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Abstract: This research developed a new approach for calculating the area over which water spreads
after being released from a confined conduit onto a sloped planar surface with defined roughness.
In particular, the goal was to predict how stormwater would spread onto a sloped grass lawn after
being discharged from a disconnected gutter downspout or through a parking lot curb cut. The need
for this stems primarily from regulators increasingly requiring developers to infiltrate more of the
runoff created by site development, but designers not having good tools for estimating the infiltration
area associated with such “overflow” practices. The model is largely based on Manning’s equation
applied at multiple cross-sectional areas of flow downslope, with additional modifications allowing
the water to spread laterally. The model results were compared to laboratory experiments of water
spreading across a roughened painted surface and two different artificial turfs. The new model
predicted the wetting area with average absolute errors of 6.0% and 5.9% for a fine-bladed artificial
turf and a coarse-bladed artificial turf, respectively. In addition, while validating the modeled flow
spreading across a range of roughnesses, the model had an absolute error of 5.2% for a rough painted
surface meant to represent unfinished concrete.
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1. Introduction

Jurisdictions specified as Municipal Separate Stormwater Sewer Systems (MS4s) are increasingly
promulgating stormwater regulations requiring that certain depths of rainfall be infiltrated on
development sites (United State Environmental Protection Agency [1]). These stormwater control
measures (SCMs) include rain gardens, green roofs, bioretention cells, subsurface infiltration galleries,
and the like. For many types of new construction—particularly suburban domestic housing—an
appealing option is to disconnect gutter downspouts such that the roof runoff is directed across a grass
lawn for additional infiltration. This SCM may be particularly effective for the smaller storms usually
targeted by regulations, generally 1 to 1.5-in. [2]. Similar benefit can be achieved for parking lot runoff
by discharging the flow onto a grassy lawn through a curb cut.

Most of the stormwater manual SCM descriptions (e.g., Tennessee Stormwater Manual [3])
provide minimal guidance on what infiltration area can be claimed for a simple downspout or curb cut
disconnect. If an engineered level spreader is installed to force sheet flow onto the grass, the infiltration
area is clearly defined as the width of the spreader multiplied by the flow length, but what infiltration
area will result from simply discharging a fairly energetic concentrated flow from a downspout or curb
cut onto a planar lawn? A literature search found no simple method addressing this question directly.
The studies most closely related appear to be in the area of mudflow spreading [4] and basin irrigation
advance [5], but the boundary conditions, scale, and even dynamics are different.
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Infiltration-based models such as the EPA Stormwater Calculator (EPA, [6]) and the Tennessee
Runoff Reduction Assessment Tool [7] require knowledge of the stormwater measure’s wetted area
in order to calculate infiltration, so using these to model a disconnect requires prior calculation of
that wetted area. Once the wetted area is calculated, along with other parameters such as soil texture,
infiltration can be calculated using empirical models such the modified Kostiakov–Lewis method [8–10]
or more physically-based models such as Hydrus [11]. Even with just a simplistic understanding of
overland water flow, the following behaviors are expected: (1) larger flowrates will wet a larger area,
as they will initially be deeper and thus spread more; (2) shallower slopes will result in larger wetted
areas, as the downslope velocity will be lower so the flow will have more chance to spread; (3) rougher
surfaces will result in larger wetted areas, as the greater flow resistance will cause slower deeper flow
and subsequently more spread; and (4) longer slopes will provide more distance for spreading so will
result in larger wetted areas.

Approaches to define spreading such as for irrigation basins described in [5] emphasize the
wave-like aspects of the wetting front, because advance time is a substantial portion of the total
irrigation time. In contrast, for overflow SCMs the advance time is very short (perhaps seconds or at
most minutes) while the total overflow time will be on the order of 6–24 h. In such a case, it seems
reasonable to model the steady flow that will dominate during most of the event. Based on this and
examination of multiple approaches that failed to adequately represent one or more of the four points
listed above, it was decided to use Manning’s equation at multiple cross-sections along the slope to
define downslope flow, coupled with an additional approach to define the rate of spreading between
cross-sections. Through utilization of a Manning’s equation based approach, mass balance is assured.

