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Abstract: This article follows from a previous study by the authors on the computational fluid
dynamics-based analysis of Herschel–Bulkley fluids in a pipe-bounded turbulent flow. The study
aims to propose a numerical method that could support engineering processes involving the
design and implementation of a waste water transport system, for concentrated domestic slurry.
Concentrated domestic slurry results from the reduction in the amount of water used in domestic
activities (and also the separation of black and grey water). This primarily saves water and also
increases the concentration of nutrients and biomass in the slurry, facilitating efficient recovery.
Experiments revealed that upon concentration, domestic slurry flows as a non-Newtonian fluid of the
Herschel–Bulkley type. An analytical solution for the laminar transport of such a fluid is available
in literature. However, a similar solution for the turbulent transport of a Herschel–Bulkley fluid is
unavailable, which prompted the development of an appropriate wall function to aid the analysis
of such flows. The wall function (called ψ1 hereafter) was developed using Launder and Spalding’s
standard wall function as a guide and was validated against a range of experimental test-cases, with
positive results. ψ1 is assessed for its sensitivity to rheological parameters, namely the yield stress,
the fluid consistency index and the behaviour index and their impact on the accuracy with which ψ1

can correctly quantify the pressure loss through a pipe. This is done while simulating the flow of
concentrated domestic slurry using the Reynolds-Averaged Navier–Stokes (RANS) approach for
turbulent flows. This serves to establish an operational envelope in terms of the rheological parameters
and the average flow velocity within which ψ1 is a must for accuracy. One observes that, regardless of
the fluid behaviour index, ψ1 is necessary to ensure accuracy with RANS models only in flow regimes
where the wall shear stress is comparable to the yield stress within an order of magnitude. This is
also the regime within which the concentrated slurry analysed as part of this research flows, making
ψ1 a requirement. In addition, when the wall shear stress exceeds the yield stress by more than one
order (either due to an inherent lower yield stress or a high flow velocity), the regular Newtonian
wall function proposed by Launder and Spalding is sufficient for an accurate estimate of the pressure
loss, owing to the relative reduction in non-Newtonian viscosity as compared to the turbulent viscosity.

Keywords: Reynolds-averaged Navier–Stokes; Herschel–Bulkley; domestic slurry; pipe flow;
non-Newtonian

The research described in this article is aimed at experimentally and numerically supporting the
design of a novel sanitation system for urban areas with emphasis on the separation of black water
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from toilets and grey water from kitchen and washing, in order to facilitate a decentralised recovery
of nutrients and biomass. This also requires investigating the efficient and effective transport of the
resulting concentrated domestic slurry [1,2]. The experiments provide information on the rheology of
the slurry and the pressure losses it brings about (due to wall friction) while flowing through circular
pipes and bends. Instead of real domestic slurry, a clay-based slurry is used for the experiments,
which was confirmed to be rheologically similar to concentrated domestic slurry [1]. Similar to many
industrial slurries (clay, coal, iron oxide, etc.), the experimental slurry also departs from Newtonian
behaviour and behaves like a Herschel–Bulkley fluid [3].

These experiments are then used to develop a suitable simulation methodology to enable
industrial studies and applications such as the design of a waste water system carrying concentrated
domestic slurry. This article is in line with Mehta et al. [4] that outlines a modification to the Newtonian
wall function proposed by Launder and Spalding [5], to enable the simulation of the wall-bounded
turbulent flow of a Herschel–Bulkley fluid. This modification (mentioned in Mehta et al. [4] as ψ1 or
ψ2) was shown to improve the accuracy in terms of estimating frictional losses in a pipe carrying a
turbulent Herschel–Bulkley fluid.

To further explore the reliability of ψ1 (or ψ2), this article presents a sensitivity-analysis of these
wall functions. The objective is to observe trends in the accuracy of the proposed wall functions in
terms of the turbulent flow conditions inside a pipe and the fluid properties of the Herschel–Bulkley
slurry being transported. Using the observations, the authors aim to propose an operational envelope
within which the use of ψ1 (ψ2) is important to guarantee accuracy as regards the estimation of the
wall shear stress incurred by the slurry in turbulent transport.

Section 1 provides a brief introduction, followed by Section 2 that presents an overview of the
experimental test cases considered in this article. Next, Section 3 describes the Navier-Stokes (NS)
solver, computational mesh and the relevant numerics, while Section 4 summaries the results of the
sensitivity analysis of ψ1 and ψ2. Finally, Section 5 reflects the conclusions and recommendations.

1. Introduction

This introductory section summarises the content of Mehta et al. [4] and provides details on the
topics pertinent to this article. Furthermore, the term domestic slurry that is relevant to the authors is
replaced with the term Herschel–Bulkley fluid in this article, in order to generalise it for other possible
applications of the numerical methods discussed here.

