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Abstract: Rice is the most important crop for food security and livelihoods of the rural population in
Bihar, India. In spite of good soil and water resources, rice water productivity (WP) is very low in
Bihar. Trends in WP and key factors influencing WP over 20 years (1991-2010) in 11 Bihar districts
were analysed using panel data to help elucidate reasons for low WP values. The annual average rice
yield of 938 kg/ha, WP of 0.22 kg/ m?3, and marginal physical productivity (MPP) of 249 g/ m? are
very low in Bihar compared to both the national average for India and other rice growing areas in
the world. Rice WP and MPP were higher for the garma (dry) season than for the kharif (monsoon)
season. Temporal analysis showed that WP was slowly declining in most districts, while spatial
analysis showed a significant variation in WP across the districts. Regression analysis showed that
the availability of irrigation facilities, occurrence of flood and drought, and cropping intensity had
significant influence on rice WP. Causes for temporal and spatial changes in WP are highlighted and
actions to improve rice WP in Bihar are suggested.

Keywords: water productivity; marginal physical productivity; spatiotemporal perspective; Koshi
River basin; Bihar; India

1. Introduction

Worldwide, the demand for water is increasing and the gap between demand and supply is
widening, especially in areas with rapid population growth and increased economic activities, i.e.,
rural and urban development, industrialization and expansion of irrigation systems [1-4]. Population
means an enhanced demand for food, while increase in non-agricultural economic activities results
in increased competition among different sectors for the water needed to grow that food [5-7].
Global warming due to climate change is likely to further increase agricultural water requirement as
a result of increased evapotranspiration (ET) [2,8,9]. The resultant water scarcity will challenge the
agricultural sector to increase production using less water, in other words by improving agricultural
water productivity (WP) [6,10-15]. Improving agricultural WP remains one of the biggest issues in
food production and ensuring sustainable livelihoods [6,9,16].

The challenge is particularly acute in India as rice, the staple, is a water intensive crop. Across Asia,
rice consumes nearly 50% of the total freshwater used in agriculture [6,17]. In India, agriculture
and livestock production consume 91% of total withdrawn water (municipalities 7%, industry 2%),
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making rice the single largest consumer of water [18]. India is facing the major challenge of producing
increased amounts of food required for a burgeoning population—but with less water, as quantity
and reliability of water supply has become an issue. Overall rice WP in India is relatively low in
comparison to rice growing areas of other countries [19]. In Nanchang (China), Kadawa, (Nigeria) and
Luzon (Philippines), rice WP is 1.84 kg/m?, 0.59 kg/m? and 1.39-1.61 kg/m?, respectively. In Echuca,
Australia, WP ranges from 0.70 to 0.75 kg/ m3, and in different areas of United States of America,
it ranges from 0.88 to 1.44 kg/m?3 [19]. A recent study [20] from India revealed that rice WP ranges
from 0.24 kg/ m?3 to 0.57 kg/ m? in rice growing states. While WP in Punjab, West Bengal, and Assam
was relatively high (more than 0.50 kg/ m3), it was very low in Bihar (0.28 kg/ m3), Madhya Pradesh
(0.25 kg/m?) and Karnataka (0.24 kg/m?). In Bihar, where soil conditions and weather are good,
and rice is a major crop and staple food, low WP is a serious concern.

With a large population (over 104 million), Bihar is one of the poorest and most food-insecure
states in India. Improving rice WP is critically important for increasing food security and water
security. Bihar is endowed with good soil and is relatively rich in water resources, with average annual
precipitation of over 1200 mm and several large rivers. More than 28% of the population lives within
the Koshi River basin, which covers one-third of the state’s land area [21,22]. The 3000 km long Koshi
River is a major tributary of the Ganges; it originates in the southern part of the Tibetan plateau and
passes through China and Nepal before entering Bihar.

About 80% of Bihar’s population depends on agriculture, which contributes 60% to the state’s
Gross Domestic Product (GDP) [23]. However, despite its importance to livelihoods and the economy;,
the agricultural sector has stagnated. The higher growth experienced between 1981 and 1991 has
slowed [24] despite a substantial increase in tube well irrigation [25]. The yields obtained by most
farmers are low and leave little surplus for the market [25]. Rice is the staple crop and is grown over a
large area [26]. For the majority of farming households, it is the main source of income and livelihood.
However, rice productivity in the state is among the lowest in India [27] and two and half times lower
than in similar rice growing districts in the Nepal part of the Koshi River basin [28]. In Bihar, the
rice crop depends on both rainfall and irrigation, with tube wells providing water for around 62%
of the total irrigated area. Most tube wells are privately owned, which creates an informal water
market [29,30]. The remainder of the irrigated area uses water drawn from the Koshi River. The Bihar
part of the Koshi River basin has attracted considerable interest from researchers and policy makers as
a result of its unique water management problem—too little water for much of the year, alternating
with too much during the monsoon. In such a situation, rice production is a gamble, with win or
loss decided by water availability and access [28]. It is essential to enhance the WP of rice in Bihar
to support economic development, and increase food security and the sustainability of the water
resources [31].

