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Abstract: The aim of residential water end-use studies is to disaggregate water consumption into
different water end-use categories (i.e., shower, toilet, etc.). The authors previously developed a
beta application software (i.e., Autoflow v2.1) that provides an intelligent platform to autonomously
categorize residential water consumption data and generate management analysis reports. However,
the Autoflow v2.1 software water end use event recognition accuracy achieved was between 75 to
90%, which leaves room for improvement. In the present study, a new module augmented to the
existing procedure improved flow disaggregation accuracy, which resulted in Autoflow v3.1. The new
module applied self-organizing maps (SOM) and K-means clustering algorithms for undertaking
an initial pre-grouping of water end-use events before the existing pattern recognition procedures
were applied (i.e., ANN, HMM, etc.) For validation, a dataset consisting of over 100,000 events from
252 homes in Australia were employed to verify accuracy improvements derived from augmenting
the new hybrid SOM and K-means algorithm techniques into the existing Autoflow v2.1 software.
The water end use event categorization accuracy ranged from 86 to 94.2% for the enhanced model
(Autoflow v3.1), which was a 1.7 to 9% improvement on event categorization.
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1. Introduction

The urban population is expected to increase by 54 to 66% by 2050 [1]. Population growth and
higher per capita water usage presents a challenge to future water demand [2]. Moreover, the number
of mega-cities with more than 10 million inhabitants will grow to over 40 by 2030 [3], which will create
significant water demand in certain locations [4]. The combination of growing urban development
and climate change will have a significant impact on water security [5]. Therefore, it is important to
conduct systems modeling to examine whether water supply sources are adequate to meet future
demand scenarios [6].

Recently, a number of studies have demonstrated that water end-use analysis can be utilized
to inform policy and practices for urban water systems [7]. Specifically, water end-use studies can
provide essential water consumption information regarding when, where, how, and why residential
users consume water in the home [8,9]. However, the accurate disaggregation of large amounts of
water flow data into different end-use categories is challenging. Therefore, this is the focal point of this
water end-use study.

Over the last few years, numerous smart water metering programs have been applied to a number
of cities worldwide to monitor residential water consumption [10]. There are presently two main
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approaches being applied for undertaking the disaggregation of residential smart meter water data:
(1) decision tree algorithm-applied by Trace Wizard® [11] and Identiflow® [12] and (2) machine learning
algorithms-applied by HydroSense [13], BuntBrainForEndUses® [14], REU2016 [15], and Autoflow [5].

Autoflow employs a hybrid combination of pattern recognition algorithms (i.e., Hidden Markov
Model and Dynamic Time Warping algorithm) and data mining techniques (i.e., event probability
analysis) to learn distinct flow signature patterns for each water end-use category [5,7,16,17].
This approach overcomes the drawbacks of other existing models to address the water end-use
classification problem. For Trace Wizard®, this software is strongly dependent on the experience of the
analyst and two weeks of flow data requires two hours of work by the analyst [7]. In addition,
the accuracy of Trace Wizard® is reduced when more than two events occur concurrently [18].
Identflow® has a higher reported accuracy than Trace Wizard® [7], but its accuracy heavily depends
on the physical features for each fixture/appliance that was input into the software [10]. The drawback
of HydroSense is that it needs a large number of obtrusive pressure sensors (i.e., 33 sensors in a single
household) connected to each water device [13] to be effective.

The first version of Autoflow v1.1 provided recognition accuracy greater than 90% for a set of
mechanised appliances (e.g., clothes washer, dishwasher, toilet, etc.) while behaviorally influenced
water end-use categories (e.g., shower, bathtub, and irrigation) was below 70%. It achieved an average
overall pattern recognition accuracy across all categories of 85% [17]. Autoflow v2.1 achieved an
overall water end use pattern recognition accuracy of 90% and better handled combined event
disaggregation [5]. While Autoflow v2.1 accuracy is getting close to the targeted 95% recognition
accuracy required for a commercial application, there are some deficiencies with this version related to
the initial clustering of discrete events into the most likely water end-use category before more detailed
pattern recognition algorithms are applied.