1.1. Herschel–Bulkley Fluids

A non-Newtonian fluid experiences viscous stresses that not only depend on temperature and
pressure but also on the flow itself. Herschel and Bulkley [6] studied a certain class of non-Newtonian
fluids that display a shear-thinning (pseudoplastic behaviour), which is the reduction in the apparent
viscosity with increasing shear rate. Furthermore, it was observed that such fluids also require a
minimum shear stress before they flow like a fluid. This minimum stress is called the yield stress
and, hence, such fluids are also called yield pseudoplastic fluids. Herschel and Bulkley [6] introduced a
mathematical definition for this type of fluid, known as a Herschel–Bulkley fluid,

τ = τy + mγ̇n , (1)

where τy is the yield stress, m is the fluid-consistency index and n is the fluid-behaviour index (all are
standard terms as used in Chabbra and Richardson [3]). Furthermore, all terms in Equation (1) are
scalars with γ̇ being the shear rate and τ being the second invariant of the stress tensor τ. Equation (1)
is only valid when |τ| = τ ≥ τy. If τ < τy, γ̇ = 0. In three dimensions with full tensor notation [7],
Equation (1) reads

τ =

(
τy

|γ̇| + m(γ̇n−1)

)
γ̇ . (2)
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If a Herschel–Bulkley fluid undergoes a laminar flow through a circular pipe, one can simply
calculate the velocity profile and shear stress through the balance between the shear stress and the
pressure gradient across the pipe. Using the symbols shown in Figure 1 and the constitutive relation
for a Herschel–Bulkley fluid (Equation (1)), one gets an implicit relation between Vz(r), r and the wall
shear stress τW [8] (also refer to Chabbra and Richardson [3], Govier and Aziz [9], Bird et al. [10,11] for
details and relevant literature):

Vz(r) =
nR

n + 1

(
τW
m

) 1
n
{
(1− φ)

n+1
n −

(
r
R
− φ

) n+1
n
}

, (3)

where φ =
τy
τW

. Heywood and Cheng [12] provide a review of known expressions for the laminar flow
of Herschel–Bulkley fluids through circular horizontal pipes.

Although a solution for a laminar flow of a Herschel–Bulkley fluid can be obtained, its turbulent
counterpart is hard to ascertain, although a few equations similar to Equation (3) have been
proposed [12–14]. For better accuracy and reliability, one must resort to computational fluid dynamics
(CFD) to analyse the flow with the fundamental NS-equations, modified to solve for only the
turbulent features that are relevant to the flow. This is done to reduce computational costs [15].
For fully-turbulent flows, Reynolds-averaged Navier–Stokes (RANS) modelling, in which the turbulent
scales are ensemble-averaged (an average over many instances of the flow) to obtain a time-invariant
representation of the flow [16], can provide adequate insight into flow properties such as velocity,
pressure gradient, turbulence kinetic energy and its dissipation.

Figure 1. A schematic of a circular horizontal pipe [4].

Relative to the pipe, all flows slow down to zero velocity at the wall (the no-slip condition) and,
in doing so, even a turbulent flow passes through a laminar region near the wall [17]. Therefore, RANS
models, such as the κ − ε that are meant for the analysis of fully-turbulent flows, require a correction
to model the transition into a laminar regime and ultimately zero velocity.

Mathematical modifications that mimic the effect of walls to permit the analysis of a turbulent
wall-bounded flow are known as wall functions. Launder and Spalding [5] developed a wall
function based on the velocity profile of a turbulent Newtonian fluid in a smooth tube proposed by
Prandtl [18,19], which was later extended to the universal law of the wall [20]. For a Newtonian fluid,

u(
τW
ρ

) 1
2
=

1
K ln

{
y

ρ

m
E
(

τW
ρ

) 1
2
}

, (4)

where K∼0.41 is the von Kármán constant and E is another constant that equals 9.973. In the above
equation, the symbol m has been used to represent the constant dynamic viscosity of a Newtonian fluid,
for consistency with Equation (1). Equation (1) reduces to τ = mγ̇ for a fluid without a yield stress and
the absence of shear-thinning (or thickening), which is the constitutive relation for a Newtonian fluid.
In common literature, m in this case would be replaced with µ or η.
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1.2. A Wall Function for a Non-Newtonian Fluid

Following the idea put forth by Launder and Spalding [5], a relation between the wall shear
stress and the velocity near a wall for a Herschel–Bulkley fluid was derived in [4] based on Prandtl’s
theory [18,19]. Readers are also referred to the book by Skelland [8] that presents the derivation
of the original Newtonian law of the wall. The wall function, called ψ1 in [4], is an approximated
modification of the theoretical equations to enable the simulation of Herschel–Bulkley fluids. Therefore,
the intention of this article is not to prove the theoretical accuracy of this approach but evaluate its
practical applicability in terms of modelling the flow.