The key challenge before agricultural planners in Bihar is how to increase WP so that more food
can be produced and provided to a large food insecure population using available water resources.
However, in order to design effective policies for increasing WP, it is first necessary to understand
the factors that influence present levels of productivity and the variation across districts and regions.
Specifically, understanding spatiotemporal variation of WP in rice cultivation, and identifying the
factors affecting it, will help in planning for improving rice WP and water management. However, in
contrast to the substantial research on land and labour productivity, there has been little research on
spatiotemporal variation in WP in Bihar [32]. To fill this gap, this paper investigates the factors that
influence rice WP in Bihar by taking a multidisciplinary approach.

Accurate measurement of WP at a larger scale, i.e., basin level, has remained a challenge [7].
There are several farm level studies on WP, with limited value for policy actions at a larger scale [33].
With recent advancements in remote sensing and modeling, researchers have applied remote sensing
approaches to measuring macro scale crop WP [33-35]. Despite its many advantages, remote sensing
depends largely on complicated modeling that requires cost intensive ground observation data [36-38],
and misses out in-depth analysis of climatic and socioeconomic drivers of WP. In view of that, this study
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adopted a multidisciplinary approach, using a combination of statistical and GIS techniques and
econometric modeling, to estimate rice WP, analyze spatiotemporal variation, and investigate the effect
of key factors on WP, using panel data of 20 years (1991-2010) for 11 districts of Bihar state, India.
This multidisciplinary approach provides more validity and reliability to results, and increases the
likelihood of the study findings being used for policy formulation. To the best of our knowledge,
such multidisciplinary studies on crop WP are rare in existing literature. In the Koshi River basin,
some studies [25,30,39-42] identified key technological, climatic, and socioeconomic factors and their
influence on rice WP, but there has been no quantitative investigation of the effect of these factors.
Particularly, climatic factors such as variation in annual rainfall and resultant droughts and floods may
have a marked impact on rice yield and WP [30,43], particularly in Bihar [28,44]. It may have serious
implications for food security and socio-economic development [20].

2. Data and Methodology

To estimate rice WP, we used a multidisciplinary approach, and analyzed spatiotemporal variation
of WP, and investigated the effect of key factors influences WP by using the panel data. This section
describes the study area, data handling methods, and statistical and GIS techniques and explains the
econometric model used in the study.

2.1. Study Area

The Koshi river basin in Bihar was selected because it is an area that is theoretically rich in water
but has poor agricultural productivity and very low WP for rice, the staple crop. Rice is a major
factor in food and livelihood security for the majority of the rural population in the state. The study
area covered 11 districts in Bihar that are directly or indirectly affected by the Koshi River and its
hydrology (Figure 1). In these districts, rice is grown in autumn, winter, and summer. The rice
is named according to the season of harvest rather than sowing. Autumn rice (bhadai) is sown in
May—-July and harvested in September—October, and winter rice (aghani) is sown in July-September and
harvested in November-December. Aghani and bhadai are together called as kharif rice or monsoon rice.
Summer rice (garma) rice is sown in January-February and harvested in May—June [45]. Garma rice is
also called as dry season rice. To understand the inter-seasonal differences of WP, the study compared
kharif with garma rice crops.

PURBA CHAMPARAN

SITAMARHI

MADHUBANI

I Koshi watershed boundary "
Y= 3

Figure 1. The study area—11 districts in Bihar that lie wholly or partly within the Koshi River basin.
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2.2. Data Handling

The study was based on district level panel data on rice production related variables and flood and
drought. Data was procured for the 11 districts for a 20-year period (1991-2010). The main sources of
agricultural data were the Bihar Department of Agriculture [46], ‘Bihar through Figures’ [22], and the
‘Bihar Statistical Hand Book’ [47-50]. Some crop data were purchased online from Districts of India [51].
The variables related to rice production included yield, irrigated area, crop area under high yielding
variety (HYV), fertilizer use, and number of agricultural credit accounts. Flood and drought data were
obtained from the Disaster Management Department [52]. Other crop information, for example crop
coefficients and crop growth stages, was obtained from the FAO crop evapotranspiration guidelines
for computing crop water requirements [51].

