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Abstract: Precipitation climatologies for the period 1961–1990 were generated for all climatic regions
of Costa Rica using an irregular rain-gauge observational network comprised by 416 rain-gauge
stations. Two sub-networks were defined: a high temporal resolution sub-network (HTR), including
stations having at least 20 years of continuous records during the study period (157 in total); and
a high spatial resolution sub-network (HSR), which includes all HTR-stations plus those stations
with less than 20 years of continuous records (416 in total). Results from the kriging variance
reduction efficiency (KRE) objective function between the two sub-networks, show that ordinary
kriging (OK) is unable to fully explain the spatio-temporal variability of precipitation within most
climatic regions if only stations from the HTR sub-network are used. Results also suggests that
in most cases, it is beneficial to increase the density of the rain-gauge observational network at
the expense of temporal fidelity, by including more stations even though their records may not
represent the same time step. Thereafter, precipitation climatologies were generated using seven
deterministic (IDW, TS2, TS2PARA, TS2LINEAR, TPS, MQS and NN) and two geostatistical (OK and
KED) interpolation methods. Performance of the various interpolation methods was evaluated using
cross validation technique, selecting the mean absolute error (MAE) and the root-mean square error
(RMSE) as agreement metrics. Results suggest that IDW is marginally superior to OK and KED for
most climatic regions. The remaining deterministic methods however, considerably deviate from
IDW, which suggests that these methods are incapable of properly capturing the true-nature of spatial
precipitation patterns over the considered climatic regions. The final generated IDW climatology
was then validated against the Global Precipitation Climatology Centre (GPCC), Climate Research
Unit (CRU) and WorldClim datasets, in which overall spatial and temporal coherence is considered
satisfactory, giving assurance about the use this new climatology in the development of local climate
impact studies.
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1. Introduction

Precipitation climatologies represent the foundation of climate research in a variety of sectors,
including agriculture, forestry, water resources management, hydrological and hydrogeological
modelling, urban planning, flood inundation and biodiversity management; all of which need to adapt
to future Climate Change impacts [1–3]. Precipitation climatologies have extensively been used to
evaluate general circulation models (GCMs) and regional climate models (RCMs) by comparing their
outputs to observational data sets [4,5]. The generation of precipitation climatologies is generally based
on data coming from rain-gauge observational networks, which are recurrently sparse and unevenly
distributed in many regions of the World [6]. Furthermore, historical records observed through these
networks are frequently incomplete because of missing data during the observed period or insufficient
number of stations in the study region [7,8].

The absence of homogeneous and continuous historical records can considerably limit the
scope of local climate impact studies over specific areas of interest [9]. The reasons for such
discontinuities include relocation of the observation stations, equipment and data-acquisition failure,
cost of maintenance and changes in the surrounding environment due to anthropogenic or natural
causes [10–12], which has motivated climatologists to re-examine historical weather-station records.

Rain-gauge observational networks are constructed with the intention of providing measurements
that adequately characterize most of the non-trivial spatial variations of precipitation [13,14]. This
is hard to accomplish if only continuous and regular observational networks are included in the
generation of such climatologies. The situation becomes more severe in tropical regions, due to high
spatial and temporal variability and scarce data availability [15].

On that premise, some climatologists may choose to favour a high spatial resolution (HSR)
network by maximizing the amount of temporally discontinuous, irregularly distributed rain-gauges
at the expense of reducing the extent to which the station records are lengthy and temporally
commensurate [16]. On the contrary, a different group of climatologists may favour a high temporal
fidelity by promoting a high temporal resolution network (HTR) at the expense of reducing the number
of rain-gauges and, therefore, their ability to spatially resolve the climatic field of interest [17,18]. This
is done by selecting records that are sufficiently long and temporally commensurate within a regularly
distributed, temporally continuous network.

To this end, various attempts have been made to develop and improve global and regional gridded
precipitation datasets, but they usually suffer from the lack of sufficient rain-gauge observational
densities [19–21]. Nonetheless, historical records coming from rain-gauge observational networks
even when discontinuous and irregular, represent the most reliable source of climatic information
prior to the emergence of remote sensing products, and therefore continue to comprise the bases of
most credible estimates for generating long-term time series of areal precipitation [6,22].

