlm.nih.gov/pubmed/24054269
http://dx.doi.org/10.1016/j.jhydrol.2015.06.008
http://dx.doi.org/10.4314/wsa.v38i4.13
http://dx.doi.org/10.1016/j.catena.2015.10.008
http://dx.doi.org/10.1016/j.atmosres.2017.06.020
http://dx.doi.org/10.5194/hess-19-1385-2015
http://dx.doi.org/10.1002/hyp.11350
http://dx.doi.org/10.1016/j.jhydrol.2016.09.003
http://dx.doi.org/10.1016/j.rse.2011.05.013
http://dx.doi.org/10.1016/j.rse.2014.07.004
http://dx.doi.org/10.1016/j.enggeo.2005.04.002
http://dx.doi.org/10.1007/s10064-009-0232-z
http://dx.doi.org/10.1007/s11069-014-1219-z
http://dx.doi.org/10.1007/s00704-017-2152-3
http://dx.doi.org/10.1007/s10346-017-0875-y
http://dx.doi.org/10.1016/j.geomorph.2008.05.041
http://dx.doi.org/10.1016/j.catena.2011.01.014


Water 2018, 10, 1019 20 of 20

81. Conoscent, C.; Ciaccio, M.; Caraballo-Arias, N.A.; Gomez-Gutierrez, A.; Rotigliano, E.; Agnesi, V. Assessment
of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines:
A case of the Bence River basin (Western Sicily, Italy). Geomorphology 2015, 242, 49–64. [CrossRef]

82. Lai, C.G.; Chen, X.H.; Wang, Z.L.; Xu, C.-Y.; Yang, B. Rainfall-induced landslide susceptibility assessment
using random forest weight at basin scale. Hydrol. Res. 2017. [CrossRef]

83. Chen, W.; Xie, X.S.; Wang, J.L.; Pradhan, B.; Hong, H.Y.; Bui, D.T.; Duan, Z.; Ma, J.Q. A comparative study of
logistic model tree, random forest, and classification and regression tree models for spatial prediction of
landslide susceptibility. Catena 2017, 151, 147–160. [CrossRef]

84. Meinhardt, M.; Fink, M.; Tuenschel, H. Landslide susceptibility analysis in central Vietnam based on an
incomplete landslide inventory: Comparison of a new method to calculate weighting factors by means of
bivariate statistics. Geomorphology 2015, 234, 80–97. [CrossRef]

85. Food and Agriculture Organization of the United Nations (FAO); International Institute for Applied
Systems Analysis (IIASA); International Soil Reference and Information Centre (ISRIC); Institute of Soil
Science-Chinese Academy of Sciences (ISS-CAS); Joint Research Centre of the European Commission (JRC).
Harmonized World Soil Database (Version 1.1); FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2009.

86. Li, J.; Wang, Z.L.; Lai, C.G.; Wu, X.Q.; Zeng, Z.Y.; Chen, X.H.; Lian, Y.Q. Response of net primary production to
land use and land cover change in mainland China since the late 1980s. Sci. Total Environ. 2018, 639, 237–247.
[CrossRef] [PubMed]

87. Wang, Z.L.; Xie, P.W.; Lai, C.G.; Chen, X.H.; Zeng, Z.Y.; Li, J. Spatiotemporal variability of reference
evapotranspiration and contributing climatic factors in China during 1961–2013. J. Hydrol. 2017, 544, 97–108.
[CrossRef]

88. Goetz, J.N.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating machine learning and statistical prediction
techniques for landslide susceptibility modeling. Comput. Geosci. 2015, 81, 1–11. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.geomorph.2014.09.020
http://dx.doi.org/10.2166/nh.2017.044
http://dx.doi.org/10.1016/j.catena.2016.11.032
http://dx.doi.org/10.1016/j.geomorph.2014.12.042
http://dx.doi.org/10.1016/j.scitotenv.2018.05.155
http://www.ncbi.nlm.nih.gov/pubmed/29787907
http://dx.doi.org/10.1016/j.jhydrol.2016.11.021
http://dx.doi.org/10.1016/j.cageo.2015.04.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Weighted Linear Combination 
	Weight Definition 
	Random Forest Weight 
	Entropy Weight 
	Analytic Hierarchy Process 


	Case Study 
	Study Area 
	Data and Pre-Processing 
	Landslide Susceptibility Assessment Model 

	Results 
	Five-Fold Cross Validation 
	Random Forest Weight Analysis 
	Spatial Distribution of Landslide Susceptibility 

	Discussion 
	Conclusions 
	References