Climate data were obtained from the Government of India Meteorological Department.
Station-based climate datasets, collected on a daily basis, were acquired for a 20-year period
and computed on an average monthly basis to facilitate understanding of the climate pattern.
The climate data were used to generate a climate surface over the study area using different
interpolation techniques.

2.3. Measuring Water Productivity

The term crop WP means different things for different stakeholders [12]. For plant physiologists
it is the quantity of dry matter produced per unit of water that is transpired by the plant; for farmers,
it is the quantity of yield produced per unit of water supplied to the field [53]. Similar, economists see
water as an input for production and measure WP as a change in output (in monetary value) for each
unit of water [53].

In agricultural management, crop WP is an important indicator to assess the performance of
agriculture systems in converting water (input) into agricultural output [34-54]. The output can be
represented in both physical and economic units [55]. The ratio of crop yield (kg/ha) to the amount
of water use (m>/ha) represents a physical unit of WP, whereas the economic WP ($/m?) represents
economic benefits per unit of water used [34]. Similarly, WP studies at different scales determine the
direction of WP investigation. For instance, focusing simply on WP by considering total water diverted
into fields, or irrigation efficiency, is not sufficient when making decisions across a river basin, since
some part of the diverted water may be reused elsewhere in the basin [7].

Following Molden and Sakthivadivel [7], WP in this study was defined as ‘crop yield per unit of
consumptive water use (CWU)’. The approach used for calculating crop WP is summarized in Figure 2
in the form of a flow chart.

CWU was estimated using the following equation [56]:

Y O IRAKk Y Y ke x ETpjx %’ for irrigated crops

keseasons jemonth iegrowth
CWU = , i
> RFAK Y. >, min(key; x ETpj Effrfj) x 7 for rainfed crops
keseasons jemonth i=growth !

where IRAj; and RFAj represent irrigated and rain-fed areas, respectively, of the Ith crop in the kth
season; i is the number of growth periods in a cropping season; d;; is the number of days in the jth
month in the ith crop growth period; 7; is the number of days in the jth month; kc is the crop coefficient
of the crop in the ith growth period of the kth season; and Effrf; is the effective rainfall for the period of
the month in which the crop is grown.

Two forms of Equation (1) are based on the following assumptions:

(a) Irrigation meets the full water requirements of the crop. In reality this may not always be the
case, especially in water-scarce areas and where farmers do not have full control over irrigation.
However, in the absence of any other dependable information, the assumption was made that
there was no deficit in irrigation water.
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(b) The rain-fed crop does not receive its full water requirement due to dependence on rainfall; thus,
the model uses the minimum values for crop ET, and Effrf; for rain-fed crop water productivity.

The station level ET for the crop season was estimated by utilizing the daily maximum and
minimum temperature data and applying Penman-Monteith missing data equation [51]. In 1948,
Penman combined energy balance with the mass transfer method and developed the original
equation for calculating ET [51]. The original Penman-Monteith equation requires input data
of climatological records, i.e., sunshine, temperature, humidity and wind speed to calculate ET.
However, if climatological records of sunshine, humidity and wind speed are missing and only
air-temperature data is available, the adjusted Penman—Monteith equation (Equation (2)) can be
adopted for calculating ET.

ETo = 0.0023 (Tmean + 17.8) (Tmax — Tmin) 0.5 Ra )

where ET, refers to reference evapotranspiration, Tmean, Tmax and Tpin represent respectively
maximum, minimum and mean air-temperature (°C); and R, represents solar radiation.

The R, was estimated by utilizing the adjusted Hargreaves’ radiation equation [51]. The
Hargreaves’ radiation formula is presented below:

Rs = kRs’\/ (Tmax _Tmin) a (3)

where R, refers to extraterrestrial radiation [Mega Joule per square meter per day].

The adjustment coefficient ks differs for ‘interior” or ‘coastal” regions: for ‘interior” locations it is
defined @ 0.16; and for ‘coastal’ environment, it is defined @ 0.19.

To calculate the effective rainfall in the respective districts, the CROPWAT [57] method was used.
After the estimation of station level ET and effective rainfall, GIS interpolation technique was used to
average them over each district, as used elsewhere [58-63].

