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Abstract: Precipitation is scarce and evaporation is intense in desert areas. Groundwater is used as the
main water source to develop agriculture in the oases. However, the effects of using groundwater on
the ecological environment elicit widespread public concern. This study investigated the relationship
between soil salinity and groundwater characteristics in Yaoba Oasis through in situ experiments.
The relationship of the mineral content, pH, and main ion content of groundwater with soil salt was
quantitatively evaluated through a gray relational analysis. Four main results were obtained. First,
the fresh water area with low total dissolved solid (TDS) was usually HCO3

− or SO4
2− type water,

and salt water was mostly Cl− and SO4
2−. The spatial distribution of main ions in groundwater

during winter irrigation in November was basically consistent with that during spring irrigation in
June. However, the spatial distribution of TDS differed in the two seasons. Second, soil salinization in
the study area was severe, and the salinization rate reached 72.7%. In this work, the spatial variability
of soil salinization had a relatively large value, and the values in spring were greater than those
in autumn. Third, the soil in the irrigated area had a high salt content, and the salt ion content
of surface soil was higher than that of subsoil. A piper trilinear diagram revealed that Ca2+ and
K+ + Na+ were the main cations. SO4

2−, Cl−, and HCO3
− were the main anions, and salinization soil

mainly contained SO4
2−. Fourth, the changes in soil salt and ion contents in the 0–10 cm soil layer

were approximately similar to those of irrigation water quality, both of which showed an increasing
trend. The correlation of surface soil salinity with the salinity of groundwater and its chemical
components was high. In summary, this study identified the progress of irrigation water quality in
soil salinization and provided a scientific basis for improving the oasis ecosystem, maintaining the
healthy development of agriculture, managing oasis water resources, and policy development. Our
findings can serve as a reference for other, similar oasis research.

Keywords: soil salinization; groundwater hydration; gray correlation analysis; Yaoba Oasis

1. Introduction

Soil salinization is one of the main threats to land desertification that frequently occurs in areas
with drought climate [1–4]. Soil evaporation is intensive, and surface water contains high-solubility
salts [5,6]. These conditions are caused by regional water and salt movements due to the effects of
climate, topography, hydrogeology, and unreasonable human factors. Yaoba Oasis in Inner Mongolia
is located in the northwestern desert region of China; its surface water resources are scarce, and its
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main supply source is the groundwater of Helan Mountain [7–10]. With strong evaporation, water
diversion and irrigation during agricultural production increase the underground water level and
cause it to exceed the critical depth, resulting in continuous water evaporation and considerable salt
surface accumulations; soil salinization is also widespread in these areas [11,12]. Land salinization
aggravates soil conditions and causes oasis loss and desertification [13]. These problems seriously
affect the sustainable development of oases and have become key issues in internationalization [14–16].

Numerous authors have conducted studies on the relationship between soil salinization and
groundwater in different regions. The methods they used involved a model simulation of groundwater
dynamic effects on soil salt migration [17–21]. An empirical model was established in a previous
work to quantitatively analyze the relationship between groundwater depth and soil salt content [22].
The corresponding relationship between groundwater and soil salinization was analyzed in another
study by comparing the spatial distribution characteristics of groundwater depth, mineralization,
and soil salt content [23–25]. Bing et al. confirmed that freezing and thawing are the controlling
mechanisms of soil water and salt redistribution and indicated that soil salt redistribution is due to
the combined action of convection, diffusion, and numerous chemical and physical processes [26].
Xia et al. established an empirical model to quantitatively analyze the relationship of groundwater
depth and mineralization with soil salt content; they measured the salt content and salinity of different
soil profiles under different underground water levels [27]. Abliz et al. analyzed the relationship
between groundwater and soil salinization, and their results showed that the salinity of groundwater
increases with decreasing groundwater depth [28]. Haj-Amor et al. investigated the driving factors of
soil salinization to evaluate the impact of groundwater on soil salinization and indicated that increased
soil salinity and shallow groundwater seriously threaten the long-term sustainability of irrigated
agriculture [29]. Wichelns et al. evaluated the effect of groundwater on soil salinization by setting
different groundwater conditions in simulation experiments [30].

Mathematical models have recently been used to quantitatively analyze the relationship between
groundwater depth and salinity. Soil salinity has elicited the attention of many researchers. Xu et al.
evaluated groundwater chemistry based on monitoring data by using comprehensive quantitative
methods, such as statistics, principal component analysis, and gray correlation analysis [31].
Libutti et al. applied a balance model of water and salt with a representative soil profile to assess
different planting strategies [32].

Current research on the effect of groundwater on soil salinity focuses on the relationship of
groundwater depth and mineralization with soil salinity under a certain period; the influence of
groundwater depth and its chemical characteristics on soil salinity in multiple periods should be
investigated [33,34].

The above-mentioned studies have focused on natural oases with relatively abundant water
resources, and only a few studies have been conducted on arid oases in artificial areas. Ground
water in these areas should be investigated comprehensively to study the irrigation of local crops.
A scientific basis can be provided for crop production and rational utilization of water resources
by understanding the characteristics of water movement. Thus, Yaoba Oasis requires considerable
attention. In the present study, fixed-point observation data on soil salinity and groundwater were
used, and a gray relational analysis was conducted to quantitatively analyze the relationship between
soil salinity and groundwater characteristics in different periods. The aim is to provide a scientific
basis for the sustainable development of oasis agriculture and effective prevention of soil salinization
in the northwestern desert region of China.