ψ1 reads

u(
τW−τy

ρ

) 1
2
=

1
nK ln

{
yn ρ

m
E
(

τW − τy

ρ

) 2−n
2
}

︸ ︷︷ ︸
ψ1

. (5)

Furthermore, a second equation, ψ2, was derived for Herschel–Bulkley fluids in turbulent
conditions when the wall shear stress is comparable to the yield stress. In such situations, it is
important to consider the effective region in a pipe available for turbulent mixing, as an unyielding
region forms in the centre of the pipe, as shown in Figure 2.

Figure 2. The effective mixing region in a pipe carrying an Herschel–Bulkley fluid with yield stress τy.
The unyielding plug represents the region wherein τ < τy.

At the centre of the pipe, the shear stress must reduce to zero, which in the case of a
Herschel–Bulkley fluid implies a region that does not yield but flows as a plug, as shown in Figure 2.
In case of a turbulent flow, this plug is not as smooth as shown in the Figure 2 for a laminar flow.
However, direct numerical studies by Rudman and Blackburn [21] (at ReR = 7000, defined in
Section 3.1.1) show the existence of a region characterised by high effective viscosity and a smoother,
nearly uniform velocity profile. Furthermore, this region also displays reduction in turbulence and,
hence, turbulent mixing, which possibly could lead to laminar pockets coexisting with unsteady
turbulent flow until the wall, followed by transition to a laminar flow consistent with a wall boundary.
As result, the effective mixing region that could sustain turbulence is reduced to that shown in Figure 2.

A detailed explanation of how the above is used to derive a relevant wall function is provided
in [4]. The proposed function called ψ2 reads

u(
τW−τy

ρ

) 1
2
=

(
1

1− ζ

)
1

nK ln

{
yn ρ

m
E
(

τW − τy

ρ

) 2−n
2
}

︸ ︷︷ ︸
ψ2

, (6)

where ζ is

ζ =
τy

τW
. (7)
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ψ1 and ψ2 were validated for a range of test-cases in [4]. Combined with a RANS model, both
equations are capable of accurately estimating the wall shear stress experienced by a pipe carrying a
Herschel–Bulkley fluid in turbulent flow. However, these equations are not always applicable and
apart from being limited by the assumptions made in their derivations; they may also be limited
by rheological parameters and the average flow velocity. Thus, before these equations could be
generalised for industrial applications, a suitable operational envelope, within which ψ1 and ψ2 are
required for accuracy, must be determined.

Determining this envelope and assessing the sensitivity of ψ1 and ψ2 to average flow velocity,
turbulence model and rheological parameters is the primary content of this article.

1.3. Approach

To determine the functional envelope, the wall functions ψ1 and ψ2, various test-cases with
Herschel–Bulkley fluids (from literature and the authors’ experiments with concentrated domestic
slurry) of different rheological parameters will be simulated to gather data on the relationship between
the average flow velocity and the wall shear stress. These simulations are done for a long horizontal
section of a circular pipe (L >> D, see [4]). Next, the numerical estimates will be assessed not only in
terms of accuracy by comparison against experimental data but will also be scrutinised in terms of
the effect of using or not using ψ1 or ψ2, the effect of the rheological parameters and also the explicit
requirement of using ψ1 and ψ2.

For validating the functions, the entire experimental set-up used by the co-authors was simulated
using the functions ψ1 and ψ2. The set-up involves a 100 mm (internal diameter) pipe with a
long horizontal section to permit the flow to reach a fully-developed state, before the flow passes
through two pressures sensors separated by a horizontal section of 15 m, two 90◦ bends and another
horizontal section of 12.85 m. The numerical estimates on the pressure drop between the two locations
marked in Figure 3 were compared against their experimental counterparts to validate the proposed
wall functions.

Figure 3. A schematic of a part of the experimental set-up showing the location of the pressure sensors
used for validation [1,2] (Courtesy: Stichting Deltares).

2. Experiments

Table 1 presents an overview of the various experimental test cases with Herschel–Bulkley fluids,
considered in this article. As per Equation (1), the unit of m for a given behaviour index n, is Pasn.
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Table 1. The test-cases considered for this article. The first two are from Slatter [22], PARK1 from
Park et al. [23] and the last five belong to experimental data supplied by the co-authors [1,2].

Case ρ (kg/m3) τy (Pa) m (Pasn) n D (m) L
D Reference

KERS2408 1061 1.04 0.0136 0.8031 0.079 380 Slatter [22]
KERS0608 1071 1.88 0.0102 0.8428 0.079 380 Slatter [22]
PARK1 1012 9.30 0.0894 0.7254 0.051 590 Park et al. [23]
S8 1052 0.0014 0.0041 0.7900 0.100 450 Thota Radhakrishnan et al. [1]
S10 1068 0.0052 0.0071 0.7000 0.100 450 Thota Radhakrishnan et al. [1]
S14 1091 0.0490 0.0124 0.6500 0.100 450 Thota Radhakrishnan et al. [1]
S17 1113 0.1585 0.0328 0.6043 0.100 450 Thota Radhakrishnan et al. [1]
S21 1146 0.4316 0.0831 0.5207 0.100 450 Thota Radhakrishnan et al. [1]

Details on the experimental errors in the test-cases mentioned in Table 1 have been discussed
in Mehta et al. [4]. For more details on the experiments conducted by the authors, the readers are
referred to Thota Radhakrishnan et al. [1] and Thota Radhakrishnan et al. [2]. The experimental
error in estimating the wall shear stress is about ±0.24 Pa, corresponding to 2σ or 95% confidence.
The flowmeter operates with an error of ±10 L/min, which corresponds to an error of ±0.02 m/s in
measuring the average flow velocity through a pipe with an internal diameter of 100 mm.