The district level ET and effective rainfall information together with crop information (i.e.,
crop calendar and growth stages, canopy coefficient, and area) were then integrated into equation 1 to
calculate the CWU of rice. The rice yield figures of the respective districts were then divided by their
total district CWU to estimate rice WP (kg/m?3) for each district.

Climate (Precipitation

Crop Information
& Temperature)

Temperature

Precipitation + I
Radiation ; *
Fffective rainfall Rice Area, Coefficient X X
[ (CropWat — USDA method) ] ’ Evapotranspiration 1 ‘ & Rice Growth Stage J Rice Yield (kg/ha) }

Consumptive Water-
use (m3/ha)

—

Rice Water Productivity J

(kg/m?)

Figure 2. Flow chart for computing water productivity of rice.
2.4. Measuring MPP of CWU

Economists apply several techniques to estimate agricultural inputs-use efficiency, i.e.,
contribution of a particular input in production [64,65]. One of the important techniques is to estimate
marginal physical productivity (MPP) of farm inputs. While many researchers estimate MPP at farm
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levels to understand the optimum allocation (equilibrium point) of farm inputs in the production
process [66], we conducted season-wise MPP analysis of CWU to further deepen the analysis of WP.
The MPP of CWU was estimated for kharif and garma seasons to know how much rice was produced
when the same unit of water was used under different farm management conditions in the two seasons.

The analytical techniques for estimating MPP range from farm budgets or programming models
to statistical relationship of inputs and yields. This study applied the most widely used Cobb-Douglas
production function to estimate MPP of water use in rice production, because it is relatively more
accurate in estimation [63,67]. The function used in this study is presented below:

logY; = a + BlogX, 4)

Marginal Physical Productivity (MPP) of water = 3 x Average Physical Productivity (APP). Where
Y; = per ha yield gained, X; = per ha consumptive water use (CWU), « = Constant and (3 = Coefficient
of logX;

Y.
Average Physical Productivity (APP) = Yl (5)

1

2.5. Factors Affecting Rice Water Productivity

This study used a fixed effects model to analyze panel data and investigate the influence of various
socioeconomic, climatic, and technological factors on WP. In view of the type of data (panel data),
and their nature (small sample), a fixed effects model was most appropriate as it provides unbiased
estimates of coefficients for small samples if the model is linear in parameters and the observations are
assumed to be independent across individuals but not necessarily across time [68-70]. To deal with the
problem of endogeneity due to simultaneity in the WP function, a fixed-effects two-stage least square
model was used (Equation (6)).

Vie = YieY + XaieB + 1 + vie = Zied 4+ 1 + Vit (6)

where y,, is a dependent variable; Yj; is a 1 x g, vector of observations on g, endogenous variables
included as covariates, these variables are allowed to correlate with vi; Xt is a 1 x kq vector of
observations on the exogenous variables included as covariates. Both endogenous and exogenous
covariates can be expressed as Z;; = [YjtXjt]. In Equation (6), v is g» x 1 vector of coefficients; 3 is a k;
x 1 vector of coefficients; and 6 is a K x 1 vector of coefficients, where K = g, + ky; vj; is idiosyncratic
error term that is uncorrelated with exogenous variables Xj;; and p; is unobserved fixed effect.

A large number of socioeconomic, climatic, and technological variables were considered, but due
to constraints posed by the limited availability of panel data at district level, only seven variables (six
independent and one instrumental) were examined for influence on WP:

e X = proportion of irrigated area to total area under rice cultivation

e Xjp =incidence of drought (D = 1 if drought observed in a particular year; 0 if not observed)

e X3 = cropping intensity (%) Xy = proportion of area under HYV to total area under rice cultivation (%)
e X5 = fertilizer use in gross cropped area (kg/ha)

e X = incidence of flood (D = 1 if flood observed in a particular year; 0 if not observed)

e Xy =number of agricultural credit accounts as a proxy for supply of credit to rice farmers

The variable X4 was suspected to be endogenous due to reverse causality (simultaneity) with WP
because the variable of yield was used in the estimation of WP. To address the problem of endogeneity,
an instrumental variable X; was identified through a series of regressions. It is strongly correlated to
X4 but has a statistically nonsignificant relationship with WP. After adding the variables, Equation (6)
can be expressed in the form of below equations.
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WP = Xyit01 + Xoird2 + X3it03 + X 44¢04 + Xsitd5 + Xeitd6 + Vit (Stage 2) )

X 4it = Xqiemy + Xoiemo + X3it713 + Xsi¢75 + Xeit 76 + X776 + 1y (Stage 1) (8)

X4 is an endogenous variable. In first stage, the value of X4 is derived from which included all
exogenous independent variables and an instrumental variable Xy. In second stage, fitted value of X4
derived from Equation (8) was plugged into Equation (7) to estimate the WP function.