2. Materials and Methods

2.1. Study Area

Yaoba Oasis (105◦34′–105◦39′ E, 38◦25′–38◦36′ N) is one of the few artificial oases in Alxa Plateau
in Inner Mongolia, Northwestern China (Figure 1). Yaoba Oasis, which is located at the edge of the
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alluvial plain in front of western Helan Mountain, extends westward in the Tengger Desert with an
area of approximately 81 km2 [35]. Yaoba Oasis is a traditional agricultural irrigation area in the Alxa
Left Banner, which is a dustpan-type, close-flow basin [36]. The study area is characterized by sparse
rainfall, typical continental arid climate, and considerable winds throughout the year. The maximum
annual rainfall can reach 330.1 mm, the minimum annual rainfall is only 93.2 mm, and the average
annual rainfall is 198 mm. Rainfall is mainly concentrated in July and September in the form of
heavy rains and accounts for more than 65% of the annual rainfall. Winter rainfall is scarce, with
monthly rainfall of less than 1% of the year. The rainfall from east to west shows a gradually decreased
distribution. The annual rainfall in the eastern Helan Mountain area is more than 400 mm, and that in
the western desert area is less than 150 mm [37].

Daytime sunshine is intense, with an average length of 7.7 h throughout the day, and the maximum
number of hours of sunshine in summer can be as high as 13.6. The soil types in the area are mainly
brown calcium (Ca2+), desert salt, and wind sand soils. The groundwater in the Yaoba Oasis irrigation
area is mainly derived from the lateral recharge of precipitation in Helan Mountain. The groundwater
in the irrigation area is deep (20 m on the average), and the mineralization of groundwater is relatively
high, which generally ranges from 0.4–7 g/L. Yaoba Oasis is an underground water agricultural
irrigation area. The average annual irrigation water is 900–1050 m3/km2, and the irrigation water
mainly adopts the method of flood irrigation. A total of 375 wells exist in the 4653.3 km2 irrigation
area. Four reservoirs with a total capacity of 710,000 m3 are present. The water source of the diversion
project is mainly from the spring water of Helan Mountain with 11 places. In the northeast, east, and
southeast parts of the irrigation area, a floodwall with a length of 29.9 km and a height of 3–5 m had
been built.
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2.2. Data Sources and Research Methods

2.2.1. Geological and Hydrogeological Setting

Figure 2 shows a schematic of the geological section. Yabao Oasis is located at the edge of the
diluvial sloping plain on the western side of Helan Mountain. From east to west, the topography
ranges from high to low and is controlled by the four north–south spreading faults of Helan Mountain.
The terraced terrain decreases successively from the west side of Helan Mountain to the west side of
the oasis, where mountains, platforms, fault basins, and deserts can be found. The lowest point of
the oasis basin is on the southwest side of Taosu Lake. In summary, Yaoba Oasis is a dustpan-type,
closed-flow basin. The curve shapes of six different observation wells in the oasis are roughly similar
and have the same variation pattern. The curve variation can be divided into the following stages.

(a) From January to mid-March, the water level begins to rise after winter irrigation of previous
years. The level is the highest in the year and stabilizes by March.

(b) The period from April to late August has the most intense groundwater utilization, and
groundwater is mainly used for crop irrigation. At this time, the water level drops drastically with a
variation in water level of up to 2.56–6.38 m.

(c) From late August to the end of September, groundwater extraction is performed mainly for
autumn irrigation, which has a smaller water consumption than that in June and July. The water level
rapidly increases, but the depth remains below normal levels.

(d) From the end of September to December, the water level recovers without irrigation, and the
curve shows a continuously rising trend.
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2.2.2. Experiments

Soil and groundwater chemical characteristics were used as the research objects, and field
investigation, sampling, sample testing, and correlation analysis of each component were utilized
to determine the distribution of area soil salinity and the relationship between groundwater and
soil salinity.

(1) Layout of sampling points
(A) Soil sample collection scheme
Remote sensing images and GPS positioning were used to design and implement the distribution

of soil sampling points. The sampling points should be arranged uniformly. The spacing between soil
sampling points should be approximately 1.8 km. A total of 197 soil samples were collected throughout
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the region, and these samples included 44 surface soil samples and 135 section samples from 15 typical
profiles (0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm, 40–50 cm, 60–80 cm, 80–100 cm, 100–120 cm, and
120–140 cm).

(B) Groundwater sample collection scheme
The groundwater sampling points should be distributed evenly according to the location of

the wells. The groundwater extracted from the study areas mainly originated from the second
water-bearing rock group of the quaternary system. The depth of wells is more than 100 m, and the
extracted water samples were all confined water. Seventy-four groups of water samples were collected,
and the spacing between the samples was approximately 1.1 km.