To address this deficiency in Autoflow v2.1, the present study developed a hybrid model combining
Self-Organizing Maps (SOM) and K-means clustering techniques in order to improve the existing
data clustering process. SOM has been applied in water resources problems [19], water quality
analysis [20], and pattern analysis [21]. Moreover, SOM and K-means are combined and applied in
market segmentation [22] and water distribution systems [23]. In this paper, water end-use pattern
recognition accuracy improvements related to the addition of the newly developed SOM+K-means
computational procedure has been evaluated (i.e., Autoflow v3.1 compared to Autoflow v2.1). The overall
clustering process was divided into two main stages: (1) weight matrix estimation using SOM based
on the water end-use events features and (2) clustering all of the unclassified water end-use events
according to the weight matrix.

The following sections of the paper outline the study background, the enhanced classification
model, the model validation and discussion, and finally a description on how this research is an integral
part of the urban water industry. The Background (Section 2) briefly introduced the importance of
conducting water end-use studies, the difference between the conventional water metering process and
advanced process, the existing models for autonomous water end-use classification, an overview of
the existing versions of Autoflow, and persuasion for the latest version of Autoflow. Section 3 provides a
detailed application of SOM and K-means, which has been applied as a pre-grouping process in the
proposed version Autoflow v3.1 to improve the recognition accuracy of single water end-use event
analysis. Afterward, two independent verification processes, limitations, and future research directions
are provided in the model validation section (Section 4). Lastly, Section 5 summarizes the Autoflow
software and outlines the importance of its widespread implementation for the urban water industry.

2. Background

2.1. Conventional Water Metering Process

Water end-use studies have been increasingly used by water businesses globally in the past decade
to understand water demand characteristics and trends for their customers. Moreover, water end use
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data underpins future demand forecasts for a city and the design of effective demand management
strategies. Reliable accounting and management of water demand is now expected from customers
in the current digital and sustainability conscious era. Smart metering and other sensor technologies
now provides the opportunity to collect big data on water usage within each segment of an intelligent
water network. However, useful analysis of this big data especially what is required to disaggregate
residential water consumption into discrete water end use categories previously required extensive
human resources. This resource intensive water end use data analysis process needed to be automated
to make it feasible for viable widespread implementation. The authors addressed this problem by
designing an autonomous water end use analysis software tool (Autoflow) that will enable future
smart meters to be equipped with this firmware or cloud linked software that will provide water
end use information to each and every residential customer as well as urban water processionals.
Such near real-time water end use information will significantly enhance the management of future
urban water resources.

Water consumption data is recorded manually on a monthly or even half-yearly basis. Current
water billing systems typically use only two to four data points to describe a whole year’s worth of
water consumption data of a household. Kilolitre is often the current resolution of a report, which are
counted by conventional water meters that do not have the ability to record when (i.e., the time
of day) and where (e.g., tap, toilet) the consumption takes place [24]. The current water metering
system has many limitations since it does not provide real-time or continuous water flow data and
does not provide flow data of a sufficient resolution to allow for water end-use event disaggregation.
Continuous water flow data (i.e., minute to hourly) is essential for real-time network modeling and
optimized water infrastructure modeling and engineering [25–27]. Water end use data is useful for
water demand management [28], enhanced water infrastructure planning [25], managing water peak
demand [29], and understanding water-energy linkages [30,31].

2.2. Existing Autonomous Water End Use Classification Models

With the advent of smart meters providing greater volumes of high-resolution water flow data,
researchers have begun to develop advanced models to autonomously or semi-autonomously classify
collected real-time and continuous water consumption data into different water end-use categories.
There are two main categories of models including descriptive models and predictive models [10].
Descriptive models analyze the observed water consumption behaviors of users and these models
can focus on consumption patterns, according to the resolution of water flow data (e.g., [25,26,32,33]).
Predictive models focus on solving the problem of water demand (e.g., [5,28,34,35]). Nguyen [16]
provides a comprehensive critique of the strengths and weaknesses of each of the existing models.
This critique suggested that the utilization of smart water meters at the property boundary, which is
supported by firmware that could autonomously disaggregate water flow data into discrete water end
use categories by applying machine learning techniques, was the most feasible approach to realize a
vision of end-use data being delivered to customers and utilities.