In addition to these conclusions, it is also evident that when water discharges at relatively high
velocity from a restricted conveyance onto an unrestricted planar slope, the high initial downslope
momentum and zero initial lateral velocity cause the water to proceed downslope for some distance
prior to achieving significant lateral velocity as the plume begins widening. Early lateral spreading is
driven by the flow “falling” in the outward cross-slope (lateral) direction under the force of gravity,
and there is initially little lateral frictional resistance as lateral velocities are minimal. After some short
time, however, lateral velocities have increased sufficiently that the resulting resistance to lateral flow
becomes significant, and lateral flow can also be modeled using Manning’s equation.

It is the goal of this study to develop and test a new model initially based on this lateral
acceleration due to gravity and subsequently on Manning’s equation to calculate the areal spreading
of initially confined flow discharging onto an unconfined sloped plane with a defined flow resistance.
The model will then be validated against laboratory tests using a range of flow rates, slope grades,
and roughnesses.

2. Methods

2.1. Model

The well-known Manning’s equation describes open channel flow by

Q = vy A =
k
n

ARh
2/3Sy

1/2 (1)

where Q is the volumetric flow rate, vy is the average water velocity downslope, A is the cross sectional
flow area, k is a unit constant (1 for SI or 1.49 for US customary units), n is the Manning’s roughness
coefficient, Rh is the hydraulic radius equal to A divided by the wetted perimeter, and Sy is the
slope (rise/run) of the energy grade line which for this research is assumed to equal the bed slope
(Manning [12]; discussed in detail in Chow, [13]). Unlike with most uses of Manning’s equation, for the
current scenario the flow is on a planar surface without confining sides. Since Manning’s equation
requires an estimate of the flow cross-section, it is assumed that as the water moves downslope,
it maintains a triangular cross sectional set atop a small rectangular base with the dimensions labeled
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as shown in Figure 1. Other similar cross sections were investigated including an arc and various
sections of ellipses in lieu of the triangular shape, but these shapes yielded no improvement over the
simple cross section shown in Figure 1.
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Figure 1. Cross sectional profile for modeled flow down the slope.

The overall approach is to assume symmetry and calculate the dimensions of x (half of wetted
width) and z (maximum depth, occurring at the center edge of the half-section) as the water moves
downslope. The downslope movement is assumed to be controlled by Manning’s equation, so it is
calculated by applying Equation (1) at each narrowly-spaced cross-section. The lateral spreading that
occurs as the plume moves downslope is dictated by Sx, the water surface slope in the cross-slope
x-direction perpendicular to Sy. Initially this outward acceleration is driven solely by gravity, and its
velocity (vx) is limited by the potential acceleration through time as the water starts to “fall” in the
direction of Sx once the downspout sides no longer constrain lateral movement. Very quickly, however,
vx becomes large enough to create its own frictional flow resistance such that pure response to gravity
no longer accurately describes the acceleration in the x-direction. Following this point, the model
switches to a different regime where the spreading is based on the ratio of Sy to Sx. This allows the
water to flow in the direction of the vector sum of Sy to Sx without regard to further acceleration in the
x-direction due to gravity.

In order to make the model as simple and usable as possible, the necessary user inputs are
Q, Sy, n, k, and x0 = width of one half of the cross section just as the water exits the constraining
downspout or curb cut; ze = the minimum water height at the edge of flow due to surface tension
effects; ytarget = length of flow in the downslope direction, so the desired distance downslope over
which the model should predict its spreading. In addition, the model assumes the initial velocity
in the x direction at the inlet (vxo) is zero. Given the geometry in Figure 1, Equation (1) can then be
rewritten as

Q =
2k
n

( x
2 (ze + z)

)5/3

x2/3
Sy

1/2 (2)