(2) Collection and testing of sampling points
The sampling time was from 13 to 17 June 2016 and 10 to 23 November 2016, as shown in Figure 3.
The sampling method for groundwater was based on the “Water Quality Sampling–Technical

Regulation of the Preservation and Handling of Samples” (HJ493-2009). Two bottles of 500 mL
water were collected from each sampling point, and pH and free carbon dioxide were measured
simultaneously. All of the groundwater characteristics of collected samples were measured within
15 days.

The sampling method for soil was based on “Agrology” [38]. Approximately 500 g of soil was
collected and labeled in each sampling point. In the laboratory, the soil samples were placed in a
well-ventilated place for natural air drying. The drying soil samples were transported to the laboratory
for grinding and 2 mm screening experiments. A soil water-leaching solution with a mass ratio of
1:5 was prepared for all samples. Soil and groundwater properties (e.g., eight ions, pH, and total salt
content) were measured using the methods provided in “Agrology.”
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2.2.3. Data Processing Method

The data were processed and screened in Excel on the basis of the chemical analysis results.
The data arrangement and combination were set with two decimal points. Descriptive statistical
analysis is included in the analysis tool module of the Statistical Package for the Social Sciences
software, which was applied for chemical statistical characteristic and correlation analysis.

We developed an application for gray comprehensive correlation degree calculation. Standardized
data processing was conducted, and gray correlation analysis with standardized data was performed
with the GM software according to the theory introduced in Section 2.2.4.

Geographic information systems provide many spatial analysis tools. For the sampling point data
with a spatial distribution characteristic, interpolation analysis was performed to form a regional map.
The contour line was drawn with ArcGIS software (ArcGIS 10.3, Esri China Co. Ltd., Beijing, China).

A hydrochemical map can directly show the chemical characteristics of water [39,40]. A piper
trilinear diagram is composed of two triangles of the anion in the lower part and a diamond in the
upper part; it was used in this study to build a hydrochemical map of groundwater.
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The soil profile characteristics of different soil layers with different soil salinity distributions are
affected by climatic, geological, hydrological, and human activities [41]. To examine the variations in
salt content of distinct layers, soil profile types were analyzed in this work by conducting a Q-cluster
analysis with the hierarchical clustering method. The salt accumulation conditions in different soil
layers were found to be diverse on the basis of the result of the difference in groundwater quality and
soil mechanical composition in the study area.

2.2.4. Gray Correlation Analysis

The main idea of gray correlation analysis is to determine the primary and secondary factors
within complex, limited, and irregular data by establishing a continuous differential mathematical
model [42,43]. The gray correlation degree between geometric shapes is high when the similarity
degree between elements is high; otherwise, the gray relational degree is low [44,45]. This method can
be divided into five steps.

First, the analysis series is determined. The data series that reflects system behavior is called the
reference series (or parent series), which is given by Equation (1).

X0 = [X0(1), X0(2), . . . X0(n)] (1)

The data series that consists of factors that affect system behavior is called the comparison series
(or subsequence), which is given by Equation (2).

Xi = {Xi(k)|k = 1, 2, . . . , n}, i = 1, 2, . . . , m (2)

Second, the data are handled non-dimensionally. The variables should be handled dimensionlessly
to compare the data of various factors. Differences in physical meanings exist due to the inconsistency
of data attributes between feature and related factor sequences. If the dimensional data are calculated
by force without processing in gray relational degree calculation, then large errors will be generated,
resulting in calculation inaccuracy. Dimensionless processing of each index is required to avoid
affecting the accuracy of the results due to the difference in dimensionality. In this study, the mean
value-processing technique was adopted for such a purpose, as shown in Equation (3).

X0i(k) = [Xi(1)− Xi(1), Xi(2)− Xi(1), . . . Xi(m)− Xi(1)] = [X0i(1), X0i(2), . . . X0i(m)] (3)

where i = 1,2, . . . ,n.
Third, the absolute correlation coefficients of y(k) and X0i(k) are calculated as follows:

ε0i =
1+|S0|+ |Si|

1+|S0|+ |Si|+ |Si−S0|
(4)

where |S0|, |Si|, and |Si − S0| are expressed as

|S0| = |
n−1

∑
k=2

x0
0(k) +

1
2

x0
0(n)| (5)

|Si| = |
n−1

∑
k=2

x0
i (k) +

1
2

x0
i (n)| (6)

|Si − S0| = |
n−1

∑
k=2

(x0
i (k)− x0

0(k)) +
1
2

(
x0

i (n)− x0
0(n)

)
| (7)

Fourth, the relative correlation degree is calculated from the following aspects.
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(1) Relative correlation degree matrices X′0 and X′i with X0 and Xi are calculated (each component
of the sequence is divided by its corresponding first component) as follows:

X′i =
Xi

xi(1)
=

{
xi(1)
xi(1)

,
xi(2)
xi(1)

, . . .
xi(n)
xi(1)

}
(8)

(2) The image of the zero starting point X′0i of X′i is calculated, followed by |S′0|, |S′i|, and
|S′i − S′0|. The relative gray correlation between X0 and Xi denoted as r0i is calculated, as shown in
Equation (9).

r0i =
1+

∣∣S′0∣∣+ ∣∣S′i∣∣
1+

∣∣S′0∣∣+ ∣∣S′i∣∣+ ∣∣S′i − S′0
∣∣ (9)

Fifth, the comprehensive relationship degree is calculated.
The comprehensive relationship degree is calculated based on the result of absolute and relative

correlations and is denoted as $0i.

