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Abstract: Consistent relations between shallow landslide initiation and associated rainfall
characteristics remain difficult to identify, due largely to the complex hydrological and geological
processes causing slopes to be predisposed to failure and those processes that subsequently trigger
failures. Considering the importance of hillslope hydrology for rainfall-induced landsliding, we
develop and test a method for identifying hybrid hydro-meteorological thresholds to assess landslide
initiation potential. We outline a series of steps for using a landslide inventory in combination with
triggering rainfall and antecedent wetness to identify empirical thresholds that can inform landslide
early warning systems. The method is semi-automated but remains flexible enough to allow threshold
developers to consider data inputs and various performance metrics with different priorities for
balancing failed versus false alarms. We demonstrate the utility of our approach for two monitoring
sites near Seattle, Washington and in Portland, Oregon, USA, to develop daily bilinear thresholds
within a two-dimensional parameter space, which rely on accurate 24 h forecasts, measured recent
rainfall and in situ soil saturation. Although there were no prior landslide thresholds for Portland,
our new hybrid threshold for the Seattle area outperforms established rainfall-only thresholds for the
same region. Introducing subsurface hydrologic monitoring into landslide initiation thresholds has
the potential to greatly improve early warning capabilities and help reduce losses.

Keywords: landslide hydrology; landslide early warning; rainfall thresholds; hydrologic thresholds;
receiver operating characteristics

1. Introduction

Established approaches for identifying landslide initiation thresholds and early warning criteria
have relied largely on deriving empirical relations between rainfall characteristics and past landslide
occurrence [1–8]. These approaches typically provide easy-to-interpret graphs that can be used with
real-time rainfall monitoring and forecasts to assess the potential for widespread shallow landsliding.
However, it is increasingly recognized that these approaches may be limited because they do not
account for the hydrologic processes that govern landslide initiation. In response, there have been
attempts to incorporate the antecedent wetness through computations with cumulative rainfall prior
to the triggering storm event [8–13] or more sophisticated physics-based modeling of infiltration
processes [14–17]. In this spirit, Bogaard and Greco [18] proposed the cause-trigger conceptual
framework to develop hydro-meteorological thresholds that combine the antecedent factors that
cause hillslopes to be predisposed to failure and the actual trigger associated with landslide initiation.
In parallel, Mirus and others [19] present a proof-of-concept for the approach by demonstrating that
established rainfall-only thresholds for the Seattle area, Washington, USA, which use 3-day recent
rainfall and 15-day antecedent rainfall variables [12,20], are significantly improved by merely replacing
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antecedent rainfall with average soil saturation measured over the same interval. This specific approach
accounts for both the hydrologic cause and the recent rainfall trigger, but there are many possible
formulations for such hydro-meteorological thresholds with different variables and timescales.

Identifying this type of threshold for landslide initiation requires determining the most suitable
combination of input variables and corresponding timescales and defining the format of the threshold
equation itself. The number of state variables defines the dimension of the landslide threshold space.
For example, a threshold that relies on two variables exists in a two-dimensional (2D) parameter space
and is defined by a line. Although it would be possible to use three variables to define a threshold space
with a three-dimensional surface, or other multidimensional thresholds with even more variables, the
parsimonious 2D approach accommodates independent variables to capture both the antecedent cause
and recent triggering components of landslide initiation potential. Furthermore, lines on a 2D plot
are easy to interpret graphically by a wide range of audiences. Traditional rainfall-only approaches
typically define 2D threshold spaces by plotting average rainfall intensity against storm duration [1,6]
or cumulative precipitation during some specified recent and/or antecedent duration [12,20], then
identify a linear or exponential threshold equation relating the two variables. However, these may not
be appropriate for very short or very long events and reflect the inherent redundancy in comparing
both intensity and duration [18]. In contrast, separating the cause and trigger potentially avoids state
variables and timescales with overlapping information [18,19].

Prior thresholds that are consistent with the cause-trigger concept have employed 2D parameter
spaces with one threshold variable on the x-axis to represent water storage (e.g., antecedent moisture)
and the other variable on the y-axis to represent water input (e.g., rainfall depth) [9,10,19,21]. Selection
of timescales for the two variables requires identification of the factors relevant to the antecedent cause
and distinguishing those from the triggering event, which may be difficult to determine since both
contribute to landslide initiation. A useful threshold can ensure these conditions will be met when
clusters of landslide events are well separated from most non-landslide events within the threshold
space defined by the two variables. The degree of clustering may depend on the selected timescales for
the recent and antecedent variables. Measured variables reflecting subsurface hydrologic conditions
such as pore-water pressure, water table depth, or soil moisture define the underlying factors that
actually cause and trigger landsliding [22–25], which is reflected in various approaches that attempt to
use rainfall to calculate subsurface hydrological conditions [9–17]. However, it is difficult to quantify
the non-linear response of soil moisture to antecedent rainfall. In contrast, one major advantage
of using rainfall instead of subsurface state variables as the recent triggering variable is that this
approach facilitates integration of meteorological forecasts to allow greater lead-time in advance of
landsliding. Therefore, we explore the development of hybrid hydro-meteorological thresholds for a
given geographic area to inform landslide early warning systems.

2. Materials and Methods

We seek to streamline the complex process of identifying and optimizing hydro-meteorological
thresholds and propose a systematic method that still allows the user some flexibility to constrain
the desired time-scale and proportion of failed to false alarms. Our method uses an iterative process
with user input at key decision stages to test many possible landslide thresholds (Figure 1). Whereas
thresholds are optimized objectively with receiver operating characteristics (ROC), different threshold
variables and skill statistics used for optimization can influence the utility of said threshold for
a landslide alert system, depending on end-user objectives, requirements and data availability.
To demonstrate the implementation and utility of our approach we leverage landslide inventories
and telemetered near-real-time measurements of rainfall and hillslope hydrologic response for two
landslide prone areas in the Pacific Northwest of the United States: The Seattle-Everett railway,
Washington [24] and the City of Portland, Oregon [25]. In both Seattle and Portland, shallow
translational slope failures are a common and destructive form of landslide hazard during the winter
rainy season (November–April), but uncommon during the drier half of the year (May–October).
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Figure 1. Schematic flow-chart of iterative, semi-automated process to identify appropriate threshold 
space, defined by input variables and timescales and optimize preferred threshold equation using 
receiver operating characteristics (ROC) analysis. Blue boxes and arrows indicate user input, red 
boxes and arrows indicate automated calculations, green boxes and arrows indicate user decisions. 