The reconstruction of precipitation climatologies largely relies on the application of spatial
interpolation methods on data recorded by such observational networks [23]. Spatial interpolation
is achieved by estimating a regionalized value at unsampled points from weights of observed
regionalized variables. Interpolation methods can broadly be classified as either deterministic or
geostatistical [24]. The fundamental principle behind deterministic methods is that the relative weight
of an observed value decreases as the distance from the prediction location increases. Geostatistical
methods however, are based on the theory of regionalized variables, and provide a set of statistical
tools for incorporating the spatial correlation of observations in the data processing. Some authors
have criticized deterministic methods since they are unable of accounting for temporal and spatial
disaggregation [4]. Geostatistical methods, in contrast, have the capability of incorporating covariants
fields, which are in principle denser than point field observations [25]. The relevant secondary
information supplied by covariants can potentially improve interpolation results as long as they
exhibit a strong correlation with the interpolated field [26]. Among such covariants, elevation has
commonly been used [27,28].
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Different interpolation methods lead to different errors depending on the realism of the
assumptions on which they rely [29]. Geostatistical methods rely on the assumption of data stationarity,
which requires normal distribution and homogeneous variance of the field variable [30]. Precipitation
is a highly skewed, heteroscedastic and intermittent field in nature and therefore frequently contradicts
the assumptions of data normality. This forces data transformation using analytical or numerical
techniques, which cannot always satisfy the assumptions on normality and homoscedasticity [31].
Geostatistical interpolation methods nonetheless, have broadly been applied in the design, evaluation
and monitoring of rain-gauge observational networks. Among such methods, kriging is one of
the most popular geostatistical interpolation techniques—widely accepted due to its relatively low
computational cost and its flexibility regarding input and output data [14]. When using kriging,
several outputs can be generated besides the prediction field; this includes the estimation of the
residual errors and the kriging variance. Kriging variance is also estimated on points where no
observations exist and, consequently, provides a spatial view on the measure of performance [32].
Various methods of rain-gauge network performance have been developed using kriging interpolation
techniques. For such methods, known as variance-reduction techniques, the performance evaluation
of a rain-gauge network focuses on reducing the error variance of the average field value over a certain
domain [33–35]. Most of these techniques take into account the number and location of rain-gauges
to yield greater accuracy of areal precipitation estimation with minimum cost. Bastin et al. [33]
used the kriging variance as a tool in rain-gauge network-design for optimal estimation of the
areal average precipitation. The authors developed an iterative screening procedure that selected
rain-gauges associated with the minimum kriging variance. Consequently, all available rain-gauges
are prioritized and this information is used for adding or deleting rain-gauges within the network.
Similarly, Kassim and Kottegoda [34] prioritized rain-gauges with respect to their contribution in
kriging variance reduction in a rain-gauge network through comparative kriging methods. By contrast,
Chebi et al. [35] developed a robust optimization algorithm blending kriging variance reduction
and simulated-annealing to expand an existing rain-gauge network by considering Inverse Distance
Weighting (IDF) curve-parameters evolution, which ultimately allowed the authors to optimally locate
new rain-gauges in imaginary locations.

Consequently, the concept of kriging variance-reduction could also be used to determine whether
a HSR rain-gauge network could yield a more accurate estimate of a point precipitation average than a
HTR rain-gauge network for the same time step and region. If by using a HSR rain-gauge network,
which is most likely temporally discontinuous and irregularly distributed over a certain domain for
a specific time step, the resulting average interpolated precipitation yields a lower kriging variance,
it is probably wiser to increase the density of the rain-gauge network at the expense of temporal
fidelity by including more stations, even though their records may not exactly represent the same time
step. This is of the utmost importance for the reconstruction of precipitation climatologies in many
regions of the world, where rain-gauge network-densities, as well as their temporal resolution, are
far from optimal [13]. As stated in the regional projection of the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change [36], Central America is one of the regions in the world
that most likely will experience an important decrease in mean annual precipitation in the following
decades. This trend has already been identified by previous Climate Change regional studies focusing
on the Central American corridor [36–38]. In consequence, there is a heightened need to generate
quality precipitation climatologies for such regions, even on the grounds of data-sparse discontinuous
and irregular rain-gauge observational networks.

