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1. Correlation and Causality 

By applying the MCA on the truncated matrices X̂  and Ŷ  we obtain the series xk and yk (eqn. 
A1) which capture the covariance between two variables within a determined MCSk (Figure 3). These 
series derived from each MCA are used to estimate the correlation, 

iρ , as: 
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For our purposes, we performed the analysis by lagging both series from 1 to 9 months, and 
defined a measure of feedback through the ratio between correlations for each lag of each covariance 
matrix between pairs of variables. 

Nevertheless, correlation analyses just quantify the degree of linear association between 
variables. We overcame such limitation by using causality analyses to quantify the connectivity 
between variables. Such causality or information transfer has been defined within the framework of 
information theory [1–4]. Three basic tenets of the information transfer are the following: (1) Causality 
implies correlation but correlation does not imply causality, (2) Causality implies directionality, 
which means that the transfer of information detects the direction of information transfer between 
two systems, and (3) Asymmetry is a basic property of information transfer.  

We consider a feedback as a bi-directional causality between two variables. To estimate the 
information flow, [1] proposes a system of two stochastic differential equations: 
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where xω  and yω  represent white noise; while xyb  and y,xF  are arbitrary functions of x , 

y  and t . Liang (2014) proved that it is possible to measure the causality between two series x  

and y  through the absolute rate of information flow )T( XY →  in terms of the Shannon entropy, 
such that: 
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where xδ  is the marginal density of x , and E  represents the expected value [1]. By applying 
eqn. (S4) to two series x  and y , the maximum likelihood estimator of eqn. (S4) is given by,  
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where 

yyxyxx  y  C, CC  denote the possible covariance between series. To estimate 
dyxC ,

 and 

dxyC ,
 it is necessary to estimate the covariance between pairs of series ( x , ny ) and ( y , nx ), where 

nx  and ny  are the discrete approximations of 
dt
dx  and 

dt
dy, through the Eulerian formulation:  
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with κ =1. In some cases, such as deterministic chaotic processes, κ = 2.  
The rate of information flow (

XYT →
) can be zero or different than zero. If 0=→XYT  then y  does 

not cause x . There are two possible ways to interpret the information flow depending on the sign: 
a positive sign of 

XYT →
 implies that y  acts upon x  by augmenting its uncertainty, while a 

negative sign indicates that y  stabilizes x  by diminishing its entropy. This type of interpretation 
is rather confusing because it goes against the ordinary algebraic interpretation. Diverse similar 
metrics do exist within the context of information theory, such as the Interaction Information, whose 
positive (negative) values determine redundancy (synergy) in the interaction between two series 
[5,6]. 

Derivation of eqn. (S4) uses the concept of Shannon or Absolute Entropy [7]. For two-variable 
systems, Liang (2013) proved that the flow of information, 

xyT →
 , is the same for both absolute and 

relative entropy. The latter is more suitable to study predictability, owing to its invariance properties 
under non-linear interactions [2,5,7]. 

A measure of relative flow of information [4], in terms of the marginal entropy, can be given as, 

dt
dH

dt
dH

TZ
noise
yy

xyxy ++= →→

*
                               (S7) 

The maximum likelihood estimators suitable to solve eqn.(S7), are:  
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Additionally, the two components of entropy (eqn. A7), estimated in terms of p and q are [3] 
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Finally, the Relative Flow of Information (
xy→τ ) is defined as:  
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If 100=→xyτ , the variation of x  is 100% due to the flow of information from y ; and if 

0=→yxτ , then y  is not the cause. Nevertheless, xy→τ  evalutes the degree influence of y  on 

x  relative to other processes. 

2. Appendix B Connectivity of Graphs at Interannual Time Scale 

We use graphs to infer structural relations and cycles in the LAFs over TropSA [5]. To that end, 
graphs must be represented through matrices. There is a mathematical connection between graphs 



Water 2018, 10, 1095 3 of 5 
  

3 
 

and the algebraic properties of such matrices [6,8–10]. From this point of view, a graph, kΓ , has two 
important matrices associated: the adjacency matrix (W) and the Laplacian matrix (L). 

The adjacency matrix, [ixj]W  (Equation S13), is a square matrix whose dimensions, rows (i) and 

columns (j), represent the nodes of a graph. A null entry in this matrix indicates that there is no edge 
between nodes i and j, and thus: 
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where ijw  is the correlation, ρ( x , y ), and/or the relative causality, τx→y, between the time series 

xk and yk of each MCSk. If the graph is unidirectional, the adjacency matrix, ixjW ℜ∈  is a symmetric 
matrix of kN  X kN , with kN  being the number of variables under analysis.  