2.3. Water End-Use Classification Process Using Autoflow

Many applications have been developed to automate this costly process including HydroSense,
Identiflow, and Trace Wizard, but these existing software have many limitations preventing their
widespread implementation. Autoflow was developed to address the deficiencies evident in these
applications. Autoflow software is now being utilized by five water utilities in Australia. Autoflow
enabled the accurate and reliable use event disaggregation of water consumption data, which is useful
for understanding when, where, and how various categories of residential consumers use water in their
homes. The primary functions of the software include, but are not limited to, collecting and transferring
water consumption data through a smart water metering system and analyzing the data and producing
a wide range of water end use reports, which can be accessed by relevant stakeholders (i.e., consumers,
water utilities, etc.). Anonymous summary reports can also be compiled for government departments
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to assist them in formulating a range of policies (e.g., incentives, outdoor water restrictions, behavioral
marketing, etc.).

The Autoflow offers a robust pattern recognition procedure through the hybrid combination
of existing popular techniques. Autoflow v1.1 software combined Hidden Markov Model (HMM),
Artificial Neural Networks (ANN), and the Dynamic Time Warping (DTW) algorithm (Figure 1).
The first version was suitable for mechanical water end-use category analysis such as clothes washers,
dishwashers, and toilets [7,16]. Autoflow v2.1 included an additional search process using the Dynamic
Time Warping algorithm. This enhanced version marginally increased the classification accuracy of
mechanized end use categories [5].
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The goals of the design of the Autoflow processing algorithms is to provide both accuracy and
efficiency. The first version of Autoflow (i.e., v1.1) achieved an average overall pattern recognition
accuracy across all categories of 85%. The overall accuracy of Autoflow v2.1 was more than 90% and
had a 4.9% and 8.0% improvement for single event and combined event categorization, respectively.
In terms of efficiency, the Autoflow v2.1 can recognize patterns in almost 100 events in one second,
which is considerably faster than an expert using Trace Wizard. Autoflow v2.1 also provided an
illustrative user interface offering a user-defined water consumption web page to view daily, weekly,
and monthly consumption tables as well as charts on consumers’ water demand across major end-use
categories (e.g., clothes washer, shower, irrigation, etc.). The system also provides customer alerts
regarding whether they have leaks rather than waiting for the present slow feedback process from the
traditional metering process [5,7,16].

Given that mechanized end use categories such as clothes washer, dishwasher, and toilet usually
consist of similar and repeated patterns, one of the initial Autoflow analysis modules completed
a grouping process where similar patterns were initially classified as belonging together before
subsequent detailed pattern recognition procedures were completed. Autoflow v1.1 and v2.1 adopted
DTW as the main technique to achieve this task. However, recent investigations indicated that DTW
had some limitations since it grouped similar patterns based on a pre-determined distance threshold
between the unclassified events and the reference event. Two events would be considered similar if
their distances to a third event (i.e., reference event) were close. However, this distance value is merely
a dimensionless number that represents the shape difference between two given patterns and, in some
cases, two completely different events could have the same distance as the reference event. As a result,
DTW could assign those two events into the same initial category even though their water end use
patterns are completely different. While this incorrect classification was often discovered in subsequent
analysis, it increased the data processing effort and resulted in higher rates of erroneous classification.

2.4. Overview of Applied Techniques

Apart from DTW, many other popular clustering techniques have been established and
widely applied including SOM [36], K-means clustering [37], and Artificial Neural Network
(ANN) [38] to address various complex pattern matching problems such as hand writing, speech
recognition, fingerprint recognition, surface water level, and seabed liquefaction predictions [39,40].
By investigating many of the above mentioned models, it was determined that the SOM and K-means
clustering were highly suitable approaches for clustering similar water end use events together as
required in this study.

The SOM is a type of ANN with an unsupervised learning process [36]. This approach attempts
to replicate the function of the brain when it receives visual and memory stimulation and is useful for
efficiently identifying common patterns and clustering them together.

The SOM network consists of an input layer and an output layer (Kohonen layer). The output
layer is designed as a two-dimensional arrangement of neurons that have an ability to project a high
dimensional input to a low-dimensional grid by maintaining the topological order. In this layer,
each neuron represents a cluster. In addition, the input layer of nodes is connected to the output nodes
and own a weight vector respectively. Euclidean distance and cosine distance are two major criteria
between the weight vector of output nodes and input nodes.