3. Result and Discussion

3.1. Water Productivity

The WP of rice was estimated across seasons and districts. Table 1 shows the spatial distribution
of WP (values by district) for kharif, garma, and total annual rice; the percentage difference in WP
between garma rice and kharif and total annual rice; and, the relative variability (coefficient of variation)
of WP for the different types of rice (relative variability chosen rather than absolute variability, i.e.,
standard deviation).

Two districts (Muzaffarpur and Sheohar) had a relatively higher WP (>0.30 kg/m?) for garma
rice and one (Samastipur) a relatively lower value (<0.22 kg/m?), while no districts had a WP above
0.30 kg/ m? for kharif rice, and five districts (Begusarai, Darbhanga, Khagaria, Madhubani, and
Samastipur) had a value below <0.22 kg/m?3. The results for total annual rice WP were similar to those
for kharif rice as kharif is the dominant rice crop (Table 1).

Table 1. Rice water productivity in individual Bihar districts (average 1991-2010).

Py
% Difference Coefficient of Variation

District Rice WP (kg/m?) of G{/zvr;)na Rice %) Rice Yield (kg/ha)
to
Kharif Garma Annual Kharif Annual Kharif Garma Annual Kharif Garma Annual
Begusarai 0199 0263 0200 3216 3150 3619 2381 3418 899 1535 850
Darbhanga 0.200 0.251 0.202 25.50 24.25 22.29 18.47 21.12 860 1401 862
Khagaria 0195 0233 0199 1948 17.08 60.00 4547 55.59 581 1542 734
Madhubani 0.207 0250 0209 2077 19.61 3462 21.06 34.24 879 1507 879
Muzaffarpur 0253 0380 0260 61.66 5730 32.09 31.10 3207 1035 1397 916
E. Champaran * 0237 0293 0238 2362 2311 3203 2163 3256 1229 1385 1107
Saharsa 0.287 0292  0.286 1.74 2.09 1917 1459 1815 1087 1639 1155
Samastipur 0200 0219  0.208 9.50 5.28 4270 2188  41.58 839 1287 866
Sheohar 0222 0366 0226 6486 6194 3855 22.32 3811 1028 1805 900
Sitamarhi 0.227 0287 0229 2643 2532 3458 3382 3391 942 1383 937
Supaul 0.238 0.250 0.239 5.04 4.60 20.27 14.24 20.48 1106 1474 1110

Average all districts 0214 0280 0226 2643 2781 2916 2932 2895 953 1487 938

* E. Champaran = East Champaran (or Purba Champaran). Note: The % difference of garma rice with kharif and
annual rice are derived from [(garma WP /kharif WP) x 100] — 100 and [(garma WP /annual WP) x 100] — 100
respectively; the % of coefficient of variation in column 7-9 are derived from [(std. dev. of water productivity for a
district/corresponding WP in column 2, 3 and 4) x 100].

The WP of garma rice was higher than that for kharif crops in all districts, with a difference
ranging from less than 10% (in Saharsa, Samastipur and Supaul) to more than 60% (in Muzaffarpur
and Sheohar). In most districts, WP was more variable for kharif rice than for garma rice. This
may be because kharif rice is affected by rainfall variability, whereas the water source for garma rice
(groundwater) is more dependable.

The overall average rice WP in the Koshi River basin districts of 0.22 kg/m? is very low compared
to other parts of India such as Haryana (0.40 kg/ m3), and Punjab (0.57 kg/ m3) [20]. WP in Bihar is
much lower than the average WP of 0.60-1.60 kg/m? in other parts of the world [19,71]. It is even lower
than that of Bangladesh (0.30 to 0.46 kg/m?), although they have similar biophysical conditions [32].
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3.2. Temporal Trend in WP

The rice WP and rice yield over time in the selected districts are shown in Figure 3a,b. The WP
trend over the area as a whole was negative over the twenty-year period. Most individual districts also
showed a decreasing trend in WP, but three districts (Darbhanga, Madhubani, and Saharsa) showed
a small positive trend. Two of these (Darbhanga and Madhubani) had a very low WP even after the
small improvement, but the third (Saharsa) had the highest WP of all districts. The district with the
lowest WP (Khagaria) also showed a negative trend over time. The seasonal CWU differences of the
selected districts are shown in Figure 3c.