At the first cross-section (just as the flow leaves the restraining inlet), the height of z is calculated
iteratively from Equation (2) using the known Q, k, n, x0, ze, and Sy. From this point on, rather than
looking at specific cross-sections spaced at some distance dy downslope, it is numerically simpler to
conceptually “track” a single cross-section downslope in time, relying on the fact that dy = vy × dt.
Then, in a similar fashion to what was done above at the first cross-section, vy and then y(i) can be
calculated at each timestep utilizing the geometry in Figure 1 in concert with Equation (1) to yield

vy =
k
n

(
ze + z

2

)2/3

Sy
1/2 (3)

y(i) = vy(i−1) dt + y(i−1) (4)

where dt is the timestep duration (initially set to 0.01 s), and (i) and (i−1) represent the current and
previous timesteps, respectively.
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The vy in this relationship describes the average cross section flow velocity downslope, but the
velocity at the plume edge must also be known. By considering only an infinitely thin sliver of the
cross section at its outer edge, the velocity in the y-dimension at this outer edge, (vy0) is calculated by
reducing Equation (3) to

vy0 =
k
n

ze
2/3Sy

1/2 (5)

Sx is described at each step downslope by

Sx =
z − ze

x
(6)

which is utilized to determine the acceleration of water and ultimately vx, the velocity in the
x-dimension. Assuming an initial vx0 = 0, the water rapidly accelerates in the x-direction due to
gravitational forces described by Sx. The vx after each timestep in this “falling water” phase can be
described via simple Newtonian physics as

vx(i) =
g Sx dt
Sx2 + 1

+ vx(i−1) (7)

where g is the acceleration due to gravity. Equation (7) is valid when the water is accelerating laterally
due to gravitational forces only and is not greatly limited by flow resistance in the x-direction. Such a
state ends quickly as vx increases, but incorporating an initial vx0 = 0 and letting it increase due to
gravity-driven acceleration allows the water to shoot out of the conduit downslope in the direction
of y for some distance prior to significant spreading in the x dimension. In other words, it serves to
partially model the initially high downslope flow momentum.

After a short time, flow resistance to vx becomes significant, so it is necessary to provide a
secondary means of modeling the lateral movement dependent on Manning’s equation. This was
accomplished by calculating at each timestep the terms:

Sratio =
Sy

Sx
(8)

vratio =
vy0

vx
(9)

At the timestep following the point at which Sratio ≥ vratio, use of Equation (7) ceases, and vx is
instead calculated as

vx =
vy

Sratio
(10)

which effectively sets vx proportional to vy in terms of their respective slopes. Once the change from
use of Equation (7) to Equation (10) takes place, it is not allowed to return to a state using Equation (7),
limiting the potential for numerical instability. The cumulative displacement in the x-dimension is
calculated by

x(i) = vx(i−1) dt
(

vy

vy0

)
+ x(i−1) (11)

which allows for plotting all important results against elapsed time, t

t(i) = t(i−1) + dt (12)

The model continues until
y(i) > ytarget (13)

which indicates that the wetted zone reaches the end of the target area.
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Selection of a Manning’s n for use in Equation (1) is generally done by picking a value from a
table of previously published values or simply fitting n to measured data. USDA-NRCS [14] suggests
shallow-flow values of n = 0.24 for dense grasses and 0.41 for Bermuda grass, which are generally
some of the highest values found in the tables. At the other end of the spectrum, for very shallow
flows over paved surfaces Reed and Kibler [15] showed that n is directly related to S1/2. For example,
if n = 0.013 (the table value for shallow flow over concrete) at a slope of 2.3%, then the n at a slope of
13.3% is calculated as follows

nSy=13.3% = 0.013
(

0.133
0.023

)1/2

(14)

Selection of a value of ze for Equations (2), (3), (5) and (6) was not obvious, as there are not
readily published values for this variable as there are for n. Clearly it must be between zero and
some reasonable upper limit. If ze = 0, the flow plume will widen without limit as y increases. On the
other hand, large values of ze limit the maximum width of the wetted path by reducing Sx. As z
approaches ze when y becomes large, Sx approaches zero and no further increase in width is predicted.
Simmons et al. [16] describe the depth of spilled fluids on dry concrete and found water puddles had a
height of 3.4 mm on flat surfaces. They also describe how the height varies from thinner on upslope
portions of puddles compared to downslope portions of puddles. Given the systems modeled—flow
on potentially steep slopes, and on a very uneven texture—this study used ze as a fitting parameter
limited between 0 and 3.4 mm. Mathematically, the impact of ze can be illustrated by setting z = ze,
which reduces Equation (2) to

Q =
2 k
n

x ze
5/3Sy

1/2 (15)

and shows that ze is inversely related to x.