The SOM algorithm has the advantage of producing intuitive results [41], but it has two limitations
related to its static architecture and capabilities to characterize hierarchical relations within the data [42].
The K-means algorithm is a well-established statistical technique for unsupervised iterative data cluster
analysis. SOM and K-means clustering were the utilized techniques for enhancing Autoflow v2.1,
which is described in the next section.
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3. Enhanced Water End-Use Classification Model

Autoflow v2.1 adopted the DTW technique for grouping similar end-use events. However, DTW
was heavily dependent on a threshold value, which defined the similarity between two samples.
For Autoflow v3.1, DTW was replaced by the hybrid SOM+K-means clustering analysis module in order
to improve residential water endues pattern recognition accuracy. The following sections describe how
these techniques were applied to this pattern recognition problem.

3.1. SOM for Water End-Use Pattern Recognition

The formulated six-step procedure detailed below applied the SOM technique for the initial
clustering of residential water end use events into different water end-use categories.

Step 1-Input Layer Settings
As shown in Figure 2, the input layer are given vector El (l = 1, 2, . . . , P) of the water end-use

events, which are then normalized as Êl (l = 1, 2, . . . , P), where P is the number of unclassified events.
In the present study, each water event has three features including volume, duration, and maximum
flowrate. Therefore, an additional subscript x is used to present the features and input events are
presented by Êxl (x = 1, 2, 3; l = 1, 2, . . . , P).
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Step 2-Output Layer Settings
A 2D network of m rows and n columns of water end-use categories is set up in the output layer,

which is shown in Figure 2. The total number of categories T is written as Equation (1).

(T = m× n) (1)

Step 3-Assign Matrix Vectors
Assign a random initial value to the weight matrix vector. Since the network is fully connected,

each input node is connected to each category. Therefore, the weight matrix vector between the input
event and categories is Wl j(l = 1, 2, . . . P; j = 1, 2, . . . , T), which can be normalized as Equation (2).

Ŵl j =
Wl j
‖Wl j‖

(2)

In the output layer, the weight matrix vector is Ŵxlj(x = 1, 2, 3; l = 1, 2, . . . , P; j = 1, 2, . . . , T).
Step 4-Determine Winner Category and Define the Winner Neighbourhood Area
In this step, the distance between input vectors and all categories in the output layer is calculated.

The iterative method is used to determine the winner category j∗, according to the minimum distance
from the input nodes to the output nodes. The weight matrix vector of the winner category is Ŵxlj∗ ,
which can be normalized as Equation (3).
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‖Ê− Ŵxlj∗‖ = min
j∈{1,2,...,T}

{
‖Ê− Ŵxlj‖

}
(3)

Then, the initial neighbor area of the winner category is defined as Nj∗(t = 0) and it is a larger
zone, which decreases over the iteration steps. This is shown in Figure 3. The maximum iteration
is Imax.
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In addition, the neighbor area will update per Equation (4).

Nj∗ (t) = Nj∗(t = 0)× e−(
t×log Nj∗ (t = 0)

Imax ) (4)

Step 5-Adjust Winner Weight Matrix Vectors and Update Neighboring Area
According to the SOM network, the winner category has an activation value of ONE while other

neurons have activations of ZERO, which is seen in Equation (5).

zj(t + 1) =


1 j = j∗

0 j 6= j∗
(5)

However, only the winner neuron can adjust the weight matrix vector. The adjustment function is
given by Equation (6).

Ŵxlj(t + 1) = Ŵxlj(t) + η(t)
[

Êxl − Ŵxlj

]
x = 1, 2, 3; j = 1, 2, . . . , T; l = 1, 2, . . . , P (6)

where 0 < η(t) ≤ 1 and it is a function, which decreases with the number of iterations to ensure the
convergence of the algorithm. In this present paper, the learning rate is given by Equation (7).

ηj∗ × (t) = ηj∗(t = 0)× e−(
t

Imax ) (7)

Step 6-End Judgement
When the learning rate η(t) ≤ ηmin or η(t) = 0, the training process is finished. When the

stopping condition is not satisfied, the algorithm will go back to Step 2 of the procedure until the
maximum iteration number Imax is reached.

3.2. K-Means for End-Use Study

The specific process of the K-means algorithm is shown below.
Step 1-Initial Centroids Selection
Randomly select k samples as the initial cluster centroid Ck from all winner weight matrix vectors

Ŵxlj∗ . In this paper, the winner weight matrix vectors are the input data in the K-means algorithm
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in order to cluster the matrix first and get the final weight matrix as the initial centroids in the next
grouping process. For input data with three features, each centroid can be represented as Equation (8).