The sensitivity analysis was carried out for straight horizontal sections with values of L/D shown
in Table 1. These values were kept high to ensure that the flow reaches a fully-developed state, which
was assessed by tracking the change in the centreline velocity along the length of the pipe. Details
on similar simulations of some of the slurries mentioned in Table 1 are provided in [4]. In contrast
to the conservative sizing used for this article, a fully-developed flow state was reached in about
2–3 m from the inlet boundary. This helped size the straight sections of the pipe shown in Figure 3 for
the simulations to include an extra 5 m of pipe length after the inlet to reach a fully-developed state.
Furthermore, the numerical analyses for the slurries S8, S10, S14, S17 and S21 were also validated by
simulating the set-up shown in Figure 3. For the range of velocities that concern our research on the
flow of concentrated domestic slurry (V = 0.5 m/s to V = 2 m/s), the pressures calculated numerically
matched their experimental counterparts at the locations shown in Figure 3, while accounting for the
presence of two vertical pipe bends.

3. Methodology

This section provides details on the NS solver used for this research, ANSYS FLUENT [24] and
how the wall functions ψ1 and ψ2 are implemented in the solver and how are they solved. Furthermore,
an appropriate Reynolds number is defined along the lines of [25] to help interpret the results of the
numerical computations. Details on the computational mesh are also provided.

3.1. Solver and Numerics

ANSYS FLUENT [24] that is based on a finite volume method is used to solve the RANS equations.
The spatial discretisation is done with a second order upwind scheme to ensure numerical stability.
The pressure is resolved with second order accuracy but is decoupled from the velocity field with the
Semi-Implicit Method for Pressure-Linked Equations (SIMPLE). The standard κ − ε and the Reynolds
Stress Model (RSM) are used to resolve the turbulence. These models are chosen because the flow
near the wall boundaries is not resolved as a solution of the RANS equations but modelled indirectly
through a wall function. As a result, the transition of the turbulent flow into a laminar regime near the
wall is not directly a part of the solution, in effect, implying a fully turbulent flow, with which both the
standard κ − ε and RSM are compatible.

Furthermore, these models are used with their standard model constants, which were
experimentally-determined for Newtonian fluids [24]. The choice of these constants stems from the
fact that any difference in their values for Herschel–Bulkley fluids will require detailed experimental
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investigation on the nature of turbulence within such fluids. This is currently missing in literature,
at least for the relatively high Reynolds numbers considered in this article. Given the turbulent nature of
the pipe flow, the effect of molecular viscosity (by extension, the Newtonian or non-Newtonian nature
of the fluid) would be small as opposed to the effect of turbulent viscosity. Therefore, the modification
of the model constants for Herschel–Bulkley fluids may not be completely necessary for strongly
turbulent flows. Another motivation to use the standard model constants were studies by Malin [26,27]
and Bartosik [28,29], which showed promising results with the standard model constants but with
modified wall functions to incorporate the non-Newtonian behaviour of the fluid under consideration.

To implement the constitutive relation Equation (1), FLUENT uses a bi-viscosity model similar to
the one proposed by Tanner and Milthorpe [30] (see Mitsoulis [31] for a summary of similar approaches
and ANSYS [24] for the implementation in FLUENT). This approach prevents numerical instability
arising from the yield stress at zero strain.

One notices that both ψ1 and ψ2 are implicit in terms of τW for a given value of u in the first cell
near a wall boundary. Thus, unlike the original wall function described above, ψ1 and ψ2 must be
implemented as a specified shear boundary conditions as described in Mehta et al. [4]. Once a flow
field is initialised, τW is calculated from the initial velocity field, following which the RANS equations
are solved to obtain a new velocity field. This process is repeated until a converged solution is obtained.
A solution is considered as converged once the iterative (absolute, not normalised) residuals for
continuity, velocity, κ and ε are below 10−6.

3.1.1. An Appropriate Reynolds Number

The flows analysed in this article will be categorised using the Reynolds number proposed by
Rudman et al. [25] based on the wall effective viscosity. This viscosity can only be determined once
the wall shear stress is known and hence serves only as post-experimental (numerical) parameter.