2.1. Field Monitoring Sites 

The Seattle-Everett railway monitoring site (Figure 2) and the Portland Hills monitoring site 
(Figure 3) are both located in steep, densely forested terrain with a mantle of colluvial soil that is 
typically involved in shallow slope failures [24,25]. Mean annual precipitation of around 889 mm 
along the Seattle-Everett railway and around 937 mm within the City of Portland, with precipitation 
falling mainly during the winter months of December through February in the form of rainfall or 
rapidly melting snow. The average slopes at the Seattle and Portland area monitoring sites are 35° 
and 31°, respectively. Both sites include instrumentation to measure rainfall and subsurface 
hydrologic response, including volumetric water content (VWC). For the Seattle area site, five sensors 
are installed at 1.00, 1.30, 1.00, 1.10 and 1.10 m depths in soil pits spaced at regular intervals along a 
60-m long transect of a 42-m high vegetated hillslope (Figure 2). At the Portland site, 11 sensors are 
installed at 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.05, 1.20 and 1.30 m depths below the surface 
in one soil pit approximately 25 m from the hillslope crest (Figure 3). 

Comprehensive monitoring for the Seattle-Everett railway site in Mukilteo began in August 2015 
and our analysis uses monitoring data from 17 August, 2015 to 31 May 2017 [24], during which time 
a total of 17 landslide-blocking events (Table S1) were recorded along the railway below the 
monitoring site [19,20]. Initial monitoring in the City of Portland began in 2006 November, but some 
breaks in the time series prevent the rainfall and subsurface data from being used in tandem. Instead, 
our analysis uses monitoring data from 13 November 2009 to 23 January 2016 [25], during which time 
a total of 93 landslides were recorded within the City of Portland (Table S2) by the Oregon 
Department of Geology and Mineral Industries’ (DOGAMI) statewide landslide inventory database 
[26]. Further information on the two monitoring sites, including geologic site characterization, study 
area maps and instrument configuration can be found elsewhere [24,25]. Interactive maps of the 
study locations and the current rainfall and hillslope hydrologic conditions are available on the U.S. 
Geological Survey (USGS) Landslide Hazards Program monitoring sites for Seattle and Portland 
[27,28].  

Figure 1. Schematic flow-chart of iterative, semi-automated process to identify appropriate threshold
space, defined by input variables and timescales and optimize preferred threshold equation using
receiver operating characteristics (ROC) analysis. Blue boxes and arrows indicate user input, red boxes
and arrows indicate automated calculations, green boxes and arrows indicate user decisions.

2.1. Field Monitoring Sites

The Seattle-Everett railway monitoring site (Figure 2) and the Portland Hills monitoring site
(Figure 3) are both located in steep, densely forested terrain with a mantle of colluvial soil that is
typically involved in shallow slope failures [24,25]. Mean annual precipitation of around 889 mm
along the Seattle-Everett railway and around 937 mm within the City of Portland, with precipitation
falling mainly during the winter months of December through February in the form of rainfall or
rapidly melting snow. The average slopes at the Seattle and Portland area monitoring sites are 35◦ and
31◦, respectively. Both sites include instrumentation to measure rainfall and subsurface hydrologic
response, including volumetric water content (VWC). For the Seattle area site, five sensors are installed
at 1.00, 1.30, 1.00, 1.10 and 1.10 m depths in soil pits spaced at regular intervals along a 60-m long
transect of a 42-m high vegetated hillslope (Figure 2). At the Portland site, 11 sensors are installed at
0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.05, 1.20 and 1.30 m depths below the surface in one soil pit
approximately 25 m from the hillslope crest (Figure 3).Water 2018, 10, x FOR PEER REVIEW  4 of 19 

 

 

Figure 2. (a) Map of the monitoring location along the Seattle-Everett railway in Mukilteo, 
Washington, USA. Inset lidar image shows hillslope transect location (in blue); (b) Hillslope transect 
with five VWC instrument locations and depths and aerial image of the field site. Adapted from Mirus 
et al., 2016 [29]. 

 
Figure 3. (a) Map of the Portland Hills monitoring site in Portland, Oregon, USA, on shaded hillslope image 
with topographic contours; (b) Detail showing various instrument locations on aerial image. Reproduced 
from Smith et al., 2017 [25]. 

Figure 2. (a) Map of the monitoring location along the Seattle-Everett railway in Mukilteo, Washington,
USA. Inset lidar image shows hillslope transect location (in blue); (b) Hillslope transect with five VWC
instrument locations and depths and aerial image of the field site. Adapted from Mirus et al., 2016 [29].
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Figure 3. (a) Map of the Portland Hills monitoring site in Portland, Oregon, USA, on shaded hillslope
image with topographic contours; (b) Detail showing various instrument locations on aerial image.
Reproduced from Smith et al., 2017 [25].