This research focuses on Costa Rica, Central America, where most of the territory has experienced
some degree of precipitation change during the period 1961–1990, showing increases on the
north-western Caribbean side and decreases on the Pacific side [39,40]. Accordingly, the objective
of this study is to determine whether a high spatial resolution (HSR) rain-gauge network yields a
more accurate estimate of average precipitation than a high temporal resolution (HTR) rain-gauge
network, based on the application of kriging variance-reduction techniques. The performance of
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various interpolation methods in the generation of monthly precipitation climatologies for the period
1961–1990 is then evaluated for all climatic regions of Costa Rica. Finally, the generated climatologies
are validated against publicly available global precipitation datasets, including those from the Global
Precipitation Climatology Centre (GPCC), the Climate Research Unit (CRU) and WorldClim.

2. Materials and Methods

2.1. Study Area

Costa Rica is located across the Central American isthmus between Panama and Nicaragua at
almost its narrowest point (Figure 1b). The country is bordered by the Caribbean Sea to the east and the
Pacific Ocean to the west, which favours oceanic and climatological influences from both oceans. Costa
Rica occupies an area of 51,060 km2 and is meridionally divided by northwest-southeast trending
cordilleras of different topographic complexity which rise to over 3400 m (Figure 1a).
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Figure 1. (a) Location of rain-gauge and Digital Elevation Model (DEM) for each climatic region in
Costa Rica during the period 1961–1990. (b) Position of Costa Rica in Central America.

Coastlines and cordilleras however, do not run parallel to one another, thus displaying increased
widths and elevations towards the south-east territory [41]. Precipitation variability in Costa Rica is
driven by interactions between the local topography and a combination of the seasonal migration of
the intertropical convergence zone (ITCZ), which includes sea breeze effects, monsoonal circulations,
strong easterly trade winds, cold air masses from mid-latitudes in the winter and the perturbing
influences of hurricanes and tropical cyclones in the Atlantic Ocean [42]. The complex pattern of
precipitation regimes apparent in the country reflects influences at a variety of geographic scales.
The temporal and spatial variability of precipitation in the country is heavily influenced by El
Niño-Southern Oscillation (ENSO), which complex responses (warm or wet) vary in terms of their
signs, magnitudes, duration and seasonality between those areas draining towards the Pacific and
those draining towards the Caribbean. Consequently, mean monthly precipitation exhibits a strong
seasonal cycle and regional variability [43], which can be observed by the monthly precipitation



Water 2019, 11, 70 5 of 22

derived from all available rain-gauge stations for the period 1961–1990 (Figure 2). Accordingly, the
Instituto Meteorológico de Costa Rica (IMN) [44] has divided the Costa Rican territory into six separate
climatic regions: North, Caribbean, North-Pacific, Central-Valley, Central-Pacific and South-Pacific, in
which northeastern and southwestern domains are determined by the position and elevation of the
aforementioned cordilleras (Figure 1a). These established regions reflect the separation that elevation
imposes between Caribbean (northeastern) and Pacific (southwestern) sources of moisture and also
reveals the important role played by elevation in controlling local precipitation [45]. This enables
important insights into local climates, characterized by diverse and heterogeneous land surfaces.
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Figure 2. Mean monthly precipitation derived from all available rain-gauge stations for each climatic
region in Costa Rica during the period 1961–1990. Error bars represent the standard deviation.

2.2. Datasets and Data Transformation

Aggregated monthly precipitation data were provided by Instituto Meteorológico of Costa
Rica (IMN) for the period 1961–1990. A total of 416 rain-gauge stations were active during
this period throughout the country, but their spatial distribution is irregular and not all stations
registered continuously or records were not temporally commensurate. Consequently, two rain-gauge
sub-networks were defined (Figure 1a): a high temporal resolution sub-network (HTR), which includes
stations possessing at least 20 years of continuous records during the study period (157 in total); and a
high spatial resolution sub-network (HSR), which includes all HTR-stations plus those stations with
less than 20 years of continuous records (416 in total). Stations included in the HTR network had at
least 90% of available monthly records during the 20-year defined temporal window. Therefore, the
number of stations used at each time step varies over time within both sub-networks, with the HTR
providing the most commensurate long-term monthly records.