ReR =
ρVD
ηW

, (8)

where ηW is the wall effective viscosity,

ηW =
m

1
n τW

(τW − τy)
1
n

. (9)

Rudman et al. [25] mentioned that this definition of the Reynolds number was more pertinent
to the analysis of wall-bounded flows as it reflected the behaviour of Herschel–Bulkley fluids in the
near-wall region, as compared to the more commonly used Metzner–Reed Reynolds numbers [32].

In essence, ReR can still be thought of as the standard Reynolds number i.e., the ratio of the inertial
force to the viscous force, with the constant Newtonian dynamic viscosity replaced by an effective
non-Newtonian viscosity defined as per Equation (9).

3.2. Mesh

Details on the mesh, its metrics and the relevant convergence study can be found in Mehta et al. [4].
The mesh has been created using the guidelines for wall treatment listed in ANSYS [24]. A similar
approach is also used to create a mesh suitable for simulating the entire experimental set-up
(see Figure 3) used for validating the wall functions. However, instead of a quarter-pipe, a half-pipe is
used in keeping with the fact that an upward-facing bend in the pipe has a plane of symmetry and
the gravity vector also lies within this plane. The next paragraph provides a reason for the choice of
a half-pipe.

When the flow within a pipe passes through a bend, the centrifugal force leads to the creation of
Dean vortices. These are two counter-rotating vortices, which in laminar flows, are symmetrically
formed as regards to the pipe’s plane of symmetry [33]. In contrast, within turbulent regimes, these
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vortices change their size and intensity periodically in time, leading to an asymmetric oscillatory
phenomenon that goes by the name swirl-switching in literature [34]. Various studies, both experimental
and numerical, have been carried out to understand this phenomenon that is rather complex [35,36].
Nevertheless, it is important to note that, even within turbulent flows, the time-averaged behaviour of
the swirl-switching manifests itself as the symmetric Dean vortices. Therefore, for the ensemble-averaged
RANS, a symmetry boundary condition applied to the symmetry plane of the pipe will be appropriate
and will help reduce computational effort. At the same time, should a time-resolving method such as
Large Eddy Simulation (LES) be used, the symmetry condition could lead to incorrect resolution of the
time-dependent asymmetric swirl-switching.

Figure 4 shows a part of the mesh corresponding to the lower horizontal section and a 90◦

upward bend of the set-up shown in Figure 3.

Figure 4. The computational grid for the experimental set-up. The cross section is an O-grid, even
across the bend.

The outflow boundary has a stress-free outflow condition, which ensures zero diffusion flux
on the outflow boundary. This is helpful in this case as the velocity and pressure conditions at the
boundary are not known a priori.

The inflow boundary was provided with a constant axial flow velocity corresponding to the
experimental average flow velocity. To add the effect of turbulence, ANSYS FLUENT provides the
option of specifying an inflow turbulence intensity and hydraulic diameter, to calculate the values of
κ and ε (see ANSYS [24] for details). In each case considered, the hydraulic diameter is equal to the
pipe’s inner diameter as the pipes are circular. The inflow turbulence intensity is not known a priori
in any of the experimental cases. However, for wall-bounded flows, the shear layers generate more
turbulence than the inflow boundary alone, making the results insensitive to the inflow specifications
(ANSYS [24]; this was also checked by varying the inflow turbulence intensity). However, to play safe,
the inflow turbulence was restricted to 10% and an ample distance from the inflow boundary was
considered before accepting the flow as fully-developed.

Finally, as the wall boundary is treated with a wall function, the boundary conditions for κ and
ε are calculated as per the wall function approach, instead of being set to 0 at the wall (can only be
done if the entire wall region is refined). At the wall boundary, κ is thus set equal to the turbulence
kinetic energy at the first grid point, obtained using the rationale defined by Launder and Spalding
(see Launder and Spalding [5] for details).

4. Sensitivity Analysis

This section describes the analysis of the sensitivity of ψ1 and ψ2 to various rheological inputs
and flow conditions. For each Herschel–Bulkley fluid mentioned in Table 1, a standard case of a long
straight horizontal pipe was simulated for a range of flow velocities. The meshes were sized through
the process described in Section 3.2 to ensure grid convergence. Here, the operational envelope is defined
as the domain of rheological parameters and flow velocities (indirectly the Rer) within which, ψ1 and
ψ2 when coupled with a RANS model, can accurately quantify the wall shear stress (hence, the pressure
gradient) experienced by a pipe carrying the relevant Herschel–Bulkley fluid in turbulent flow.
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This accuracy, in line with [4], is set at either an error, e ≤ 5% or an error, 5% < e ≤ 15%,
as compared to the relevant experimental estimates. For completeness, an error of e > 15% is also
considered, to indicate that a numerical solution was obtained but inaccurate, in contrast with cases in
which a converged numerical solution was not obtained.