Comprehensive monitoring for the Seattle-Everett railway site in Mukilteo began in August 2015
and our analysis uses monitoring data from 17 August 2015 to 31 May 2017 [24], during which time a
total of 17 landslide-blocking events (Table S1) were recorded along the railway below the monitoring
site [19,20]. Initial monitoring in the City of Portland began in 2006 November, but some breaks in
the time series prevent the rainfall and subsurface data from being used in tandem. Instead, our
analysis uses monitoring data from 13 November 2009 to 23 January 2016 [25], during which time a
total of 93 landslides were recorded within the City of Portland (Table S2) by the Oregon Department
of Geology and Mineral Industries’ (DOGAMI) statewide landslide inventory database [26]. Further
information on the two monitoring sites, including geologic site characterization, study area maps and
instrument configuration can be found elsewhere [24,25]. Interactive maps of the study locations and
the current rainfall and hillslope hydrologic conditions are available on the U.S. Geological Survey
(USGS) Landslide Hazards Program monitoring sites for Seattle and Portland [27,28].
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2.2. Data Inputs

Tipping bucket gages measure rainfall via the timing of small depth increments (i.e., 0.02 mm).
Whereas rapid timing of successive bucket tips recorded in a data logger may reflect increased potential
for landslide initiation, the accumulation of sufficient rainfall amounts over a fixed time or storm
duration is a more intuitive consideration that can be integrated with historical and other datasets.
This accumulation is the basis for determining rainfall intensity-duration thresholds for individual
storms [1,2,6], defining mean intensity thresholds for a given fixed interval, such as 15-min or hourly
intensities [4], or for using cumulative rainfall thresholds defined over a fixed duration, such as several
days [12,14,19,20].

To develop thresholds with predictive capabilities that can provide warning in advance of elevated
landslide potential, we calculate threshold variables 24 h before the time of interest. However, since the
influence of rainfall forecast accuracy is beyond the scope of this study, we use retroactively measured
rainfall as a proxy for accurate quantitative precipitation forecasts. Therefore, our meteorological
variable represents an accumulation of recent and imminent rainfall responsible for landslide triggering,
which we analyze over different numbers of days in duration to identify the appropriate timescales.
For example, at time t, a 3-day timescale for our meteorological variable is calculated as the cumulative
rainfall from t − 48 h through t + 24 h.

Following previous efforts [19], we use saturation at time t for the hydrologic variable, which we
calculate by normalizing VWC with porosity for each probe:

Saturation(t) =
VWC(t)
porosity

(1)

where we assume that the porosity at each probe is equivalent to the maximum observed VWC that
coincides with simultaneous observations of positive pore-water pressures [24,25]. Measured hydraulic
properties from the Seattle area site [29] suggest this assumption regarding porosity is reasonable. We
then take the average saturation over all depths and locations within each study site to calculate the
antecedent saturation variable, which we again average over different numbers of days in duration to
identify appropriate timescales. Averaging over a fixed duration is equivalent to applying a moving
average filter to dampen high-frequency noise that might otherwise inadvertently trigger failed or
false alarms.

Unlike rainfall, saturation is not readily forecasted and yet rainfall influences saturation. To avoid
overlapping information between these respective meteorological trigger and hydrologic cause
variables, we maintain the previously demonstrated approach for calculating antecedent saturation
during the specified time interval prior to the recent rainfall accumulation [19]. For example, at time
t, a 3-day timescale for our antecedent saturation variable paired with a 3-day cumulative rainfall
variable (2 days prior and 1 day forecasted) is calculated as the average saturation from t − 120 h.

2.3. Threshold Formats, Variables and Timescales

For this study, we build upon the preliminary proof-of-concept for the Seattle area, which used
a 2D data plot of 3-day recent rainfall and 15-day antecedent saturation to identify thresholds using
a simple linear equation optimized with the threat score statistic [19]. Landslide events clustered
in the upper right corner of the threshold space, indicating that the simple linear threshold can be
outperformed by alternative formats, such as bilinear thresholds (Figure 4a). Here, we systematically
explore alternate timescales for both the rainfall and antecedent saturation variables, compare
optimized thresholds with bilinear formats and examine the potential utility of incorporating accurate
24 h rainfall forecasts to provide greater lead-time in hazard assessments.
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on which one or more landslides occur (Tables S1 and S2; red ‘x’ in Figure 4a) and negative events 
are days when no landslides occur (blue ‘x’ in Figure 4a); true events are days on which either positive 
or negative events are correctly predicted by the threshold (red ‘x’ above the thresholds and blue ‘x’ 
below the threshold in Figure 4a) and false events are incorrect predictions (blue ‘x’ above and red 
‘x’ below the thresholds). For any given threshold, we calculate the confusion matrix by examining 
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Figure 4. (a) Hydro-meteorological threshold space defined by 15-day antecedent saturation vs. 3-day
recent-imminent rainfall (2-day recent, 1-day forecasted) totals for the Seattle-Everett railway, with
comparison of simple linear (purple) and bilinear (yellow) threshold formats; (b) Example ROC plots
showing the true positive rate (TPR) and false positive rate (FPR) with colored stars for the simple linear
(yellow) and bi-linear (purple) thresholds. Plot also illustrates a hypothetical threshold development
and the concept of identifying the maximum ROC curve based on clusters of points from possible
thresholds tested and shows the utility of AUC as an optimization metric; dashed black line represents a
random guess model (AUC = 0.5), blue (AUC = 0.67), green (AUC = 0.75) and orange lines (AUC = 0.95)
represent successive improvements in threshold formulation and predictive accuracy.

Previous analysis of rainfall-only thresholds for the Seattle area found modest improvements in
performance using moving intervals with hourly data inputs and threshold calculations rather than
daily fixed intervals [20]. However, this prior analysis relied on precise landslide timing information
for the Seattle-Everett railway (Table S1), whereas the Portland inventory records only the date of
landslide occurrence (Table S2). Although our monitoring records at 15-min intervals [24,25], we follow
prior precedent of optimizing daily thresholds with fixed intervals [12,19] to maintain consistency
with the minimum temporal resolution of our landslide inventories.