Ck = [ck1, ck2, ck3] (8)

Step 2-Assign Matrix Vectors
In this step, each vector will be grouped according to the similarity (distance) dk to the centroids.

The distance to each centroid is calculated for each input vector and can be calculated by using
Equation (9). Afterward, the object is assigned to the closest (minimum distance) centroid, which can
be normalized as Equation (10).

dk(w, c) =

√
m
∑

i=1
(wki − cki)

2 m = 3 (9)

w(j) ∈ group(min{d}) j = 1, 2, . . . , T (10)

where wki is an element of the weight matrix vector.
Step 3-Update the Centroid
When all matrix vectors have been grouped, the centroids position is updated. The new position

of it is based on the new means of each cluster. The position of group k is written as Equation (11).

Pk =
∑

Nk
i=1 wki

Nk
(11)

where Nk is the number of elements belonging to group k.
Step 4-Iteration
Repeat Step 2 and Step 3 of this procedure until the centroid of the clusters no longer changes so

far. At the end of the process, the distance between the clusters is maximal and the distance between
the centroids and their data is minimal. After this step, the clustering result is a new set of matrix
vectors Ŵxlj∗ x = 1, 2, 3; j = 1, 2, . . . , k; l = 1, 2, . . . , P.

Step 5-2nd K-Means Clustering for Unclassified Events
Input the previous result as the initial centroids. Then input the all unclassified events and group

those using specific K-means. The process is the same as in Step 2. Then, the unclassified will be
grouped into k groups.

3.3. Hybrid SOM-K-Means Model for Residential Water End-Use Pattern Recognition

Application of the algorithms for the data clustering process described above was crucial before
the operation of the previously developed pattern matching algorithms and associated analysis
processes. The structure of the SOM network is robust but simple and can handle outliers. In the
situation where the mesh of neurons is larger, the number of clusters is larger. Reducing the number
of clusters in the SOM algorithm can reduce the final number of water end-use groups. However,
the quality or the accuracy of clustering will be decreased. In addition, the clustering result of the
K-means algorithm is greatly affected by the selection of the initial cluster centroid. If the initial centers
are not properly selected, the result may fall into a local optimal solution rather than a global optimal
result. For these reasons, this section presents the model operationalization process for this specific
problem including how these two techniques were combined and how they can improve the clustering
process in Autoflow v3.1.

The existing water end-use model predominately applied only computing techniques [43].
The entire procedure for the hybrid technique includes two stages. First, each water event is presented
by extracted features and grouped through SOM (reaching a certain number of cycles). In addition,
a set of weight vectors are calculated. Second, these vectors that serve as the initial cluster centroids
were applied in K-means clustering. Figure 1 presents the algorithms implemented in the previous
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version of Autoflow v2.1. In this version, the initial pre-grouping process was undertaken by the
Dynamic Time Warping algorithm before the decision-making stage. Moreover, this pre-grouping
process is a major component of the whole pattern recognition analysis process and the accuracy of
this stage can affect the final water category recognition accuracy directly. Hence, it is necessary to
seek a method with high accuracy and efficiency in the pre-grouping process to improve the overall
accuracy of Autoflow. In the developed version Autoflow v3.1, the hybrid technique combining SOM
and K-means has replaced the DTW algorithm in the initial pre-grouping process, which is shown in
Figure 4. The specific subset of the entire procedure for the newly included SOM-K-means clustering
process is detailed in Figure 5. Readers are referred to Nguyen [5,7,16,17] for the detailed analytical
procedures for the other parts of the procedure described in Figure 4.

The advantages of this hybrid technique include: (i) maintaining the characteristics of the
self-organizing of the SOM algorithm, (ii) maintains the high efficiency of K-means clustering,
(iii) reduces the convergence time in SOM, and (iv) reduces the impact of the initial centroid selection
in the K-means algorithm.
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4. Model Validation

As described below, two stages of model testing and verification were undertaken in this study.

(i). Model testing utilized the herein recommended hybrid combination of SOM + K-means on a
total of 9200 random event samples.

(ii). Event model verification was conducted by applying the Autoflow v3.1 software tool to
30 independent homes from Australia and comparing against using original Autoflow v2.1.