4.1. Flow Velocity, Behaviour Index and Accuracy

Figures 5–8 show scatter plots of the relation between the flow velocity V, the behaviour index
n and the accuracy achieved by various combinations of RANS models and wall functions. V is the
average axial flow velocity inside the pipe; thus, the area-averaged axial velocity (henceforth referred to
as the flow velocity, for simplicity). A indicates e ≤ 5%, a 5% < e ≤ 15% and a e > 15%. All
values of e are the percentage difference between a numerical estimate and its experimental counterpart.
Furthermore, for RANS models combined with ψ1 or ψ2, all symbols ( , and ) correspond to ψ1,
unless filled (or , and ), in which case, they correspond to ψ2. A x represents no solution with
either wall function.

Figures 5 and 6 depict results obtained with the κ − ε and RSM RANS models without ψ1 or
ψ2 i.e., these cases used the standard Newtonian wall function proposed by Launder and Spalding [5]
described in Section 3.1. One notices that no converged solution is obtained for the considered flow
velocities, for slurries apart from S8, S10 and S14. The region in which no solution is obtained
is highlighted by dotted polygons in Figures 5–8. Furthermore, the estimates for S14 with either
RANS model can only be considered accurate once V is more than 1 m/s (the aim is to transport
the turbulent slurry with a flow velocity ranging from 0.5 m/s to 1.5 m/s). Apart from the lowest
velocities considered, the wall shear stresses generated by S8 and S10 are well-estimated (e ≤ 5%) by
either RANS model (regions outside the dotted polygons).

Figures 7 and 8 depict results obtained with the κ − ε and RSM RANS models with ψ1 or ψ2,
the latter being shown with a filled (shaded) symbol. A stark difference between Figures 5–8 is the
existence of a converged numerical solution for slurries and the considered velocities, for which a
solution was not obtained in the absence of ψ1 and ψ2. These slurries are namely S17, S21, PARK1,
KERS0608 and KERS2408.
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Figure 7. Error with the κ − ε model with ψ1 (or ψ2, filled symbols).
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Figure 8. Error with the RSM with ψ1 (or ψ2, filled symbols).

Comparing Figures 7 and 8 in regard to S17 and S21, there is no particular trend in the effect of
the RANS model on the accuracy. However, a simple count reveals that, in most cases, RSM performs
better than κ − ε regarding the delivery of e ≤ 5%. Furthermore, given the low values of yield stress
summarised in Table 1, none of these slurries require ψ2.

For KERS0608, both RANS models deliver accurate results, with the lower velocities (when the
shear stress is low enough) requiring the application of ψ2. As explained in [4] and shown in Figure 2,
the reduction in flow velocity leads to a reduction in the wall shear stress; the ratio of the yield stress
to the wall stress determines the extent of the plug-like unyielding region in the centre of the pipe, which
also affects turbulent mixing. ψ2 was proposed keeping this effect in mind and reducing the effective
mixing length. Finally, numerical quantifications of PARK1 are not only existent after the application
of ψ2 but also obtain an error e ≤ 5%, with either RANS model (except for the lowermost velocity when
analysed with RSM). ψ2 must be used in keeping with the relatively high yield stress of τy = 9.3 Pa.

A point worth noting is that, in contrast with the lower errors obtained during the analysis of
S8, S14 and S21 with κ − ε without ψ1 or ψ2, using these wall functions leads to inaccurate solutions
(e > 15%) for all velocities considered. However, the same is not noticed when these slurries are
analysed with the RSM—in which case, the results are nearly the same, whereas S8 remains the same
with and without ψ1.

One may attribute this behaviour to the differences in the formulation of the two RANS models.
The κ− ε ignores anisotropy in the Reynolds-stress tensor, whereas the RSM incorporates all anisotropy
by solving six transport equations for the different components of the Reynolds-stress tensor. Within
the wall-bounded flow described here, the anisotropy arises primarily from the walls and the fact that
the flow in the core converges onto an unyielding plug. However, the direct effect of these differences
in formulation on the accuracy requires a more detailed analysis supported by experiments, which is
beyond the scope of the research related to this article.

To facilitate the understanding of the observations mentioned above, it is necessary to incorporate
the effect of the yield stress into the analysis. The yield stress is a property of the slurry; however,
its ratio to the wall shear stress that is directly related to the flow velocity is consequential in governing
the flow dynamics, to the extent of ψ1 (or ψ2) being essential for guaranteeing accurate estimates for



Water 2019, 11, 19 12 of 19

Herschel–Bulkley slurries with acceptably high yield stresses. Therefore, the results from Figures 5–8
are re-plotted while considering the ratio τW/τy. Furthermore, given that the analysis so far is
inconclusive as to the nature of the RANS model itself, the results will be segregated not in terms of
the error but rather in terms of the RANS models for a fixed error.

4.2. Flow Velocity, Yield Stress and RANS Model

Figures 9–12 plot the relationship between τW/τy (logarithmic) and V, while relating them to the
accuracy of the numerical simulation performed for those operating conditions, in terms of the RANS
models used. Figures 9 and 10 pertain to an error e ≤ 5%, whereas Figures 11 and 12 pertain to an
error 5% < e ≤ 15%; out of these four plots, Figures 10 and 12 represent solutions obtained with ψ1 or
ψ2, as indicated.