2.4. Threshold Optimization Metrics

We tested our possible threshold formulations and optimal threshold equations using ROC
analysis [30,31] with different optimization metrics. First, we computed a confusion matrix, which
tallies the number of: true positives (TP), which are correct predictions of landsliding; false positives
(FP), which are incorrect predictions of landsliding when no landslides are reported (i.e., false alarms);
true negatives (TN), which are correct predictions of no landsliding; and false negatives (FN), which
are failures to predict the occurrence of landsliding (i.e., failed alarms). We calculate and evaluate
thresholds using a fixed interval between 0:00–23:59 local time, so positive events are days on which
one or more landslides occur (Tables S1 and S2; red ‘x’ in Figure 4a) and negative events are days when
no landslides occur (blue ‘x’ in Figure 4a); true events are days on which either positive or negative
events are correctly predicted by the threshold (red ‘x’ above the thresholds and blue ‘x’ below the
threshold in Figure 4a) and false events are incorrect predictions (blue ‘x’ above and red ‘x’ below the
thresholds). For any given threshold, we calculate the confusion matrix by examining each day in the
record and determining whether the day falls under the TP, FP, TN, or FN category.

Using values from the confusion matrix, we then calculate the true positive rate (TPR) and false
positive rate (FPR) metrics as:

TPR = TP/(TP + FN) (2)
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and
FPR = FP/(FP + TN). (3)

A perfect model with no false alarms or missed alarms will produce TPR equal to unity and
FPR equal to zero, but generally landslides are not perfectly predicted so there is a trade-off between
increased TPR and associated increases in FPR. For example, for the bilinear threshold in Figure 4a a
lower 3-day rainfall value would correctly predict a few more landslide days, but at the expense of
numerous additional false alarms. This trade-off is illustrated quantitatively by the difference between
the optimized linear and bilinear thresholds and hypothetical ROC curves in Figure 4b. The ROC
curve plots the TPR versus FPR metrics for a suite of possible thresholds with a given format and set
of axis variables. The total area under the curve (AUC) is a metric that provides insights on the overall
utility of a given formulation of the threshold space, which reflects the balance between TPR and FPR
for all the possible combination of values for the two threshold variables. A higher AUC indicates the
formulation can achieve higher TPR relative to the associated FPR; with a perfect model, AUC is equal
to unity and for a model equivalent to random guessing, the AUC is equal to one-half.

Typically, ROC curves are obtained by altering one variable that changes the threshold and
performing ROC analysis on each unique threshold. Here, we depart somewhat from standard
procedure by systematically altering two variables for the bilinear thresholds in combination, which
results in a cluster of points within the ROC space, rather than a single unique curve. Many points
may share the same FPR but display varying TPRs (or vice versa). As there is no benefit in thresholds
with lower TPRs for a given FPR (or higher FPRs for a given TPR), we create the maximum (or optimal)
ROC curve by maximizing TPR and masking all other less-optimal results. This maximum curve
reveals the highest possible AUC value and reflects the best subset of threshold equations within a
suite of thresholds for a given variable space. Subsequently, plotting the maximum ROC curves and
calculating the corresponding AUC values for multiple suites of thresholds allows a comparison of
the relative performance of competing threshold formulations (Figure 4b). However, ROC curves
can intersect, so higher AUC does not always mean that the optimal threshold exists within that
formulation of variables; this must be determined by the desired balance between TPR and FPR,
among other considerations, such as lead-time needed to take effective action. To identify the most
useful threshold, the developer must select a statistical metric for optimization (Figure 1).

Common statistical metrics for landslide threshold optimization include threat score, precision,
true skill statistic and optimal point (or radial distance) criteria [4,7,32], which are calculated as:

Threat score =
TP

TP + FN + FP
(4)

Precision =
TP

TP + FP
(5)

True Skill Statistic = TPR − FPR (6)

Radial Distance =

√
(FPR)2 + (TPR − 1)2 (7)

For a perfect model, the threat score, precision and true skill statistic will all equal to unity,
whereas the optimal point is found when radial distance from a point representing a perfect threshold
is zero. Therefore, one seeks to maximize threat score, precision and true skill statistic and minimize
radial distance. Since a single threshold holding the optimal value for all skill metrics is highly unlikely,
the choice of a metric for optimization will determine the degree to which the resulting threshold is
optimistic (i.e., averse to failed alarms) or pessimistic (i.e., averse to false alarms). When optimized
with threat score and precision, landslide thresholds are typically quite pessimistic [19,32], while the
true skill statistic and optimal point optimizations can result in somewhat more optimistic or balanced
thresholds [7,32].
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2.5. Iterative Threshold Development

We begin with an informed initial estimate of the range of appropriate threshold variables and
timescales (Figure 1, step 1), which can be based on the user’s knowledge of landslide occurrence
within their study area (e.g., Figure 4a). The automated analysis then tests multiple alternate threshold
spaces based on user-defined discretization, which slightly alter the timescale for the x- and y-axis
components. For each of the variable timescales and formulations tested, each possible threshold
is evaluated by (1) calculating the confusion matrix, which is composed of the number of TP, FP,
FN and TN events; (2) using the confusion matrix to calculate the TPR, FPR and other statistics
(Equations (2)–(7)) for each possible threshold; (3) plotting the maximum ROC curve for each threshold
formulation, which takes the highest combination of FPR and TPR from the cluster of possible points
(Figure 4b); and (4) calculating the AUC for the maximum ROC curve. Based on these outputs, all the
thresholds tested are automatically queried to identify which possible equation exhibits the best score,
depending on the user’s preferred skill statistic.

Through testing multiple combinations of timescales for the two variables and examining the
ROC curves, AUC values and calculated skill metrics, we can quantitatively define threshold accuracy
and the trade-off between failed and false alarms (Figure 1, step 2), then qualitatively assess the utility
and limitations of the threshold for decision making (Figure 1, decision stage). This is a rather complex
decision, since in some cases higher FPR is acceptable in exchange for high TPR and in other cases
it is not. Our method includes enough flexibility that the threshold developer can consult with their
target audience about the appropriate trade-off between failed and false alarms. If the threshold is not
sufficiently accurate to meet the user requirements, the process can be repeated (Figure 1, step 1) with
different variable inputs, formulations, timescales, discretization, or skill statistics for optimization,
until reaching an acceptable outcome (Figure 1, step “done”). However, it should be noted that
since the process is automated, the primary influence exerted by the threshold developer is through
modifying either the discretization (i.e., dictates the total number of thresholds tested per formulation),
threshold formulation (i.e., equation format), or the skill statistic (i.e., criteria used for identifying the
optimal threshold). Skill statistics have the greatest impact on the trade-off between failed and false
alarms, followed closely by threshold formulation.