$0i = θε0i + (1− θ)r0i, θ ∈ [0, 1] (10)

In general, the value of θ is 0.5, as suggested in literature [13].

3. Results and Discussion

3.1. Chemical Characteristics of Groundwater and Soil Salinization in Yaoba Oasis

3.1.1. Chemical Characteristics of Groundwater

Seven types of ions, namely, potassium (K+), sodium (Na+), Ca2+, magnesium (Mg2+), sulfate
(SO4

2−), chloride (Cl−), and bicarbonate ions (HCO3
−), are widespread and abundant in this area.

The content of these ions accounts for more than 90% of all dissolved salts and is directly used to
determine the chemical type of groundwater.

During the spring irrigation period in June, pH is 6.81–7.99 with an average value of 7.71,
which belongs to weak alkaline water. The total dissolved solid (TDS) has a large variation range of
581.4–5845 mg/L, and the mean value is 1683.81 mg/L. The variation range of electrical conductivity
is 0.74–5.79 ms/cm, which is consistent with that of TDS. During the winter irrigation period in
November, the mean value of pH is 7.72, and the variation in TDS is relatively large. Compared with
the water samples in June, the pH is basically unchanged. However, TDS slightly increases from
1683.81 mg/L to 1994.70 mg/L.

The statistical characteristic of the groundwater hydro-chemical parameters shown in Table 1
has a large variation coefficient, indicating that groundwater has large spatial variability. This large
spatial variability is caused by many influencing factors, such as aquifer water quality, topography,
geomorphology, hydrology, meteorological conditions, and human activities.

Table 1. Statistics of groundwater characteristics.

Time Statistics
EC

(mS/cm)
pH

Content of Main Ions (mg/L)

K+ + Na+ Ca2+ Mg2+ Cl− SO4
2− HCO3

− TDS

Jun.

Min 0.74 6.81 92.50 25.10 39.50 70.90 138.10 158.70 581.40
Max 5.79 7.99 1740.10 217.90 302.40 1241.00 2443.50 158.70 5845.60

Mean 2.14 7.71 326.59 94.27 125.26 385.84 623.19 257.31 1683.81
SD 1.03 0.17 239.39 42.22 59.75 251.28 389.20 55.23 939.03

CV (%) 48.16 2.18 73.30 44.78 47.70 65.13 62.45 21.46 55.77

Nov.

Min 0.44 7.09 90.10 35.10 42.50 53.20 192.10 128.10 580.80
Max 4.34 8.12 942.50 240.50 282.60 1134.60 1464.90 488.20 3860.90

Mean 2.09 7.72 392.76 118.01 137.76 452.20 766.74 254.46 1994.70
SD 0.22 1.27 206.01 60.27 71.14 309.06 368.08 68.66 955.71

CV (%) 60.61 2.90 52.45 51.07 51.64 68.35 48.01 26.98 47.91
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Figure 4 describes the spatial variability of the groundwater distribution of TDS in different
periods. In this map, the region in the horizontal space mainly shows a gradual change from northeast
to southwest, indicating that the salt content in the northeast is relatively low and that groundwater
runoff flows from northeast to southwest.
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In addition, Figure 4 shows that compared with the conditions in spring, the area of groundwater
with TDS < 1000 mg/L (fresh water) in winter decreased, whereas the area of TDS > 3000 mg/L
(salt water) increased. However, the area with an extremely high TDS value in Taosu Lake in the
southwest region decreased to the southwest direction. The area of brackish water in groundwater
increased remarkably, and TDS still showed an increasing trend from northeast to southwest in the
entire region. Compared with the spring irrigation period, the amount of mining underground wells
in Yaoba irrigation area decreased considerably in winter. The groundwater runoff, the water–rock
interaction of groundwater, and the alternation of substances in water were slow in winter, resulting in
a relative increase in groundwater TDS.

The piper trilinear diagram of spring groundwater chemical data was drawn and is shown in
Figure 5a. The chemical components of groundwater in the study area were diverse and mainly
included Cl·SO4−Na·Mg, Cl·HCO3·SO4−Na·Mg, and Cl·SO4−Na. Along the groundwater runoff
direction (from northeast to southwest), the variation in groundwater chemical types, as shown in
Figure 5b–d, was complicated. It was mainly from HCO3·SO4−Na·Mg type to Cl·SO4−Mg·Na and
Cl·SO4−Na types. Therefore, the groundwater in the northeast was mainly of HCO3·SO4−Na·Mg type,
the middle area was mainly of Cl·SO4−Mg·Na type, and the southwest was Cl·SO4−Na. Different
groundwater chemical components may have different effects on the soil.
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Contour maps of the main components of groundwater in the entire area were drawn using
ArcGIS 10.3 software through a difference analysis, as shown in Figure 6. The value of Na+ + K+

decreased from southwest to northeast of the study area, as shown in Figure 6a. The middle area had a
relatively higher value of Mg2+ than the other areas, as shown in Figure 6b. The variation in Ca2+ was
similar to that in Mg2+, as shown in Figure 6c. The spatial distributions of SO4