2.2. Physical Testing

A 2.5 m × 2.5 m sloped wooden platform was constructed for testing. The slope of the platform
was modified with jackstands located at its lower edge, and Sy was determined by measuring the
height from the floor of the upper and lower edges of the platform along with the known platform
dimensions. The top surface of the platform was coated with a latex paint with small amounts of
medium sand mixed into it prior to application. This served the dual purposes of sealing the wood
surface and slightly roughening the surface with the intent of approximating unfinished concrete.
Though concrete will obviously never be used in an infiltration area, this surface is included in the
tests to provide validation of the flow-spreading model across a very wide range of n values.

A hydrograph generator [17] in a constant flowrate mode supplied water to the platform.
The actual flowrate delivered to the testing surfaces was measured volumetrically immediately prior
to every test run, using a container of known volume and a stopwatch. This hydrograph generator is
capable of delivering flow rates between 0.0114 LPM to 1440 LPM, easily providing the range of flows
desired for this study. The hydrograph generator outflow was directed into a 10.2-cm wide (to reflect a
4-inch downspout) by 91.4 cm long aluminum trough fastened directly onto the platform to ensure it
had the same Sy as the platform itself. With this configuration, water coming from the hydrographic
generator exited the trough in an unrealistically energetic and turbulent manner, so an aluminum sheet
with 0.635 cm hole perforations was placed just below the hydrograph generator output (1/4 the way
down the length of the trough), such that turbulence was dampened somewhat prior to water exiting
the trough onto the platform. When testing the artificial turfs, these were rolled out on the painted
wood surface, and the trough was fastened on top of the turf.

In order to quantify the spreading of the water plume, the platform was gridded into uniform
25 cm × 25 cm sections using thin black rope attached to metal eye hooks surrounding the perimeter
of the platform. The rope grid was removed and reinstalled with every change of surface material.
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The rope was elevated approximately 5 cm above the platform such that it would not interfere with
the water flow for any of the surfaces.

2.3. Testing Protocol

The sand roughened paint, fine-bladed artificial turf (4.45 cm pile height comparable to Greenline
Classic 54™), and coarse artificial turf (5.1 cm pile height comparable to ProGreen Playground
Extreme™) were tested to evaluate the areal spreading expected from water exiting a detached
downspout onto a paved surface or a lawn. All three surfaces were exposed to multiple flowrates
ranging from 45–185 LPM (12–49 GPM), and multiple slopes from 2.25–16.3%. If the discharges
were from a roof with an area of 100 m2, the flowrates would correspond to precipitation rates of
2.7–11.1 cm/hr (1.1–4.4 in/hr). TSM (2015) suggests slopes up to 15% for Type A soils used as
infiltration areas. Not every surface was extended to the highest flowrates, as for some combinations
the 2.5 m × 2.5 m platform proved too small. For example, at the highest flow rates at the lower
slopes the turf caused the flow to spread beyond the platform edges before it reached the bottom of
the platform.

As each test began, water was allowed to flow over the testing surface until lateral spreading of
the water had stopped and steady-state conditions were achieved. The time for this to occur depended
on the flowrate, slope steepness, and surface cover, but generally ranged from about 20 s to a minute.
Once the spreading stopped (but while flow continued), markers were placed by hand every 25 cm
along the y-axis of the grid along both sides of the wetted perimeter (Figure 2). Photographs were
taken from approximately 4 m above the center of the platform, allowing the entire testing surface
to be captured on one image. The x-value for each marker was determined from the grids on the
photographs, resulting in x-y coordinates for every 25–cm in the y dimension for both sides of the
wetting front. An average measured x value was then calculated from the left and right side values of
x for every value of y. This is the measured x value in all references below.
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within the underlying sheet to allow water to drain through them. This was problematic because our 
test required that all of the water be kept flowing above the surface in order to contribute to 

Figure 2. The physical test apparatus for measuring the area of water spread from a 10.2 cm (4 in.)
discharge width onto a platform, in this case with a roughened painted surface. Grid lines are at 25-cm
spacing in both directions. The black dots are pennies placed by hand to mark the greatest extent of
wetting observed during the run.