4.1. Independent Testing Process

A total of 9200 samples were randomly selected from 104,271 disaggregated samples of eight
different categories for testing. These selected samples were mixed together and the SOM + K-means
analysis module was adopted to partition them into eight different groups where each group was
expected to consist of similar events. The correctly classified water end use events are shown in
Figure 6. The model accuracy is determined by dividing the number of correctly grouped events
for each category by the number of events for testing that category. For example, for the clothes
washer event category, the number of testing samples was 1500 and the number of clothes washer
events correctly grouped was 1398, which resulted in an accuracy of 93.2%. Table 1 details that
the Autoflow v3.1 water end use event recognition accuracy ranged from 86% for the bathtub to
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94.2% for the dishwasher. It is interesting to note that in Table 1, the hybrid model improved the
accuracy of both the more predictable mechanized water end-use event categories (i.e., clothes washer,
dishwasher, evaporative cooler, and toilet) as well as those more variable categories heavily dependent
on human behaviors (i.e., tap, bathtub, irrigation, and shower). Overall, the newly developed hybrid
method that has been augmented in Autoflow v3.1 has achieved a higher overall pattern recognition
accuracy when compared to the prior utilized DTW technique applied in Autoflow v2.1 for this similar
clustering function.
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Table 1. Water end-use event classification accuracy comparison (v3.1 versus v2.1).

Category No. of Total
Samples

No. of Samples
for Testing

DTW Accuracy
(v2.1) (%)

Hybrid Technique
Accuracy (v3.1) (%)

Improvement
(%)

Clothes washer a 11,168 1500 86.2 93.2 7
Dishwasher a 3458 1500 91.8 94.2 2.4

Toilet a 13,852 1500 89.8 92.8 3
Evaporative cooler a 23,542 1500 86.9 88.6 1.7

Shower 5743 1500 80.4 89.4 9
Tap 45,959 1500 86.2 88.4 2.2

Bathtub 217 100 80 86 6
Irrigation 332 100 80 87 7

All categories 104,271 9200

Notes: a Mechanical water end-use event categories.

4.2. Autoflow Recognition Accuracy Using Independent Homes

To determine the true accuracy of the Autoflow v3.1 model, 30 independent home datasets were
collected. These 30 homes based in Australia were independent of the original training and testing
datasets and each water end-use event was certified by home owners.

Table 2 compares the average accuracy achieved for each category between the Autoflow v2.1
developed using DTW, HMM, and ANN and the Autoflow v3.1 (i.e., SOM + K-means + ANN + HMM)
for the independent sample of 30 homes. Water end use event pattern recognition accuracy for v3.1
ranged from 75.1% for irrigation to 90.1% for the clothes washer. Irrigation event recognition accuracy
should be treated with caution and is not considered reliable for small samples (i.e., N = 30 homes) since
this usage category has a smaller number of samples and is sporadic. As can be seen from this table,
an average accuracy of more than 85% has been achieved for mechanical categories with the maximum
of 90.1% for the clothes washer and the minimum of 85.5% for the toilet. In comparison with the
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Autoflow v2.1, the new v3.1 model has provided greater overall accuracy especially for the mechanized
water end use categories. Notable version comparison improvements include 87.6% compared to
82.1% for the dishwasher, 86.8% compared to 83.4% for the evaporative air cooler, and 85.5% compared
to 83.1% for the toilet. It is noticeable that the newly included SOM-K-means clustering algorithm has
been more effective for mechanized water end use event categorization.

Table 2. Independent data verification comparison (v3.1 versus v2.1).

Category Applied Model
Number of Home

Average Accuracy (%)
Accuracy > 90% 80–90% 70–80%

Clothes washer a 1 b 6 20 4 90.1
2 c 4 10 16 83.5

Dishwasher a 1 13 11 6 87.6
2 9 12 9 82.1

Toilet a 1 5 20 5 85.5
2 6 13 11 83.1

Evaporative cooler a 1 10 16 4 86.8
2 8 14 8 83.4

Shower
1 15 8 7 86.2
2 14 5 11 86.6

Tap 1 20 3 7 88.5
2 18 6 6 88.3

Bathtub
1 0 12 18 86.8
2 0 10 20 83.4

Irrigation 1 0 0 30 75.1 d

2 0 0 30 75.6 d

Notes: a Mechanical water end-use events, b 1-Autoflow v3.1 and c 2-Autoflow v2.1, d Irrigation water end use events
are fewer and sporadic. Therefore, it is difficult to quantify accuracy in a small sample.