2− and Cl− were similar
to that of Na+ + K+, as shown in Figure 6d,e. The ion HCO3

− had the same spatial distribution as Ca2+

and Mg2+, as shown in Figure 6f. The spatial distributions of the main components of groundwater
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3.1.2. Characteristics of Soil Salinization

The area can be divided into four soil salinization grades on the basis of salt content of 44 surface
soil samples, as shown in Table 2. The spatial distribution is shown in Figure 7. Only 27.3% of the
soil samples in the study area comprised non-salinization soils, which were mainly distributed in the
periphery of the research area. Weak salinization soils accounted for 54.5%, mostly covering the study
area, and were mainly distributed in the central and eastern parts of the study area. Strong salinization
soils had a small quantity; they accounted for a total of 6.8% and were concentrated in the southwest
corner of the research area. Soil salinization is widespread and serious in the study area and thus
requires considerable attention.

Table 2. Statistical table of salinization soil classification.

Class Non-Salinization Weak Salinization Medium
Salinization

Strong
Salinization

Salt content (g/kg) <1 1–2 2–4 >4
Number of samples 12 24 5 3

Percent (%) 27.3 54.5 11.4 6.8

Soil profile types were analyzed by conducting Q-cluster analysis with the hierarchical clustering
method to examine the variations in the salt content of distinct layers.
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Appropriate clustering methods and measurement standards should be selected based on diverse
salt content distributions. After multiple selection and comparison, the Pearson correlation coefficient
was used as the statistic for conducting stratified cluster analysis. In Figure 8, the X-axis represents the
cluster members, namely, the 15 selected soil profile points, and the Y-axis represents the Euclidean
distance. When the Euclidean distance is 20, the soil profile is divided into three types, namely,
surface aggregate, middle interlayer, and bottom aggregate. The favorable climatic conditions and
the formation characteristics of salt soil in Yaoba Oasis suggest that the bottom soil profile is desalted
soil, and the surface and middle aggregate soil profiles are salt-accumulated profiles. The difference
between surface and middle aggregate soil profiles is that the surface aggregate profile has higher salt
accumulation and more serious salinity ascending motion than the middle layer. Table 3 shows the
statistical characteristics of soil salinity at different depths. The average pH of all soil layers in this
area is more than 8.5, indicating that the soil is generally alkaline. The variation coefficient of the total
soil salinity in each soil layer is large, which implies that the spatial variability of soil salinization is
also large. The spatial variability of soil salinization is considerably affected by many factors, such as
topography and landform, hydrological and meteorological conditions, and human activities. Figure 8
shows the change in total soil salinity in the saline–alkali land in the southwest of the oasis in spring
and autumn. Soil salinity changes remarkably in different seasons. The values in spring are greater
than those in autumn, and salinity gradually accumulates with the increase in depth. However, the salt
content of the 0–10 cm soil layer in spring is generally higher than that of the 10–60 cm layer.
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Table 3. Statistical characteristics of soil salinity at different depths.

Depth/cm pH Total Salt
Content/% CO3

2− HCO3
− Cl− SO4

2− Ca2+ Mg2+ K+ Na+

0–10

Mean 8.39 0.9 0.02 0.34 7.69 3.56 3.79 1.32 0.10 10.86
Max 8.6 2.23 0.06 0.4 18.75 16.42 12.95 4.52 0.25 34.41
Min 7.9 0.03 0 0.26 0.12 0.05 0.1 0.14 0.01 0.13
Std. 0.29 1.13 0.03 0.06 10.03 7.19 6.14 2.14 0.1 15.33
CV 0.03 1.27 1.05 0.18 1.3 2.02 1.62 1.62 1.04 1.41

10–30

Mean 8.52 0.71 0.08 0.38 4.94 5.26 2.6 0.46 0.08 8.18
Max 9.25 2.36 0.29 0.8 12.3 22.19 11.9 1.1 0.31 24.35
Min 8.1 0.02 0 0.24 0.18 0 0.1 0.07 0 0.16
Std. 0.43 1 0.12 0.24 6.12 9.56 5.2 0.48 0.15 11
CV 0.05 1.42 1.39 0.61 1.24 82 2 1.06 1.92 1.34

30–60

Mean 8.6 0.63 0.18 0.41 5.84 3.35 2.97 0.6 0.05 7.26
Max 9.15 1.48 0.84 0.77 14.17 10.3 11.11 1.78 0.12 21
Min 8.4 0.04 0 0.22 0.3 0 0.14 0.1 0 0.33
Std. 0.31 0.73 0.37 0.22 6.84 4.6 5.43 0.8 0.O5 9.11
CV 0.04 1.17 2 0.53 1.17 1.37 1.83 33 1.21 1.25

60–90

Mean 8.62 0.89 0.l9 0.5 6.88 4.48 1.08 0.44 0.09 l2.28
Max 9.4 2.66 0.86 0.79 19.66 20.24 3.94 0.5 0.31 37.4
Min 8.35 0.06 0 0.3 0.31 0 0.09 0.35 0 0.43
Std. 0.44 l.10 0.38 0.19 8.57 8.82 1.91 0.07 0.15 16.09
CV 0.05 1.25 1.93 0.37 1.25 1.97 1.76 0.l5 1.77 1.31