The fine and coarse artificial turfs used during testing were manufactured with small holes within
the underlying sheet to allow water to drain through them. This was problematic because our test
required that all of the water be kept flowing above the surface in order to contribute to spreading.
Because the model requires a known Q, it was necessary to ensure that no water flowed through and
underneath the turf such that any error in measuring the actual Q flowing atop the turf was minimized.
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To resolve this, waterproof caulk was used to seal the holes, then three coats of water resistant paint
were applied to the backside of the turf. This was very effective, and visual observation during testing
verified that there was no water leaking underneath the turf.

3. Results

The roughened paint surface was tested first. Figure 2 shows an example of the markers laid out
on the grid following a test. Following the tests with various combinations of flowrates and slopes
on the painted surface, the system was modeled per the description within the Model section above.
The painted surface test n was allowed to vary based on Equation (14) from a base case of n = 0.013
at S = 2.3% (Table 1). This base n value is typical for concrete (Chow, 1959), which was our target
roughness created by the addition of sand to the paint. To show the impact of ze on the modeled
results, Figure 3 shows predicted solutions of x versus y with Q = 20 LPM, S = 2.3%, x0 = 10.2 cm,
n = 0.013, and varying ze. The two largest ze values shown both reach their respective asymptotic
widths quickly, whereas the other three smaller ze do not approach their asymptotic width within the
20 m slope modeled.

Table 1. Calculated n from Sy for the roughened paint surface, based on Equation (14).

Sy 2.3% 6.3% 8.8% 9.4% 13.3% 15.9%

n 0.013 0.021 0.025 0.026 0.031 0.034
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Figure 3. Modeled width of flow spread as a function of ze with Q = 20 LPM, S = 2.3%, x0 = 10.2 cm,
and n = 0.013.

The test runs for the painted surface were modeled with varying values of ze. The best fit by
observation was found for a values of ze = 1.25 mm, which was then used for all subsequent analyses,
including both artificial turf surfaces. Figure 4 shows the roughened paint comparison of the measured
x versus the modeled x for the various flowrates and slopes with the modified n shown in Table 1,
and ze = 1.25 mm. As mentioned above, because symmetry is assumed by the model, all measured x
values in this figure, subsequent figures, and resultant statistics are based on the average x from the
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left and right hand sides of the water plume for each location of y. The modeled lines are concave near
the top where the water shoots rapidly out of the trough. The lines quickly change to a convex shape
within a distance downslope of approximately 0.2 m, coinciding with the model transitioning from
Equation (7) to Equation (10).
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Figure 4. Measured and modeled results of one side of the water spreading onto a roughened painted
surface for varying Q and Sy with x0 = 10.2 cm and n varying with slope as per Equation (14).
The measured x values are the average of the right and left sides at that value of y.

Modeling the turf did not require altering n based on slope with Equation (14). This is not
surprising, since the height of the water only rarely (at high flowrates and only near the top of the
slope) exceeded the height of the resisting artificial blades of grass. A constant n = 0.4 was used to
model all slopes of the fine turf (Figure 5) and the coarse turf (Figure 6), which is a value similar to that
suggested by the United States Department of Agriculture—National Resource Conservation Service
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(USDA-NRCS, 1986) for Bermuda grass. The upward concavity of the modeled lines near the top of
the slope in Figures 5 and 6 is still present, but is very small as the much larger n caused more rapid
spreading, which continued to the bottom of the slope. The ze was again set to 1.25 mm for both the
fine and coarse turf.
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Figure 5. Measured and modeled results of one side of the water spreading onto a fine bladed artificial
turf for varying Q and Sy with x0 = 10.2 cm. The measured x values are the average of the right and left
sides at that value of y.

A summary of the fits for all tests from the three surfaces is shown in Table 2. The primary
result of interest is the flow wetted area, since that is what will impact infiltration and is after all the
principle purpose of this study. The modeled overall wetted areas from all tests varied absolutely from
the measured by a maximum of 12.2% and an average of 5.7%, with no strong trends in the errors.
Average absolute errors of 5.2%, 6.0%, and 5.9% were recorded for the roughened painted surface,
the fine-bladed artificial turf, and the coarse-bladed artificial turf, respectively.
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Figure 6. Measured and modeled results of one-side of the water spreading onto a coarse bladed
artificial turf for varying Q and Sy with x0 = 10.2 cm. The measured x values are the average of the
right and left sides at that value of y.