3. Results

3.1. Seattle Area Thresholds

For the Seattle area dataset, we use the threat score (Equation (4)) to identify a preferred threshold
space of 3-day cumulative rainfall (P3 = 1 day of imminent rainfall and 2 days of recent rainfall) with
1-day of antecedent saturation (S1), which produces the bilinear threshold with the highest threat
score of 0.44, TPR of 0.71 and FPR of 0.02 (Table 1, Figures 5a and 6a). We then repeat the process but
optimize with the optimal point statistic instead (Equation (7)), to produce a very different threshold
space with a 2-day rainfall variable (P2) and 9-day antecedent saturation (S9) and the lowest radial
distance of 0.13, TPR of 0.94 and FPR of 0.11 (Table 1, Figures 5b and 6b). The relative impact of
alternative timescales and threshold values on the different skill statistics (Equations (4)–(7)) and
optimal thresholds is illustrated with selected iterations from the automated ROC analysis (Table 1;
Figure 5). The ROC curves generated for both the threat score and optimal point statistics show that
longer timescales for the recent rainfall and antecedent saturation exhibit slightly higher AUC values
for the optimal threshold format (Figure 5) indicating that the trade-off between failed alarms (FN)
and false alarms (FP) is slightly more favorable at shorter timescales.
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Table 1. Selected iterations of different threshold formats for the Seattle-Everett railway, illustrating
improved performance for different skill metrics. Skill metric used for optimization is in bold text,
optimal threshold equation and statistics for the two different optimizations are italicized.

Timescale 1 Equation TPR Threat
Score Precision True Skill

Statistic
Radial

Distance

P10/S10 P10 > 69.8, S10 > 0.82 0.71 0.32 0.38 0.67 0.30
P5/S10 P5 > 39.3, S10 > 0.84 0.64 0.34 0.42 0.62 0.35
P3/S1 P3 > 27.1, S1 > 0.86 0.71 0.44 0.55 0.69 0.29

P10/S10 P10 > 70.1, S10 > 0.57 0.82 0.25 0.26 0.76 0.19
P5/S10 P5 > 25.2, S10 > 0.63 0.88 0.15 0.15 0.75 0.18
P2/S9 P2 > 11.1, S9 > 0.64 0.94 0.18 0.18 0.83 0.13

1 P10: 10-day cumulative precipitation variable; S10: 10-day antecedent saturation variable.
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3.2. Portland Thresholds

For the City of Portland dataset, we use the threat score (Equation (4)) to identify an optimal
bilinear threshold with 1-day cumulative rainfall (i.e., 24 h of prediction) and 3-day antecedent
saturation, which achieved a threat score of 0.68, a TPR of 0.53 and a FPR of 0.01 (Figures 7a and 8a).
Again, we repeat the process, but optimize with the optimal point statistic instead (Equation (7)), to
produce a very different threshold space with a 3-day rainfall variable (P3) and 10-day antecedent
saturation (S10) and a radial distance of 0.13, TPR of 0.90 and FPR of 0.09 (Figures 7b and 8b). Similar
to the results of our analysis for the Seattle area, the relative impact of alternative timescales and
threshold values on the different skill statistics (Equations (4)–(7)) and optimal thresholds is illustrated
with selected iterations from the automated ROC analysis (Table 2; Figure 7). Although timescales are
shorter for the threat score statistics, longer timescales are identified to minimize radial distance.Water 2018, 10, x FOR PEER REVIEW  10 of 19 
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Table 2. Selected iterations of different threshold formats for the City of Portland, illustrating improved
performance for different skill metrics. Skill metric used for optimization is in bold text, optimal
threshold equation and statistics for the two different optimizations are italicized.

Timescale 1 Equation TPR Threat
Score Precision True Skill

Statistic
Radial

Distance

P10/S10 P10 > 123, S10 > 0.68 0.42 0.29 0.49 0.40 0.58
P5/S10 P5 > 76.0, S10 > 0.69 0.56 0.35 0.50 0.53 0.45
P1/S3 P3 > 21.0, S1 > 0.75 0.68 0.53 0.71 0.67 0.32

P10/S10 P10 > 61.0, S10 > 0.68 0.89 0.20 0.21 0.75 0.18
P5/S10 P5 > 39.0, S10 > 0.69 0.87 0.27 0.28 0.78 0.16
P2/S9 P2 > 24.0, S9 > 0.70 0.90 0.29 0.30 0.81 0.13

1 P10: 10-day cumulative precipitation variable; S10: 10-day antecedent saturation variable.

4. Discussion

4.1. Comparing Operational Utility of Competing Thresholds

The skill metrics used for optimization have a substantial impact on the TPR and FPR, as well as
on the timescales of the threshold spaces (Tables 1 and 2, Figures 6 and 8), even though the maximum
ROC curves share relatively similar shapes and comparable AUC values (Figures 5 and 7). However,
it is not immediately clear what these skill metrics mean in terms of utility for landslide forecasting.
These somewhat abstract concepts can be illustrated more concretely through an example of how
two competing hydro-meteorological thresholds compare to the prior rainfall only threshold [20] for
an operational application along the Seattle-Everett railway (Figure 9). A known deficiency of the
rainfall only thresholds is the prevalence of sustained false alarms that occur well after the landslide
threat has subsided [19,20], which is illustrated for the P3/P15 threshold following landslide events in
January and March 2016 as well as in February and March 2017. Rainfall-only thresholds also exhibit
frequent false alarms early in the rainy season (October and November) before hillslopes have become
sufficiently wet to fail. The hydro-meteorological thresholds optimized with optimal point and threat
score (Table 1) both reduce these two systematic varieties of false alarms. The P2/S9 threshold is
clearly more averse to failed alarms and therefore misses the fewest landslide events, but also exhibits
false alarms during some extended periods of threshold exceedance following most landslide events
as well as later in the landslide season (April and May). Conversely, the P3/S1 threshold captures the
primary clusters of mid-season landslide events (January through March), but misses the early and
late season landslides (December and April, respectively).
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2017, though it includes a somewhat delayed forecasts of the last two landslides. 