In all plots, namely Figures 9–12, a means that both κ − ε and RSM provided solutions within
the error defined by the relevant plot (e ≤ 5% in the case of Figure 9). Furthermore, a indicates that
only κ − ε led to a solution within the mentioned error and a indicates that only the RSM led to a
solution. A x means that none of the two RANS models led to a converged numerical solution or the
error was beyond the value defined by the relevant plot. In Figures 10 and 12, a filled symbol ( , and

) represents ψ2.
A first look while comparing errors without ψ1 or ψ2 i.e., Figures 9 and 11 against errors with ψ1

or ψ2 i.e., Figures 10 and 12, reveals that the use of ψ1 or ψ2 is indeed necessary for a large number of
experimental cases considered here. The approximate envelope within which this observation holds is
indicated with a dashed polygon in Figures 9–12. This observation is in line with those reported in
Section 4.1. Only this time, one notices that ψ1 and ψ2 change a no solution (represented by a x) to a
converged solution for test-cases with a τW/τy ratio that is less than two orders of magnitude.
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Figure 9. Performance of the standard RANS models to achieve an error e ≤ 5%.
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Figure 10. Performance of the standard RANS models combined with ψ1 to achieve an error e ≤ 5%.
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Figure 11. Performance of the standard RANS models to achieve an error 5% < e ≤ 15%.
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Figure 12. Performance of the standard RANS models combined with ψ1 to achieve an error 5% < e ≤ 15%.

This trend is most apparent when τW/τy is less than 20. Such a low ratio is attained when the
rheological yield stress is high or when a slurry with a moderate to high yield stress flows with a small
flow velocity, as suggested by Figures 9–12. Furthermore, when the ratio τW/τy is less than 10, more
than one-tenth of the pipe’s radial extent is theoretically occupied by an unyielding region that does
not promote turbulent mixing. This therefore requires the use of ψ2 to obtain a numerically converged
and accurate solution, as shown by shaded (filled) symbols in Figures 10 and 12.

Another observation is that the above-mentioned trend of ψ1 or ψ2 promoting accuracy for very
low τW/τy values is valid across a range of behaviour indices, namely 0.52–0.84 in plots presented in
this section. This range of behaviour index is sufficient to capture the change from a nearly Newtonian
behaviour (0.84) towards a dominant non-Newtonian behaviour (0.52), as illustrated in the study on
numerical model by Wilson and Thomas [37].

Furthermore, slurries with comparable behaviour indices but small to insignificant values of
τy (S8, S10 and S14 in our case), do not require the combination of ψ1 (ψ2 is no longer relevant as
τW/τy high enough for ψ1 to be sufficient for accuracy) with a RANS model for an accurate numerical
estimate. In fact, the standard κ − ε or the RSM (as shown by ) are sufficient to guarantee an error
e ≤ 5%.

The use of ψ1 or ψ2 requires a more involved discussion. Consider Figures 9 and 10 for S14; the
τW/τy values are between 10 are 100. The use of ψ1 changes a no solution to e ≤ 5% for the lower
velocities (V < 1 m/s) that concern a τW/τy close to 10. On the other hand, for S14 itself, the use of ψ1

leads to a no solution for higher velocities (V ≥ 1 m/s) for which, τW/τy is more than 60. Thus, for a
given rheology, the value of τW/τy is perhaps consequential in determining whether ψ1 must be used
or not.

Furthermore, for slurries S8 and S10 with τW/τy between 100 and 1000, the use of ψ1 actually
leads to a reduction in the performance of the κ − ε model. Comparing Figures 9–12, one notices that
both κ − ε and RSM lead to accurate quantifications, whereas the use of ψ1 only provides an accurate
estimate with the RSM. This is indicated by the change of most data points for S8 and S10, from to
within the dotted polygon.

Finally, comparing the plots in terms of the errors margins set for them i.e., e ≤ 5% for
Figures 9 and 10 and 5% < e ≤ 15% for Figures 11 and 12, one observes that most x (no solution) change
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to a solution obtained with either RANS models. In addition, solutions obtained with either κ − ε ( )
or RSM ( ) are obtainable with both models ( ) once the error margin is increased to 5% < e ≤ 15%.

4.3. Reynolds Number, Yield Stress and RANS Model

The analyses in Sections 4.1 and 4.2 did not incorporate the consistency index m. In effect,
the consistency index could be thought of as representing the Newtonian viscous aspects of a fluid,
with the behaviour index n and the yield stress τy, contributing to any deviation from Newtonian
behaviour.