90–120

Mean 8.86 0.84 0.25 0.41 7.03 5.6 2.89 0.28 0.02 9.93
Max 9.65 2.95 1.06 0.6 24.49 21.46 12.4 0.5 0.03 33.33
Min 8.35 0.05 0 0.28 0.l5 0 0.05 0.09 0.01 0.27
Std. 0.5 1.21 0.46 0.13 10.04 8.96 5.36 0.2 0.01 13.64
CV 0.06 l.44 1.81 0.32 1.43 I.60 1.86 0.72 0.55 1.37

120–140

Mean 8.67 0.83 0.06 0.5 6.57 5.1 1.75 0.58 0.12 12.02
Max 8.95 2.61 0.29 0.8 19.78 17.91 4.9 1.17 0.41 39.14
Min 8.35 0.08 0 0.28 0.28 0.36 0.11 0.25 0.01 0.6
Std. 0.25 1.05 0.13 0.27 8.02 7.31 2.21 0.41 0.19 16.14
CV 0.03 1.26 1.98 0.55 1.22 1.43 1.26 0.71 1.57 1.34

3.2. Relationship between Soil Salt Content and Chemical Components of Groundwater

The analytical results of several soil profiles were used to evaluate the relationship between
soil salt accumulation in different soil layers and underground water quality [45]. Section points
P1’–P2’–P3’–P4’–P5’–P6’ from northeast to southwest collected in June were used as typical section
points on the basis of runoff direction and soil salinization degree, and irrigation water samples
S1’–S2’–S3’–S4’–S5’–S6’ from nearby wells of the soil samples were used as typical water samples,
as shown in Figure 9.

The soil salt ions are shown in Figure 10. The main cations are Ca2+ and K+ + Na+, and the
main anions are SO4

2− and Cl−. Therefore, the main components of soil salinization are SO4
2− and

Cl−, which are influenced by topography, geomorphology, hydrology, meteorological conditions, and
human activities.

A comparison of different soil layers indicated that the salt content and ionic components have
large spatial variability rather than a gradually increasing trend. The variation coefficients of total soil
salinity SO4

2− and CO3
2− in the soil layers with depths of 0–10 cm and 10–60 cm are relatively large,

indicating strong spatial variability.
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The migration law of salt transport revealed that Cl− is the most active ion, followed by SO4
2−.

CO3
2− is stable. However, in practice, saline soil in irrigated areas is mainly SO4

2−, followed by Cl−,
because SO4

2− is abundant in the soil parent material, resulting in a higher content of SO4
2− radical

ions in groundwater than that of Cl− ions. In addition, HCO3
− under drought conditions becomes

CO2 via intense evaporation, thereby causing CO3
2− to increase the content of CO3

2− in topsoil. Salt
accumulation and desalination coexist on the soil soluble salt of the irrigation district and result in a
higher value of soil salt ions or total salt content of the 0–10 cm soil layer than that of the 10–60 cm
soil layer. Salt accumulation is mainly due to salt activity, and desalination is not evident due to
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the climatic conditions of the irrigation area, that is, low rainfall evaporation intensity has a close
relationship with salt accumulation.

The change in groundwater quality in Figure 11 is relatively consistent with the salt and ionic
component contents of the 0–10 cm soil layer. The change in the mineralization of groundwater from
S1′ to S6′ shows a gradual upward trend, and the chemical components of groundwater are dominated
by SO4

2−, Cl−, and Na+ + K+.
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3.3. Correlation Analysis between Soil Salinity and Groundwater Quality

(a) Correlation of surface soil salinity and groundwater
We used surface soil salinity and underground water quality in the study area as the study objects.

We utilized total soil salt contents of SO4
2−, Cl−, Ca2+, Na+ + K+, Mg2+, and HCO3

− and pH as the
basic data and the irrigation groundwater TDS(01) of SO4

2−(02), Cl−(03), Ca2+(04), Na+ + K+(05),
Mg2+(06), and HCO3

−(07) and pH(08) as the system factor sequence. Then, the correlation degree
between soil salinity and irrigation groundwater quality was calculated and analyzed.

The absolute and relative correlation degrees of groundwater quality to topsoil salinity were
obtained based on the data by conducting a non-dimensional quantitative treatment and using
Formulas (4) and (6).

The absolute correlation degrees are expressed as
ε01 = 0.605, ε02 = 0.586, ε03 = 0.636, ε04 = 0.560, ε05 = 0.683, ε06 = 0.548, ε07 = 0.511, and

ε08 = 0.512.
The relative correlation degrees are expressed as
r01 = 0.786, r02 = 0.755, r03 = 0.825, r04 = 0.704, r05 = 0.871, r06 = 0.674, r07 = 0.545, and r08 = 0.532.



Water 2019, 11, 175 15 of 19

When θ = 0.5, the gray comprehensive relationship degree is calculated using Formula (7);
the results are expressed as

$01 = 0.696, $02 = 0.671, $03 = 0.731, $04 = 0.632, $05 = 0.777, $06 = 0.611, $07 = 0.529, and
$08 = 0.532.