Figure 9. Time-series of landslide occurrence and threshold exceedance during two sequential landslide
seasons (2015–2016 and 2016–2017) for the Seattle-Everett railway, with competing thresholds P2/S9
(optimal point) and P3/S1 (threat score) optimized in this study (Table 1) and the previously established
P3/P15 (rainfall only), which was also optimized with threat score [20].

The differences between threshold performance can be examined in greater detail by comparing
two different landslide-inducing storm sequences. During 21–28 January 2016, particularly heavy
precipitation contributed to widespread landsliding across the greater Puget Sound region of
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Washington, which included multiple landslides along the Seattle-Everett railway (Figure 10a–c).
One year later in February 2017, less extensive landsliding occurred along the railway (Figure 10d–f).
Time-series of the precipitation and saturation input data, calculated threshold variables and threshold
exceedance illustrates how different timescales influence the threshold predictions. The P3/S1 (threat
score) threshold is quite precise for the heavy rainfall and widespread landsliding event in January
2016, though the P2/S9 (optimal point) threshold also performs quite well; both correctly illustrate
the reduction in landslide hazard during the lull between storms on 25–26 January 2016, whereas the
P3/P15 (rainfall only) threshold maintains an extended duration of threshold exceedance. In February
2017, the P3/P15 threshold misses the first two landslides but captures the last one. The more
conservative P2/S9 captures all three landslides, but also includes an extended period of false alarms
earlier in the month. The more pessimistic P3/S1 captures only the first landslide on 9 February 2017,
though it includes a somewhat delayed forecasts of the last two landslides.
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Figure 10. Time-series for the greater Seattle area illustrating the observed landslide occurrences
along the railway relative to 15-min resolution, during the widespread landsliding event in January
2016: (a) measured precipitation and saturation [24]; (b) exceedance of competing landslide
thresholds optimized with the optimal point (P2/S9) and threat score (P3/S1) for this study
(Table 1) and the established rainfall only threshold [20] optimized with threat score (P3/P15); and
(c) hydro-meteorological threshold variables with different timescales. Similar time-series during a less
widespread landsliding sequence in February 2017 are shown in (d–f).
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These differences in predictive capabilities of the two hydro-meteorological thresholds reflect not
only the threshold equations, but also the different timescales of the variables attributed to the cause
and trigger components. The S1 variable is a slightly delayed and smoothed signal of the soil moisture
dynamics, whereas the S9 variable fluctuates more gradually and reflects a longer-term average of
subsurface storage. In contrast, the P2 variable more closely tracks precipitation and the P3 variable
retains some memory of prior rainfall events. Although these thresholds are empirical, the different
timescales with varying degrees of predictive utility highlights the challenge of distinguishing between
cause and trigger from a process-based perspective. Still, comparison of the 15-min input data with the
corresponding threshold variables suggests that the shorter timescale P3/S1 threshold more closely
tracks observed hydrologic response and therefore may better reflect the underlying processes of
rainfall-triggered landslide initiation.

4.2. Dual Alert Systems, Threshold Exceedence and Landslide Occurrence

Although the threat score thresholds include very few false alarms at the expense of some failed
alarms, the optimal point thresholds include very few failed alarms at the expense of quite a few false
alarms. A threshold with a reasonably good threat score tends to achieve a good precision score as well,
but this typically corresponds with lower performance for the true skill statistic and radial distance
(e.g., P1/S3 threshold for Portland in Table 2). Similarly, good performance for the true skill statistic
and radial distance generally corresponds to a lower threat score and precision (e.g., P2/S9 threshold
for Seattle in Table 1). These nuances highlight the role of an informed developer in simultaneously
considering data availability, appropriate variables and timescales, threshold equation formats and
the intended end-user of the landslide threshold. For example, for both Seattle and Portland, there
are minimal differences between the ROC curves and AUC values for the preferred threshold spaces
identified using the threat score (Figures 5a and 7a) with their counterparts identified with the optimal
point (Figures 5b and 7b). Thus, an informed and observant developer may choose to use the same
threshold space for a multi-tiered alert system [14,33], with one threshold that is more pessimistic and
one that is more balanced.

The example shown in Figure 11 includes such dual alert systems for both sites. The threshold
spaces are defined by variable timescales identified using the threat score optimization, but include
two bilinear thresholds, one optimized with threat score and the other with optimal point. For the
Seattle-Everett railway (Figure 11a), this resulted in a P3/S1 space with substantial differences
between thresholds optimized for threat score (0.44) and optimal point (0.14). In contrast, a dual
alert system for Portland (Figure 11b) also uses the P3/S1 space but includes relatively minor
differences between thresholds optimized with threat score (0.53) and optimal point (0.13). Even though
the 3-day recent-imminent rainfall and 1-day antecedent saturation timescales for these threshold
spaces were optimized with the threat score, there were negligible changes in the radial distances
relative to the thresholds optimized with the optimal point (radial distance of 0.13 for both sites)
(Tables 1 and 2). For perspective on the rate of threshold exceedance and utility of the predictions for
the Seattle area, landslides occurred on 2.6% of days (Table S1) and the dual thresholds optimized
with threat score and optimal point were exceeded 3.4% and 13.2% of days, respectively; in Portland,
landslides occurred on 2.5% of days (Table S2) and the dual thresholds were exceeded 3.8% and
12.0% of days. Implementation of this dual alert system could provide an easy-to-interpret tool to
communicate when landslides are unlikely, when they are possible and when they are probable
(Figure 12).
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Figure 12. Qualitative example of an operational implementation of the dual hydro-meteorological
threshold plots, showing a general audience when landslides are unlikely, possible and probable.
Whereas the late January 2016 events in Seattle would have plotted in the highest hazard zone, the
early February 2017 events would likely have plotted in the moderate hazard zone (see Figure 10).