An analysis of the temporal evolution of both sub-networks across all climatic regions shows that
precipitation data were collected from a constantly changing configuration during the entire study
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period, which peaks in the mid-1970s and starts to decrease in the mid-1980s, with a drastic drop after
1987, when many stations all around the country were either abandoned or relocated (Figure 3). The
HSR sub-network satisfies World Meteorological Organization (WMO) standards of 250 km2/gauge
for mountainous areas [46] in the Caribbean, Central-Valley and Central-Pacific regions during most of
the 1970s and 1980s, with the Central-Pacific not reaching the minimum value during most of the 1960s.
North, North-Pacific and South-Pacific regions, however, barely reach that standard during most of
the 1970s and 1980s, with the North region being the most critically instrumented area, particularly
during most of the 1960s. In contrast, the HTR sub-network only satisfies WMO standards for the
Central-Valley region, since rain-gauge stations seemed to concentrate in the most populated region of
the country. After 1987, however, only the Central-Valley region satisfies WMO standards. All other
regions are way above the 250 km2/gauge after 1987 regardless of HSR or HTR, as there barely four
operational stations in each region. Quality control of the IMN precipitation data was undertaken to
identify possible systematic or acquisition errors and extreme outliers.
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Figure 3. Temporal evolution of Instituto Meteorológico de Costa Rica (IMN) rain-gauge network
density (km2/gauge) for each climatic region during the period 1961–1990. Black dashed-lines mark
WMO density standards for mountainous areas (250 km2/gauge).

Since geostatistical interpolation methods rely on the assumption of data normality, records from
both rain-gauge sub-networks were transformed using the Box–Cox optimization technique [47] to
correct for non-Gaussianity and approximate normality. The transformation is dependent on the
parameter Lambda only (λ).

Y∗ =

{
Yλ−1

λ λ 6= 0
log(Y) λ = 0

(1)

where Y and Y* are the original and transformed variables, respectively; λ is the
transformation parameter.

Box–Cox transformation was individually applied to HSR and HTR datasets for each climatic
region at a monthly basis, prior to the application of kriging interpolation. As suggested by
Erdin et al. [48] and Woldemeskel et al. [49], possible values for “λ” were constrained to a minimum
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value of 0.2 in order to avoid excessive data transformation. Precipitation estimates and kriging
variance were subsequently back-transformed to their original units (mm/months). Logarithmic
transformation was not considered because of the impossibility of transforming zero values. Kriging
variance was also calculated using the raw non-transformed data for comparison purposes.

2.3. Kriging Variance Reduction Efficiency

Ordinary kriging (OK) is one of the most popular kriging estimators and can be described as a
weighted average interpolation [30], where estimated values at target locations are calculated taking
into account the distance of the neighbouring observed values to the location of the point to be
estimated according to:

Ẑ(X0) =
n

∑
i=1

λiZ(Xi) (2)

where Ẑ is the estimated value at an unobserved location X0, Z is the observed value at the sampled
location, Xi and λi are the kriging weights.

OK weights for sampled values are calculated based on the parameters of a variogram model,
which provides the best linear unbiased estimator of point values with minimum error variance [15]
according to:

γ̂(h) =
1

2n

n

∑
i=1

[Z(Xi)− Z(Xi + h)]
2

(3)

where γ̂ is the semivariance as a function of distance, h is the distance separating sampled points and
n is the number of pairs of sampled points.

A plot of γ̂(h) against h is known as the observational variogram. Standard variograms models
can then be fitted to the observations. OK weights are determined such as to minimize the estimation
of the kriging variance:

Var
[
Ẑ(X0)

]
= E

[(
Ẑ(X0)− Z(X0)

)2
]

(4)

where Var is the kriging variance and Z(X0) is the true value expected at point X0.
OK weights are finally calculated by relating the semivariance γ̂ to a system of linear equations

known as the ordinary kriging system (OKS):
n
∑

i=1
λiγ̂(dij) + µ = γ̂(di0); f orj = 1, . . . n

n
∑

i=1
λi = 1

(5)

where γ̂
(
dij
)

and γ̂(di0) indicate the variogram values that come from the standard variogram models
for the distance dij and di0 respectively, dij is the separation distance between sampling points Xi and
Xj, di0 is the separation distance between the sampling point Xi and the target location, and µ is the
Lagrange multiplier.