Initial modeling attempts did not make the simplifying assumption that the energy grade line
was equal to the bed slope. Not making this assumption required running the entire model multiple
times to establish the energy grade as a function of distance downslope, as this information is not
known a priori. Typically, after three to four iterations of solving the model it would stabilize, but not
always. Further, the results were always found to be very similar to the first iteration, which did
assume that the energy grade line was equal to the bed slope. The decision was therefore made to
codify this assumption for all the results presented in this research.

The errors between the measured and modeled areas for each surface and for all three surfaces
cumulatively were found to be normally distributed by analysis of their respective normal probability
plots, so the standard deviation value in the table can be taken to indicate the likelihood that the area
error would be within a certain range. For example, 95% of all modeled errors will be within two
standard deviations (so 13.2%) of the measured value.
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Table 2. Summary statistics of results from measured and modeled testing.

Surface Flowrate (LPM) Slope %
Area

Measure
(m2)

Area
Model
(m2)

Area Error NMAEx * RMSEx **
(cm)

Roughened
Paint

45.2
2.3 2.89 2.61 −9.5% 8.9% 6.3
8.8 1.54 1.67 8.4% 9.1% 3.4
13.3 1.41 1.45 2.6% 3.8% 1.5

94.6
2.3 3.25 3.26 0.4% 4.0% 4.2
8.8 1.87 2.05 9.7% 10.7% 4.9

140.1

2.3 3.69 3.63 −1.6% 2.5% 3.1
6.3 2.37 2.56 8.0% 8.4% 4.9
9.4 2.27 2.22 −2.5% 3.6% 2.4
13.3 1.97 1.96 −0.5% 4.0% 2.0

185.5
2.3 3.88 3.91 0.8% 3.6% 4.4
8.8 2.71 2.44 −10.2% 9.8% 6.9
13.3 2.30 2.10 −8.3% 8.0% 5.4

abs. mean 5.2% mean 6.4% mean 4.1

fine turf

45.2

5.5 2.64 2.51 −5.0% 6.6% 8.2
8.6 3.16 3.06 −3.1% 4.3% 4.3
11.9 2.66 2.60 −1.9% 3.7% 2.9
15.9 2.20 2.25 2.4% 2.7% 7.5

94.6

7 2.32 2.10 −9.5% 10.2% 10.5
9.5 2.52 2.33 −7.5% 8.4% 8.1
11.9 3.32 3.11 −6.2% 6.8% 6.6
14.9 2.94 2.78 −5.5% 5.7% 5.4

140.1
9.3 2.43 2.59 6.6% 6.5% 6.1
11.9 3.04 3.42 12.2% 12.1% 0.9

abs. mean 6.0% mean 6.7% mean 6.1

course turf

45.2

5.5 3.73 3.82 2.4% 8.9% 10.3
7.4 3.13 3.30 5.2% 9.7% 10.0
9.9 3.01 2.85 −5.1% 6.2% 6.2
15.2 2.40 2.28 −5.0% 7.5% 6.0

94.6

6.8 2.39 2.13 −10.6% 11.1% 11.8
9.9 3.56 3.41 −4.1% 4.1% 4.2
13 3.18 2.98 −6.3% 6.6% 6.2

16.3 2.85 2.65 −6.9% 8.0% 7.1

140.1

7 1.77 1.68 −4.9% 5.8% 7.6
9.5 3.70 3.82 3.5% 4.2% 4.1
11.9 3.24 3.42 5.5% 5.7% 5.1
15.9 2.65 2.95 11.5% 11.1% 7.9

abs. mean 5.9% mean 7.4% mean 7.2

all data abs. mean 5.7% mean 6.8% mean 5.8
st. dev. 6.6%

* NMAEx = Normalized Mean Absolute Error of x. ** RMSEx = Root Mean Square Error of x.