4.3. Improvements over Established Rainfall-Only Approaches

Although there are no established landslide thresholds for Portland, recently developed
rainfall-only thresholds for the Seattle area were optimized using threat score [19,20]. The original
Recent-Antecedent (RA) cumulative rainfall threshold [12] achieved a threat score of 0.09 using
3-day recent cumulative rainfall and 15-day antecedent cumulative rainfall as threshold axes. Further
objective reanalysis of the RA threshold used the same timescales and threshold space and simple linear
equation formulation, but with hourly moving-interval exceedances rather than daily fixed-interval
exceedances, which led to a marginally improved threat score 0.11 [20]. Replacing the 15-day
antecedent rainfall variable with 15-day antecedent saturation for daily fixed intervals led to a further
improved threat score of 0.21 [19]; preliminary exploration of the bilinear threshold with the same
threshold variable timescales resulted in a threat score of 0.30 [19]. Here, we use the bilinear threshold
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formulation and the same daily fixed-interval, but objectively explore alternative timescales for the
antecedent soil saturation variable as it relates to landslide initiation. Furthermore, we adopt a
recent-imminent rainfall variable with 24 h of accurately predicted rainfall added to prior observed
rainfall to reflect the utility of weather forecasts in landslide early warning. Using these methodological
developments, we identify optimal threshold variable timescales as 3-day cumulative recent-imminent
rainfall and 1-day antecedent saturation, which results in a considerably improved threat score of 0.44
(Table 1). We also explore other threshold optimization metrics for both Seattle and Portland, which
identifies shorter optimal timescales of antecedent saturation and leads to minor decreases in threat
score, but considerably better optimal point scores and much higher true positive rates (Tables 1 and 2).
The practical utility of these improvements is shown in Figures 9 and 10.

Prior objective testing of rainfall timescales for the Seattle area suggests that 15-day rainfall history
is a suitable proxy for antecedent soil saturation prior to a potential landslide-triggering storm [20].
However, we acknowledge that retaining the same 15-day timescale for antecedent saturation [19]
lacked any physical meaning or significance. Soil saturation reflects the processes of infiltration,
drainage and evapotranspiration that respond dynamically to variable climatic forcing conditions and
therefore a shorter timescale might be expected. The differences in timescale of the 15-day antecedent
rainfall variable explored previously [12,20] and the considerably shorter durations of the antecedent
saturation variables identified objectively in this study reflect the improvements in constraining the
hydrological processes relevant to landslide initiation. Although it is tempting to draw inferences from
these differences in timescale, it is also important to remember that the hydro-meteorological thresholds
explored in this study are empirical and reflect an average of dynamic hydrological processes and the
corresponding impact on slope stability. Still, this suggests that physics-based modeling of hydrologic
response for shallow landslide hazard assessment in these regions could focus on 3-day event-based
simulations with appropriate initial conditions.

4.4. Versatility of the Hydro-Meterological Threshold Approach

In many regions where rainfall-induced shallow landsliding is a concern, the antecedent saturation
is the predisposing factor whereas the actual landslide initiation is associated with hydrologic response
to the recent and incoming rainstorm. Our approach for hydro-meteorological threshold identification
and optimization is guided by this cause-trigger concept [18]. Our proposed method is semi-automated
and not completely objective, but this is by design. We remain convinced that selection of the
appropriate threshold variables and timescale as well as the preferred optimization metric should be
an informed and conscious choice by the threshold developer. This subjective component not only
prevents unreasonable threshold spaces from being selected automatically, but it also allows some
degree of discretion regarding the balance between the reliability of certain data inputs and rainfall
forecasts, the accuracy of competing threshold formulations and ratio of failed to false alarms.

Here, we explore different threshold timescales and formats by building off prior usage of
soil saturation for the antecedent hydrologic cause component and rainfall as the recent triggering
variable [19]. However, our proposed protocol is not strictly limited to the dual rainfall-saturation
variables. We do advocate using rainfall to represent the meteorological triggering factor, since weather
forecasts can be leveraged to incorporate imminent rainfall conditions into greater lead-times, but a
variety of subsurface monitoring data could represent the predisposing hydrological factors. Saturation
is an intuitive variable and can be derived using a range of measurement techniques, including point
measurements with reliable low-cost VWC sensors [23–25] or satellite remote sensing estimates of soil
moisture [34]. We acknowledge that variably saturated pore-water pressures are more closely linked
to the process of landslide initiation [14–18], but it is also a more expensive and difficult variable to
measure continuously [22,24,25].

For our datasets, landslide events typically clustered in the upper right corner of the various
threshold spaces (Figures 4, 6, 8 and 11), which further supports the use of bilinear thresholds rather
than the simple linear thresholds used previously [19,20]. However, one could also employ more



Water 2018, 10, 1274 16 of 19

complex exponential or polynomial functions, such as those used for intensity-duration thresholds [11].
We found that prior improvements from updating the threshold format from simple linear to
bilinear [19] were similar when incorporating accurate 24 h forecasts into the 3-day cumulative
rainfall variable (Figure 4a). However, this may not be universally true for all geographic settings
or landslide databases, or even for different threshold variables. If landslide events do not plot
in a cluster in the corner of a selected threshold space, it is possible that other threshold formats
may be more appropriate. Furthermore, comparison of the thresholds optimized with threat score
(Figures 5a, 6a, 7a and 8a) with those optimized using the optimal point (Figures 5b, 6b, 7b and 8b)
illustrates how the metric influences the timescales and equations for optimal thresholds and their
practical utility for landslide early warning systems (Figures 9 and 10).