The differences in WP between districts can be attributed in part to a combination of socioeconomic
conditions including irrigation facilities, access to electricity, and credit and market facilities, as
illustrated by the districts with the highest (Saharsa) and lowest WP (Khagaria). Irrigation coverage in
Saharsa and Darbhanga (gross irrigated area of 71% and 60%, respectively) is much higher than the
Bihar average of 41% [46]. Access to electricity is also higher in Darbhanga, with more than 45% of
villages having power supply, compared to only 36% for Bihar as a whole [72]. Banking facilities are
also better in these two districts. The relatively better irrigation facilities, power supply, and credit
facilities contributed to the increased water productivity in the two districts, and the higher agricultural
productivity led to higher per capita GDP. Saharsa has a per capita GDP of INR 12,197 compared
to INR 11,515 in Khagaria (with the lowest WP) [73]. Flood conditions are also worse in Khagaria,
with water logging affecting 8.0% of the area compared to 4.3% in Saharsa [74]. Water logging affects
crop productivity and reduces water productivity [74]. Handling water logging requires money and
technological intervention. As the farmers are poor they have fewer choices, and water and crop
management is also poor, eventually resulting in lower yields and WP.
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Figure 3. (a) Rice WP (kg/m?3) over time (shown in linear trend lines) in the Koshi districts of Bihar,
individually and overall (1991-2010); (b) Rice yield (kg/ha) over time (shown in linear trend lines) in
the Koshi districts of Bihar, individually and overall (1991-2010); (c) Consumptive water use in the
Koshi districts of Bihar (1991-2010).

3.3. Season-Wise Consumptive Water Use, Yield, and Marginal Physical Productivity of Water

The season-wise values for yield, consumptive water use (CWU), WP, and marginal physical
productivity (MPP) averaged across the selected 11 districts over the 20-year period are shown in
Table 2, and the average monthly values for temperature and ET in Figure 4. The consumptive water



Water 2018, 10, 1082 10 of 17

use (CWU) of rice is higher in the garma than in the kharif season as a result of the higher temperatures
and thus higher ET. However, the yield of rice is also higher in the garma season; thus the WP of garma
rice is higher than that of kharif rice. The higher yield and WP of rice in the garma season can be
attributed to the more favorable conditions (more sunlight and less disease) and the lower risk of water
shortages (as the crop is irrigated) and climate variability. Besides, due to more reliable conditions,
farmers are more likely to invest in production inputs, which also lead to higher production.

40 - Temperature e=@==ET =« « Rainfall - 350

35 - - 300 §
Y i - 250 B

c

v 25 g
E - 2008
g 20 - = é
2. - 1508 £
g 15 - 9
= - 100 F
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Figure 4. Maximum and minimum monthly temperature, mean rainfall and ET in the Koshi river basin
districts of Bihar (1991-2010).

The estimates of MPP of water show that use of an additional unit of water may result in an
increase of 228 g in the yield of rice in kharif. However, an additional unit of water may result in higher
increase (347 g) in the yield in garma. It shows that MPP for garma rice is about 52% higher than for
kharif rice (Table 2). In other words, potentially 52% more rice might be obtained in garma compared to
kharif by applying an additional unit of water. Overall, the average annual rice yield of 938 kg/ha,
WP of 0.22 kg/m3, and MPP of 249 g/m? are very low compared to those in garma.

Table 2. Average season-wise rice yield, consumptive water use (CWU), WP, and marginal physical
productivity (MPP) in the Koshi districts of Bihar (1991-2010).

Variables Kharif Garma Annual
Yield (kg/ha) 953 1487 938
CWU (m?/ha) 4262 6151 4283
WP(kg/m3) 0.21 0.28 0.22
MPP of water (g/m?) 228 347 249

3.4. Factors Influencing Water Productivity

The results of the regression model used to analyze the influence of different factors on WP are
shown in Table 3. Flood and drought had a statistically significant negative influence on rice WP in
the study area, showing that the occurrence of flood or drought will result in low rice WP. In Bihar,
rice is mostly grown as a rain-fed crop and climate fluctuation could have a significant impact on yield
and WP; flood and drought, which are common, also pose major challenges. In flood-prone areas,
water logging and poor drainage system worsen the negative impacts, whereas in drought prone areas,
inadequate water conservation technologies add to the problems [75].
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Cropping intensity also had a statically significant negative influence on WP. Intensification of
agriculture requires increased inputs of water and fertilizers. Increasing the cropping intensity without
an adequate supply of water and fertilizer may lead to reduced water productivity.

Table 3. Influence of different factors on WP (results of the fixed effects two-stage least square model).