The wetted area is not the sole result of interest, however, as the modeled area could be accurate
without properly describing the plume shape. To ensure this was not occurring, Table 2 also contains
for each test the Normalized Mean Absolute Error (NMAEx) for each test run as

NMAEx =

m
∑

i=1

∣∣xmodi
− xmeasi

∣∣
m

/
xmeas (16)

where the mod and meas subscripts represent the modeled and measured data, and the denominator
describes the average value of x from all y for a given test run. These results show shape differences
of the same scale as the areal differences, indicating that the shape is fit about as well as the area.
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The overall average of all NMAEx was 6.8%. The Root Mean Square Error of x (RMSEx) is also provided
in Table 1 for each test. The average RMSEx of all tests was 5.8 cm.

Finally, two different Coefficient of Determinations (R2) were calculated from each test to compare
a) the measured left wetted width to the measured right wetted width from all from all y’s, and b) the
average measured x (from both the left and right side) from all y’s to that of the model. The R2 values
(not shown in Table 1) comparing the measured left and right side wetted width ranged from 0.89 to
1.00, with a mean of 0.99. The R2 values comparing the measured to the modeled data ranged from
0.95 to 1.0 with a mean of 0.98. These two sets of calculations indicate that the left and right hand side
of the experiments had very similar wetted shapes, and that these measured wetted shapes were also
very similar to those provided by the model.

4. Discussion

As described above, both qualitative and quantitative measures indicate that the model fits the
data well for uncalibrated situations. Still, there are questions about how it would be used for actually
modeling a storm event being routed from a roof or parking lot over a grassy slope. For example,
though above we sometimes describe the model in terms of a “plume”, our use of Manning’s equation
limits us to modeling the steady-state condition of area wetted by a constant flow. Of course the
model could be applied for serial steady-state conditions at say 15-min intervals, as is common for
other stormwater routing routines, but such an approach would add substantial complexity beyond
simply calculating the wetted area as a function of time. Assuming infiltration was also being modeled
concurrently, the history of infiltration would vary realistically but with great complexity in space and
time, as the wetting area initially grows and then recedes along with a runoff event. Alternatively,
future research might show that assuming a typical hyetograph shape (e.g., Type II) enables one to
select a flow weighted average runoff rate for the entirety of the runoff period to adequately model
infiltration with less numerical calculation and complexity. In any case, the approach as presented
yields a result of significant use in describing these measures using existing models, and the complexity
described above awaits further examination.

Along the same lines, this study did not allow the flow rate to vary down the slope, so that
there is no rainfall addition from above nor infiltration removal from below. At the beginning of the
event the infiltration rate will likely exceed the rainfall rate. This can happen if a relatively large
rooftop area concentrates flow to a smaller infiltration area with most or all of the water infiltrating.
Later during the same precipitation event, the potential infiltration rate will decrease due to the soil
becoming saturated as the precipitation intensity increases. The generally occurring coincidence of
previously wetted soils and high precipitation rates suggests that the percentage error in estimating Q
due to infiltration will be smallest when precipitation rate is large and during later times after soils
have become wetted. In spite of these caveats, the results of the study are encouraging, particularly
the relatively small area errors using uncalibrated textbook n values. The model described in this
manuscript is available within the Stormwater Treatment Assessment Resource (STAR), which is an
updated version of the Tennessee Runoff Reduction Assessment Tool (TNRRAT, 2015), and it is also
available directly from the authors as a macro-enabled Excel 2010 file.

5. Conclusions

A new model is presented that predicts spreading of water released from a downspout or curb
cut onto a planar sloped surface with a specific resistance and without infiltration described by a
Manning’s n. A comparison of measured versus modeled spreading of water downslope across an
approximated concrete slope and two artificial turfs showed good fit. The absolute mean area error
from all tests across three surfaces was 5.7%, and based on the standard deviation of the errors 95% of
errors associated with predicted wetted areas should be less than 13%. The n values used to predict
the spreading were consistent with previously published values, so the model can be applied without
prior calibration of n for each surface.
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Since the model uses only readily-available information (flow rate, discharge width, slope
steepness, and surface material), this approach should provide designers of green infrastructure
disconnect measures with realistic estimates of the infiltration area to associate with such practices.
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