However, as per Equations (8) and (9), the wall effective viscosity is directly related to the 1/n
power of m, which influences the Reynolds number directly. Furthermore, the analysis from Section 4.2
considers various slurries at different velocities. Therefore, it is only sensible to observe the data from
the analysis linking the yield stress and the flow velocity, in terms of τW/τy vs. ReW plots; as shown in
Figures 13–16. These are identical to the plots shown in Section 4.2 (Figures 9–12) but with ReW as the
x-axis instead of the flow velocity V.

One notices that the experimental data used for the analysis spans a considerable range of
Reynolds numbers i.e., 1× 104 < ReW < 8× 105. The region of interest in the previous section i.e.,
1 < τW/τy < 100, also spans the mentioned range of Reynolds numbers. Furthermore, it is worth
mentioning that this region also includes a range of behaviour indices i.e., 0.52–0.84.

Therefore, combining the analysis from Section 4.2 and Figures 13–16, the observation that ψ1

(or ψ2 as the need may be) leads to more accurate numerical estimates with RANS models when the
flow conditions are such that τW/τy < 100, is valid not only for a range of Reynolds numbers but also
an acceptable range of consistency indices.
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Figure 13. Performance of the standard RANS models to achieve an error e ≤ 5%.



Water 2019, 11, 19 16 of 19

104 105 106

Re
W

100

101

102

103

W
/

y

e  5% , 

0.79

0.7

0.65

0.6

0.6

0.52

0.52
0.73 0.84

0.8

  S8

  S10

  S14

  S17

  S21

  Park1
  Kers0608

  Kers2408

 -  & RSM
 - 

RSM
None

2

Figure 14. Performance of the standard RANS models combined with ψ1 to achieve an error e ≤ 5%.
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Figure 15. Performance of the standard RANS models to achieve an error 5% < e ≤ 15%.
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Figure 16. Performance of the standard RANS models combined with ψ1 to achieve an error 5% < e ≤ 15%.

This helps establish that, within an envelope defined by 1 < τW/τy < 100 and 1× 104 < ReW <

8× 105, the use of the proposed wall function ψ1 (or ψ2 when τW/τy is very low i.e., less than 10) is
necessary for accuracy, shown as the dashed polygon in Figures 13–16 and corresponding with the
same region in Figures 9–12. Furthermore, outside of this envelope in terms of τW/τy > 100, the
use of ψ1 is not required and may perhaps lead to a loss in accuracy or compromise the functioning
of the κ − ε model, in our case, shown as the dotted polygon in Figures 9–12. At the moment, it is
not possible to provide a clear and complete explanation as to why the use of ψ1 with an RSM for a
test-case in which τW/τy >> 1 still leads to accurate estimates with the RSM but not with the κ − ε

model. This may simply be because of differences in the models’ formulations [38] or mathematical
artefact, either of which is beyond the scope of this article, as suggested previously.

5. Conclusions

Based on the mentioned observations, one may conclude that the proposed wall functions ψ1 and
ψ2 when combined with the standard κ − ε or RSM could lead to accurate numerical quantification
of the wall shear experienced by a circular pipe carrying a Herschel–Bulkley fluid in turbulent flow.
However, the ability of this numerical method (RANS combined with ψ1 or ψ2) to be accurate is limited
by an operational envelope.

Simulations of test-cases that vary in Reynolds number (ReW based on the wall effective viscosity)
within 1× 104 < ReW < 8× 105, while covering a range of behaviour indices 0.52 to 0.84, indicate that
the operational envelope is determined by the ratio of the wall shear stress to the rheological yield
stress of the Herschel–Bulkley fluid in question i.e., τW/τy. For values of τW/τy below 100, the use of ψ1

with a RANS model generates an accurate (e < 5%) estimate of the wall shear stress, which otherwise
is not possible with the standard Newtonian wall function [5]. Furthermore, as one approaches values
below 10, ψ2 must be used with to account for a stronger Herschel–Bulkley behaviour.

On the other hand, for values of τW/τy greater than 100 (and all the way up to 1× 104 as tested
here), both the κ − ε and RSM combined with the standard Newtonian wall function achieve an
accuracy of e ≤ 5%. The use of ψ1 leads to a faulty solution (e > 15% or not converged) with the
κ − ε model but not with the RSM. This may be attributed to fundamental differences between the
formulations of the two RANS models; further investigation in this regard is required.
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In relation with concentrated domestic slurry, CFD is a promising tool to analyse turbulent
slurry flows (Herschel–Bulkley type), while using the proposed operational envelope as a guideline.
The pressure drop as estimated through CFD can be used to size the pumps required for the transport
of concentrated domestic slurry. Further experimentation and numerical simulations could provide
more insight into the nature of turbulence in such flows, which could in turn be used to develop
(or modify existing) simpler engineering models. With such models, one could obtain the frictional
losses through an entire urban sewer system transporting concentrated domestic slurry. Finally,
the use of ψ1 (ψ2) need not be restricted to the transport of slurry. Being generalised functions,
they could be used to simulate any system carrying a Herschel–Bulkley fluid in turbulent flow.
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