Additionally, regarding water end use pattern recognition accuracy improvements, the processing
time to analyze the 30 independent residential homes water end-use events was determined, which is
shown in Figure 7. Figure 7 illustrates the processing time comparison between Autoflow v3.1 and
previous version Autoflow v2.1. Autoflow v3.1 has reduced the flow data end-use disaggregation time
compared with the previous version. As evident in Figure 7, processing time per event reduces further
with Autoflow v3.1 when there is a greater number of unclassified events. In terms of the number
of events, although Autoflow v2.1 had a good efficiency, it still cannot achieve a processing speed
of 100 events per second. In the developed Autoflow v3.1, a pattern recognition speed greater than
100 events per second could be achieved. Overall, a 20% improvement in processing time was achieved
for Autoflow v3.1 compared to Autoflow v2.1.

Testing results have indicated that the replacement of DTW by the combination of SOM with
K-means has improved recognition accuracy in Autoflow v3.1 especially for the mechanized water end
use categories. The hybrid technique was less effective for behaviorally influenced water end use
categories (e.g., shower) since there is a much greater variety in the patterns of these events. Thereby,
this makes clustering more challenging.

However, Autoflow still can be improved in future research. The developed analytical approach
was reliable for categorizing most end-use categories with the exception of irrigation, tap, and shower.
In order to significantly improve recognition accuracy of these end-use event categories, which heavily
depend on human behavior, further research on how to unobtrusively incorporate local contextual
data (i.e., residential household descriptive and behavioral information) into the Autoflow analysis
process is required. To achieve this, the development of self-learning algorithms for the incorporation
into the final analytical phase needs to be completed. Collecting and analyzing each event feature of a
much larger sample of events (e.g., different regions, dwelling type, etc.) will be the focus of future
research. The future developed version of Autoflow that includes self-learning functionality should
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complete a more accurate disaggregation of water end-use data for new residential households having
some different water using fixtures.
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5. Conclusions

The Autoflow software, which is an integrated water management system, employs smart water
metering and a series of intelligent algorithms to automate the disaggregation of high-resolution
residential water flow data into discrete water end-use events. Autoflow v3.1 presented in this
paper includes a new analysis module to the prior version that groups similar events using a hybrid
combination of customized SOM and K-means algorithm. The verification process demonstrated
that the enhanced version increased the recognition accuracy. Moreover, the study showed that the
inclusion of the SOM+K-means method provides better clustering of mechanized water end-use
events such as clothes washer, dishwasher, evaporative cooler, and toilet. Autoflow v3.1 has significant
implications for the urban water industry.

Autoflow is a commercial software, which is currently being used by various water utilities in
Australia (e.g., Yarra Valley Water, City West Water, and South-east Water). This application was
developed using MATLAB and it can be used both as a desktop and as a web application. At this
stage, the main features of the software include, but are not limited to, collecting and transferring
water consumption data through a smart water metering system as well as, analyzing the data and
producing a wide range of reports that can be accessed by various users (i.e., consumers, water utilities,
and government organizations). However, work is underway to embed this novel software as firmware
within smart meters and transfer processed water end-use data to consumers via an application on
their phone or computer.

Autoflow has significant implications for consumers and water businesses, government
departments, the metering and software industry, and the wider urban water industry. For consumers,
Autoflow provides them with an easily accessible interface, which allows consumers to monitor where
and when they are consuming water in their household. By consumers having water end use data
readily available to them on a daily basis, they will be have better understanding on their water
consumption and be able to target efficiency efforts (i.e., understand that their shower consumption
is high). For the water utility, compiled anonymized city-level water end use data can assist them
with a range of operational functions including water demand management, distribution network
infrastructure planning, post-meter leakage management, and customer engagement. Government
departments and agencies charged with urban water policy can use water end use data for designing
effective water efficiency policies (i.e., rebates, restrictions, etc.). The water metering industry are
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currently developing advanced digital meters that can record and transmit high resolution water usage
data (i.e., 0.01 L/1 s). Such metering technology facilitates widespread autonomous water end use
analysis. Autoflow software could be embedded into future smart meters firmware or alternatively
housed in a server for cloud-based processing. Based on these arguments, there is a strong need for
further research on developing intelligent water consumption analysis algorithms and associated
software such as Autoflow. The creation of such software poses significant benefits for infrastructure
planners, water demand managers, architects and developers, and policy advisors who seek to better
understand water consumption patterns.
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