The results are represented by a radar map. A radar map can clearly show the correlation
between groundwater factors and salt ions in soil. The more peripheral the value is, the stronger the
correlation is. The calculation result in Figure 12 shows that the correlation degree between surface
soil salinity and groundwater correlation is high and presents a non-consistency characteristic, thereby
showing that the accumulated salt in the surface soil has a direct relationship with underground water
quality. Groundwater irrigation directly affects soil salinity characteristics. The value of correlation
indicates that each component has a different response to the relationship between soil salt content
and underground water quantity.

On the basis of the order of the correlation degree value, the result indicates that the contribution
of components in irrigation water quality to soil salt accumulation is Na++K+, Cl−, salinity, SO4

2−,
Ca2+, Mg2+, pH, and HCO3

− from large to small. The correlation degrees of Na+ + K+, Cl−,
mineralization, SO4

2−, Ca2+, and Mg2+ are >0.6, indicating that these ions within irrigation water
are mostly stored in the topsoil. The correlation degrees of pH and HCO3

− are less than 0.6,
indicating the low representativeness and low response of surface soil salt accumulation. HCO3

− is
the alkaline component in underground water. The minimum contribution of irrigation water to soil
salt accumulation shows that the soil type is saline sodic rather than alkalized.

Water 2019, 11, x FOR PEER REVIEW  15 of 20 

 

3.3. Correlation Analysis between Soil Salinity and Groundwater Quality 

a) Correlation of surface soil salinity and groundwater 
We used surface soil salinity and underground water quality in the study area as the study 

objects. We utilized total soil salt contents of SO42−, Cl−, Ca2+, Na+ + K+, Mg2+, and HCO3− and pH as the 
basic data and the irrigation groundwater TDS(01) of SO42−(02), Cl−(03), Ca2+(04), Na+ + K+(05), 
Mg2+(06), and HCO3−(07) and pH(08) as the system factor sequence. Then, the correlation degree 
between soil salinity and irrigation groundwater quality was calculated and analyzed. 

The absolute and relative correlation degrees of groundwater quality to topsoil salinity were 
obtained based on the data by conducting a non-dimensional quantitative treatment and using 
Formulas 4 and 6. 

The absolute correlation degrees are expressed as 
ε01 = 0.605, ε02 = 0.586, ε03 = 0.636, ε04 = 0.560, ε05 = 0.683, ε06 = 0.548, ε07 = 0.511, and ε08 = 

0.512. 
The relative correlation degrees are expressed as 
r01 = 0.786, r02 = 0.755, r03 = 0.825, r04 = 0.704, r05 = 0.871, r06 = 0.674, r07 = 0.545, and r08 = 0.532. 
When θ = 0.5, the gray comprehensive relationship degree is calculated using Formula 7; the 

results are expressed as 
ρ01 = 0.696, ρ02 = 0.671, ρ03 = 0.731, ρ04 = 0.632, ρ05 = 0.777, ρ06 = 0.611, ρ07 = 0.529, and ρ08 = 

0.532. 
The results are represented by a radar map. A radar map can clearly show the correlation 

between groundwater factors and salt ions in soil. The more peripheral the value is, the stronger the 
correlation is. The calculation result in Figure 12 shows that the correlation degree between surface 
soil salinity and groundwater correlation is high and presents a non-consistency characteristic, 
thereby showing that the accumulated salt in the surface soil has a direct relationship with 
underground water quality. Groundwater irrigation directly affects soil salinity characteristics. The 
value of correlation indicates that each component has a different response to the relationship 
between soil salt content and underground water quantity. 

On the basis of the order of the correlation degree value, the result indicates that the contribution 
of components in irrigation water quality to soil salt accumulation is Na++K+, Cl−, salinity, SO42−, Ca2+, 
Mg2+, pH, and HCO3− from large to small. The correlation degrees of Na+ + K+, Cl−, mineralization, 
SO42−, Ca2+, and Mg2+ are >0.6, indicating that these ions within irrigation water are mostly stored in 
the topsoil. The correlation degrees of pH and HCO3− are less than 0.6, indicating the low 
representativeness and low response of surface soil salt accumulation. HCO3− is the alkaline 
component in underground water. The minimum contribution of irrigation water to soil salt 
accumulation shows that the soil type is saline sodic rather than alkalized. 

 

Figure 12. Gray correlation image between soil salinity content and groundwater. Figure 12. Gray correlation image between soil salinity content and groundwater.

(b) Correlation of soil salinity at different depths and groundwater
In the study area, soil salinity is influenced by processes of salt leaching due to flood irrigation

and evaporation. The soil salinization status was unaffected by groundwater level change when the
level below the buried depth of groundwater. Therefore, the correlation degree between salt and
irrigation water in the soil profile was analyzed from the perspective of irrigation water quality, and
the correlation degree was sorted to determine the influence of the change in irrigation water quality
on soil salt. The calculation results are shown in Figure 13.