Variable Coefficient SE
Dummy for flood incidence —0.030948 ** 0.01563
Dummy for drought incidence —0.09042 *** 0.02043
Irrigated area (%) 0.00173 ** 0.00081
Cropping intensity (%) —0.00075 ** 0.00037
Fertilizer used in gross cropped area (kg/ha) 0.00006 0.00015
HYV in gross cropped area (%) 0.00051 0.00094
Constant 0.29273 *** 0.069865
Sigma u 0.03169
Sigma e 0.08561
rho 0.12055
Within 16
R-square (%) Between 10
Overall 14
Wald chi? (5) 1341.07 (Prob > chi? = 0.0000)

Instrumented: HYV; instrumental variable: number of agricultural credit accounts

Notes: *** significant at 1% level; ** significant at 5% level. Sigma u = Standard deviation of residuals within groups
u;; Sigma e = Standard deviation of residuals (overall error term) ¢;; tho = Variance due to differences across panels.
SE = Standard Error.

The irrigated area had a positive impact on WP. Extending irrigation facilities, both for
supplementary irrigation in the kharif season and for rice cultivation in the garma season, could help
increase rice production. However, the problems with irrigation in Bihar include poor infrastructure,
inequitable distribution of irrigation water, inadequate numbers of tube wells, ineffective use
of rainwater, lack of appropriate storage facilities for rainwater, and inefficient use of irrigation
water [20,29,76]. Hydrological conditions in the area can support a considerable increase in irrigated
area [77]. According to the statistics provided by the Ministry of Water Resources, a total of 22.94
billion cubic meters (BCM) of water is potentially available annually for irrigation in Bihar, while the
net draft is around 10.63 BCM/year [78-82]. However, given the small landholdings, poor economic
condition of farmers [29,30], and the energy crisis, development of groundwater irrigation is likely
to depend on state support, particularly for tube well installation and access to cheaper energy for
pumping water. Some evidence can be drawn from the recent Agriculture Package (2015) of Pakistan,
which allows interest-free loans (repayment over 10 years) for marginal and small farmers to install
solar tube wells or convert existing ones to solar. Under this scheme, 30,000 solar tube wells will
be installed in those areas where the water table and quality of groundwater are above standard
levels [83]. In Bihar, 62% of the total irrigated area currently relies on water from tube wells. Most of
the tube wells are private, creating an informal water market in which marginal farmers are mostly
water buyers [77,84]. Shah [85] argued that the increased cost of groundwater irrigation caused by
higher energy prices would affect marginal farmers the most, and some might have to reduce the area
cultivated under irrigation, or stop farming altogether.

Fertilizers and sowing of HYV had a positive, although not statistically significant, impact on rice
WP. In general, farmers in Bihar do not use adequate amounts of fertilizer as they lack sufficient access
to agricultural credit. Also, around 83% of household cooking fuel comes from biomass-based sources,
particularly cow-dung, which is then not available for use as fertilizer [86]. Farming households use
only a minute proportion of biomass in their fields and are highly dependent on chemical fertilizers,
which most marginal farmers cannot afford. Some studies [87] have reported that Bihar has the highest
imbalance in fertilizer use in India. The uncertainty in water availability resulting from poor irrigation
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facilities also impacts decisions on fertilizer use. Farmers are hesitant to spend on farm inputs when
water is not assured, and this may explain in part why the relationship between fertilizer use and WP
was not significant. The inadequate supply of credit also limits the adoption of HYV, since these crops
require more investments in seed, fertilizer, and water.

Rural electrification is very low in Bihar and energy consumption by the agricultural sector is
lower than in other rice-growing states and well below the all India average (Table 4). With poor
access to electricity, farmers cannot extract sufficient groundwater for irrigation, leading to low water
productivity and crop production [72]. In Bihar, only 46% of the available groundwater is being
withdrawn for agriculture (Table 4).

Table 4. Socioeconomy of Bihar in comparison with other major rice growing states in India.