Figure A1 basically represents a directed graph connecting three nodes kx , ky  and kz using 
linear ( ρ ) and non-linear (τ ) coupling metrics. Particularly, this directed graph is an extension of 
the two nodes scheme presented in Figure A1 (Right). Each directed graph associates its respective 
adjacency matrix ρ

[ixj]W  (correlations) and τ
[ixj]W  (causalities). In each adjacency matrix, we head 

rows and columns with the variable associated to each node (X, Y, Z), and thus we emphasize how 
this matrix establishes all possible connections between these three nodes.  

For example, for the case of the correlation-based graph (Figure A1-Left), the edge ),( kk yxρ  
connects the nodes in the X-to-Y direction, while the edge ),( kk xyρ  connects the nodes in the Y-to-

X direction. Likewise, in the case of non-linear coupling graphs, the edge yxτ →  connects the nodes 

in the X-to-Y direction, while the edge xyτ →  connects the nodes in the Y-to-X direction (Figure A1-

Right). If this method is applied to the interactions between the X and Z nodes and between the Y 
and Z nodes of this graph, we find 6 possible interactions between the three nodes. The diagonal of 
the adjacency matrix is null because we are not analyzing auto-correlations or auto-causalities. 

To study graph properties [11], we initially use the spectral graph theory by applying a Singular 
Value Decomposition on the adjacency matrix [ixj]W  (Equation S14): 
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This SVD of [ixj]W  provides important information about the structural relations and cycles 

among variables of the LAF graphs. As the structure of [ixj]W  is designed as to evaluate all the 

possible interactions among variables, the singular values of eqn. (S14) represent the amount of 
variance explained by each interaction mode. Also, the largest entries of the main singular vectors u1 
and v1 of eqn. S14 define the most important variables of each mode of interaction [11].  
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Figure A1. Graphs among three variables (X, Y, Z) with links denoting lagged correlations (top left) 
and causalities (top right) between variables/nodes. Bottom panels include the structure of the graph’s 
adjacency matrix, W, to illustrate the node-to-node connection that is established in each graph. 

Furthermore, a diagonal matrix of degree ixjD ℜ∈  is defined, which quantifies the number of 
edges per variable; that is the number and cumulative weight of the connections of each node, as  
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From Equations S14 and S15 the Laplacian or Kirchhoff matrix of the graph, ixjL ℜ∈ , is 
estimated as the difference between the degree matrix and the adjacency matrix, [ixj]W . This implies 

that the sum of all columns of the Laplacian matrix, L(Γk), adds to zero, so that:  
WDL −=                                            (S16) 
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In this case, we use the spectral graph theory by using eigen-decomposition on the Laplacian 
matrix to estimate the eigen-values (λ ). These eigen–values contain measures of the connectivity of 
each graph Γk constructed to assess LAFs over TropSA. 

Given a graph, Γk, and its Laplacian matrix, L(Γk), the eigen-values and eigen-vectors are 
estimated from  

1−Λ= VVL ,                                      (S18) 
where =Λ  { iλλλλ ,...,,, 210 } is a diagonal matrix containing the spectrum of eigen-

values of the Laplacian matrix, and the matrix V = { ivvvv ,...,,, 210 } contains the eigen-vectors. 
The second non-null eigenvalue ( 2λ ) of the Laplacian matrix is the algebraic connectivity of the 

associated graph. This metric was introduced by [9], also known as the Friedler Value. The larger the 
value of 2λ  the larger is the connectivity of Γk. Besides, smaller values of 2λ  indicates that Γk 
increases its modularity. 
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Also, the eigen-vector associated with the algebraic connectivity ( 2λ ) is known as the Friedler 
vector (v2). The sign of this eigen-vector can establish a thick partition in two groups of the connected 
variables of the graph, Γk. 

Likewise, [10] indicate the following important characteristics of the Laplacian matrix L(Γk):  

1. L(Γk) is symmetrical, 

2. The set of eigen-values and eigen-vectors of L(Γk) are real and non-negative, 

3. Because of the special structure of the matrix L(Γk), where all entries in each column add 
up to zero, the smallest eigen-value of this matrix is always zero 00 =λ  [10]. 

4. The graph kΓ  has h connected components if and only if 

0... 1210 =≤≤≤≤ −iλλλλ  [9]. This means that the multiplicity of the null 

eigen-values ( 0=λ  ) is the number of components in which the graph kΓ  can be 
decomposed. The number of null eigen-values corresponds to the number of groups in 
which the graph can be decomposed. 
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