4.5. Avenues for Further Investigation and Improvements

For the Seattle area, a few off-season landslides occurred when antecedent saturation values were
relatively low (Figure 6), but using the present saturation instead of antecedent saturation to represent
the cause variable might have produced more accurate thresholds. This issue may reflect the inherent
heterogeneity within a given geographic area, where the onset of strong seasonal dynamics varies
between neighboring hillslopes depending on vegetation, slope aspect, soil properties and even human
activities. For example, in a similar location along the Seattle-Everett railway, observations indicate that
soil moisture and pore pressures respond differently to early versus mid-season storms [23]. Similarly,
observations from additional monitoring sites suggest that recent landslides wet-up earlier in the
winter rainy season and drain slower in the dry season relative to neighboring stable hillslopes [35].
Thus, they are predisposed to reactivation during larger early or late season storms that do not initiate
new failures on adjacent hillslopes. This presents an issue for hydrologic threshold development,
which could be addressed through a distributed assessment of soil moisture that reflects relevant types
of variability within the area of interest.

Comparison of our two cases from the Seattle-Everett railway and the City of Portland are
complicated by differences in the instrumentation configuration and duration of the datasets, as well
as other differences between the two inventories (e.g., only railway blocking events compared to all
landslides within a city limit). The Portland dataset includes several days with numerous landslides
(Table S2), which are obviously very important from an early warning perspective. The inventory of
landslides blocking the Seattle-Everett railway includes only a few multiple landslide days (Table S1)
and most notably the period in late January 2016 (Figure 10a–c) when heavy rainfall across the Puget
Sound area produced widespread landsliding. The Portland site includes a combination of deeper and
shallower probes installed at one location (Figure 3), whereas the site along the Seattle-Everett railway
includes a hillslope transect of probes all installed at or near the expected failure depth (Figure 2). The
different instrument configurations between the two sites [24,25] likely has an intertwined impact
on both the threshold formulations and their performance, but we were not able to address this
level of complexity. Instrument arrangement and placement is often constrained by site access,
vegetation, soil depth and budgetary considerations, which complicates the process of designing
optimal instrument networks for informing hydro-meteorological thresholds. Furthermore, the longer
duration of monitoring and greater number of landslides for Portland result in a smoother ROC curve
and decrease the impact of individual landslide days. Further testing of our approach with more recent
landslides and monitoring data from these sites or other long-term datasets with different instrument
configurations could help inform improved network design for future monitoring sites.

The accuracy of quantitative precipitation forecasts can influence threshold predictions in advance
of an incoming storm [14]. However, the uncertainty in rainfall forecasts may vary from storm to
storm and from location to location, which was not the focus of this study. Instead we rely on the
assumption that measured rainfall is equivalent to the 24 h forecast, which follows the precedent of our
operational implementation of existing USGS rainfall-only thresholds for Seattle, namely we assume
that 24 h rainfall forecasts from the U.S. National Weather Service (NWS) [36] are sufficiently accurate
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to incorporate directly into the recent-rainfall threshold variable [27]. In contrast, incorporating
longer-term quantitative precipitation forecasts (e.g., 72 h) into any type of landslide threshold should
weigh the trade-off between the likely impact of forecast uncertainty on threshold accuracy against the
possible benefits of greater lead-times for warnings. Such an assessment is complicated by considerable
variation in forecast accuracy depending on the study area, type of storm, and timescale.

Theoretically, timescales of mixed-number daily values (e.g., 2.5 days) can be selected for threshold
input variables to further improve our thresholds for Portland and the Seattle area, but we observed
relatively incremental changes in threshold performance metrics with one-day (24 h) changes in
both threshold variables for these two sites. Therefore, we opted to consider daily intervals for our
threshold timescales, since this integrates well with NWS quantitative precipitation forecasts and is
likely more intuitive for end-users to interpret than fractional days of cumulative rainfall or antecedent
saturation. On the other hand, relatively small changes in the ROC curves can still impact the AUC
and other metrics due to the high number of non-landslide days (i.e., negative events). Depending
on the availability of detailed forecasting and precise landslide timing information and the intended
target audience for a landslide warning system, threshold developers using our method could explore
timescales that include fractions of days (or hours) to identify a more objectively optimized threshold
with slightly better predictive capabilities at the expense of less intuitive inputs. Again, the flexibility
of our semi-automated approach would allow threshold developers to make their own judgments
regarding these types of trade-offs.

5. Conclusions

Following the cause-trigger concept of hydro-meteorological thresholds for shallow landsliding
and prior work to explore specific rainfall-saturation thresholds using real-time monitoring, we
propose a general method to identify and optimize such thresholds that can inform warning systems
by leveraging monitoring data and rainfall forecasts. We explored alternative durations of accumulated
recent plus 24 h imminent rainfall as the meteorological triggering threshold variable, which we use
in combination with the antecedent soil wetness conditions as the hydrologic cause variable. Using
examples from field monitoring sites and landslide inventories in the Seattle area, Washington and
City of Portland, Oregon, we illustrate how the method could be implemented for defining thresholds
with different priorities. The results include development of new landslide thresholds that can be used
for situational awareness in Portland and further improvements to the rainfall-only threshold already
used by emergency planners and citizens in the Seattle area. These sets of thresholds are distinct from
one another, reflecting in part the differences in hydrological conditions that favor the predisposing
and triggering factors for landsliding in these two distinct areas of the Pacific Northwest, USA. Our
approach for developing new thresholds could be useful over a wide range of settings where the cause
of shallow landsliding can be attributed to the antecedent wetness and the triggering is associated
with a storm event, particularly when rainfall forecasts are sufficiently accurate. These improvements
in landslide early warning from hydro-meteorological thresholds can ultimately help reduce losses
resulting from landslides.
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