Variables Bihar ?;:;:Z; Punjab Eﬁﬂ Haryana Plj:cti;:ersh II?CEEI
Marginal farmers (%) 90.0 61.7 13.4 76.0 47.7 78.0 64.8
Rural poverty (%) 341 11.0 7.7 15.3 11.6 304 25.7
yNogtﬁ‘)lY rural per capita income 778 860 1054 880 1015 768 816
Infrastructure index 81.3 103.3 187.5 149.1 137.5 101.2 —
Credit flow to agriculture (Rs/ha) 8880 23,441 46,593 52,427 34,012 29,065 15,936

Money sanctioned with Kisan credit

care scheme (Rs,/ha) 5807 6219 16,939 14,318 9243 7967 5744

Use of available ground water for

irrigation (%) 46 28 97 86 112 47 4
Rural HH electrification (%) 10 90 95 91 87 24 55
Agricultural sector share of 133 315 335 20.7 40.3 17.6 21.0

electricity consumption (%)
Rice yield (kg/ha) 1120 3062 4010 3070 3008 2084 2125

21USD = INR 61.9 in January 2014, © Statistics on available ground water were procured from the Ministry of Water
Resources, India [78]. The used methodology on groundwater resource estimation by the ministry is presented in
[82]. Sources: [75,76,78-91].

Table 4 shows various socioeconomic indicators for Bihar in comparison with other major rice
growing states in India. They show the reasons why rice yield and WP are lower in Bihar than in the
other major rice growing states. Bihar has the highest levels of rural poverty and lowest rural per
capita income of all these states. It is likely that farmers cannot afford the high costs of irrigation and
cultivation, and have a low ability to bear risk. They are less likely to invest in inputs and adopt new
technologies, which leads to inefficiency in resource use and increases the gap between actual and
potential yield [88-90]. Better access to agricultural credit could help increase the ability of farmers
to bear risk [88]. However, the general credit supply (per hectare credit flow to agriculture) and
special credit to procure agricultural inputs (per hectare credit sanctioned through the Kisan Credit
Card Scheme) are also low in Bihar compared to other states (Table 4). Due to inadequate access to
agricultural credit, farmers may face difficulties in making timely investments for inputs and irrigation.

4. Conclusions

This study investigated the underlying causes of low rice WP in the Koshi River basin districts of
Bihar by taking a multidisciplinary approach. As expected, our analysis found that rice WP in Bihar is
very low compared to other parts in India and other countries with similar biophysical conditions.
Surprisingly, WP varies considerably among different districts in Bihar. However, in all the districts,
except Saharsa, a common trend is that the WP is declining over time. In Saharsa, WP is relatively
high, and in Darbhanga WP is relatively low and only showed a very small increase over time.



Water 2018, 10, 1082 13 of 17

Among the factors, irrigation had a statistically significant positive influence on rice WP, and
incidence of flood and drought, and cropping intensity had significant negative influence. The question
is why WP is increasing in Saharsa, and to a lesser extent in Darbhanga, while it is decreasing in other
districts. Although both Saharsa and Darbanga are highly flood prone, have relatively better irrigation
facilities and better power supply contributed to the gradual increase in WP. A decrease in WP in other
districts is attributed to insufficient irrigation resulting from underutilization of groundwater due to
limited access to electricity. Due to the lack of irrigation facilities, rice is largely grown as a rain-fed
crop and variations in precipitation have a substantial impact on productivity. Rice yield and WP
were low in both the garma (non-monsoon) and kharif seasons, but were relatively higher in the garma
season, because of the greater reliability of the water supply when crops are irrigated, as well as the
lower risk of climate induced hazards in terms of floods and drought in the dry season. The marginal
physical productivity of water is 1.5 times higher in garma season compared to the kharif season. To
sum up, irrigation facilities positively influence rice WP and floods and droughts negatively influence
rice WP.

The findings of the study have important implications for improving rice WP in Bihar and similar
areas in other parts of South Asia. It is clear that there is a considerable scope to improve water
productivity in Bihar if appropriate measures are taken. Based on the study findings, we suggest the
following course of action to improve rice WP in Bihar.

»  Irrigation facilities and irrigation quality need to be improved so that farmers can increase the area
under rice during the garma (dry) season when there is no flood risk and the growing conditions
for rice are better. Experiences from Bangladesh suggest that rice productivity can be improved
by increasing irrigation facilities in the dry season [32].

=  Apart from surface water irrigation, efforts could be made to enhance ground water irrigation
facilities for timely and adequate supply of water for irrigation. At present, only 46% of available
groundwater is being utilized in Bihar. Where electricity is not available, solar powered irrigation
system could be arranged. Improved groundwater irrigation will also help in coping with
drought spells.

»  Improving the supply of credit for agricultural development (for tube well installation, especially
solar) and production loans (for inputs) will also help farmers to meet their irrigation needs and
procure inputs such as fertilizers. The combination of an adequate supply of water and balanced
use of fertilizer will reduce the effect of cropping intensity on soil moisture and fertility, and
contribute to improving yield and water productivity.
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