The results showed that the correlation degree between soil salt and irrigation water quality
differed at the different depths. The correlation degree in the 0–40 cm soil layers from large to small
was Na+ + K+, Cl−, salinity of water, SO4

2−, Ca2+, Mg2+, pH, and HCO3
− in sequence. When the

soil depth ranged from 40 cm to 60 cm, the correlation degree changed dramatically. In this layer, the
dominant position of Na+ + K+ and Cl− gradually moved downward, and SO4

2−, Ca2+, and Mg2+

gradually moved upward from the original inferior position and became the main influencing factors
of correlation degree. The correlation degree was stable when the soil depth was greater than 60 cm.
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Figure 13. Gray correlation between soil salinity content at different depths and groundwater:
(a) 0–10 cm, (b) 10–20 cm, (c) 30–40 cm, (d) 40–50 cm, (e) 50–60 cm, (f) 60–80 cm, (g) 80–100 cm,
(h) 100–120 cm, and (i) 120–140 cm.

4. Conclusions

This study investigated the relationship between groundwater and soil salinity in Yaoba Oasis.
The characteristics of groundwater were analyzed in different periods, and gray correlation analysis
was conducted to illustrate the variation in surface soil salinity with groundwater. The contributions
of this study are summarized as follows:

(a) The fresh water area with low TDS was usually HCO3
− or SO4

2−-type water, and salt water
mostly consisted of Cl− and SO4

2−. The analysis result indicated a gradual change of groundwater TDS
and chemical types showed along the groundwater flow from northeast to southwest. The chemical
types and components of groundwater and soil were stable to a certain extent, and the variation trends
were similar from northeast to southwest.

(b) The spatial distribution of the main ions in the groundwater during winter irrigation in
November was basically consistent with that during spring irrigation in June. However, the spatial
distribution of TDS differed in the two seasons. The area of groundwater TDS < 1000 mg/L (fresh
water) in the oasis decreased in winter, whereas the area of TDS > 3000 mg/L (salt water) increased.
The area with an extremely high TDS value in the original Taosu Lake in the southwest decreased.

(c) The soil salinization of Yaoba Oasis was mainly composed of weak and medium salinization,
which were serious (salinity rate up to 72.7%) with remarkable salinity surface accumulation.
Compared with research on different time phase in the area, the spatial variability of soil salinization
had a relatively large value in this study. Soil salinity changed remarkably in seasons, and the values
in spring were greater than those in autumn. The salinity gradually accumulated with the increase in
depth. However, the salt content of the 0–10 cm soil layer in spring was generally higher than that of
the 10–60 cm layer.
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(d) The variation coefficient of total soil salinity in the soil layers with depths of 0–10 cm and
10–60 cm was relatively large, which indicated strong spatial variability. The salt accumulation and
desalination processes of soil soluble salt in the irrigation area simultaneously existed which resulted
in a higher value of soil salt ions or total salt content in the 0–10 cm soil layer than in the 10–60 cm
soil layer.

(e) The salt component and content of surface soil had a high gray correlation with groundwater,
and the correlation degree of groundwater salt content with surface soil salt content was in the order
of Na+ + K+ > Cl− > water salt content > SO4

2− > Ca2+ > Mg2+ > HCO3
−.

Soil salinization usually occurs in two forms. One is the process of soil salinity accumulation
in geological history called residual salinity accumulation. The other is the modern process of salt
accumulation, in which the accumulated salts remain in the soil because of the dry climate and scarce
rainfall. The latter is affected by surface water and groundwater, and salt accumulates in the upper soil
due to strong surface evaporation. The preceding analysis shows that the formation of soil salinization
mainly belongs to residual salinization. The groundwater in the area is buried deep, the climate is
dry, and rainfall is scarce. Soil salinization is caused by the potential residual salt in the soil and the
influence of human activities outside (mainly irrigation).

• Influence of irrigation: Farming and animal husbandry mainly use water from deep wells due
to the climate characteristics of this area. When deep well irrigation is used frequently, a large
amount of residual salt in the soil becomes active; with the strong evaporation of the soil, the
accumulation of soil salinization reaches the surface.

• Influence of irrigation water (groundwater) quality: The irrigation water of the study area
is mainly supplied by groundwater from Helan Mountain and Tengger Desert. The parent
material of the soil in the west of this area is lacustrine sediments; therefore, the soil contains
considerable soluble alkali metals (mainly sodium). In this way, bivalent cations (mainly Ca2+

ions) in groundwater are exchanged with sodium in the soil in the recharge process, resulting
in many soluble Na+ ions in groundwater in this area. The deep water quality worsens, and
alkalinity increases. In this way, when the groundwater that contains high sodium ions is used for
irrigation, alkalization occurs. The above discussion indicates that soil salinization in this region
is closely related to groundwater quality.

This study conducted an in situ observation of Yaoba Oasis in Northwest China. The variation
relationship between groundwater TDS and hydro-chemical characteristic with salinity may be affected
by many factors, such as landform, lithology, burial conditions, and human activities (irrigation).
Although the observed data are limited, the results of this study can provide a scientific basis for
the sustainable development of oasis agriculture and effective prevention of soil salinization. Future
studies should focus on the quantitative calculation of coupled water and solute transport in the
vadose by using a numerical simulation method.
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