The robustness of OK significantly depends on the proper selection of standard variograms
models that quantify the degree of spatial autocorrelation in the dataset [24]. Since the duration,
magnitude and intensity of precipitation events vary across space and time, it is not realistic to
adopt a unique variogram for all precipitation events, irrespective of seasonal and meteorological
conditions [14]. Thus, selecting an appropriate model to capture the features of the data is critical [9].
Variogram fitting should reflect specific spatial structures of particular time lapses and therefore, the
use of stationary variograms should be avoided. In this study, parameters values of the range, nugget
and sill for standard variograms models (Spherical (Sph), Exponential (Exp), Gaussian (Gau), Matern
(Mat) and Matern–Stein (Sten)) were automatically and individually fitted to HTR and HSR datasets at
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each time step, such as to minimize the weighted sum of squares of differences between experimental
and model variogram values:

WSS =
n

∑
i=1

ω(hi)[γ̂(hi)− γ(hi)]
2

(6)

where γ is the experimental semivariance, γ̂ is the model semivariance, h is the distance separating
sampled points and ω is the relative weight assigned as a function of distance.

To assess whether the HSR sub-network yielded a lower kriging variance than the HTR
sub-network for the same time step, the kriging variance reduction efficiency (KRE) function of
the spatially-averaged kriging variance between the two sub-networks was employed for each of the
six climatic regions, according to:

KRE =

(
VarHTR

[
Ẑ(X0)

]
−VarHSR

[
Ẑ(X0)

]
VarHTR

[
Ẑ(X0)

] )
100 (7)

where KRE is the kriging variance reduction efficiency (%), VarHTR is the HTR spatially averaged
kriging variance and VarHSR is the HSR spatially averaged kriging variance.

Positive KRE values for a certain climatic region and time step indicate that the HSR sub-network
yields a more accurate estimate of a point precipitation average than the HTR sub-network. Negative
values indicate the opposite. KRE was also calculated using the raw non-transformed data for
comparison purposes.

2.4. Interpolation Methods and Experimental Setup

Deterministic and geostatistical interpolation methods (Table 1) were selected to produce spatially
continuous precipitation climatologies for each climatic region of Costa Rica during the period
1961–1990 based on datasets from the HSR sub-network only (Figure 1a). All spatial interpolation and
data processing was executed using the R programming language (v3.5.2) [50] along with specialized
R packages. Geostatistical modelling, spatio-temporal data analysis and raster generation were
implemented by combining functionalities of the gstat (v1.1.6), sp (v1.3.1), raster (v2.8.4), RSAGA
(v1.3.0) and rgdal (v1.3.6) packages. Since the spatial structure of precipitation data varies in space and
time, OK automatic variogram fitting analysis was conducted separately for each sub-network and
climatic region at a monthly time step using the R packages automap (v1.0.14), which minimizes the
weighted sum of squares of differences between experimental and model semivariogram (Equation
(1)). All distances were calculated according to the official Costa-Rica Transverse-Mercator (CRTM05)
projected-coordinate-system using a spatial grid resolution of 1 × 1 km, which was selected primarily
on the grounds of computational costs. The selected interpolation methods were chosen on the basis of
(a) previous use in meteorology and climatology applications [13,24,51–53]; (b) continuity of recorded
data; (c) location and distribution of available rain-gauges and (d) computational cost. Topographic
information was derived from the Advanced Land Observing Satellite (ALOS) AW3D-30 m (30) Digital
Elevation Model (DEM), which was subsequently resampled to a 1 × 1 km spatial resolution using the
bilinear resampling technique. The R-code, raw-data, results and ggplot2 graphic-code are presented
in Supplementary Materials. As recommended by Daly et al. [26], resampled elevation from the
DEM was preferred over the actual station elevations points to improve spatial representation and
generalization of orographic and convective precipitation mechanisms.
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Table 1. Selected interpolation methods and relevant R packages.

Abbreviation Method R_package Class

IDW Inverse Distance Weighting gstat, sp, raster Deterministic
TS2 Trend surface, 2nd. polyn. surface gstat, sp, raster Deterministic

TS2PARA Trend surface, 2nd. parab. surface gstat, sp, raster Deterministic
TS2LINEAR Trend surface 2nd planar surface gstat, sp, raster Deterministic

TPS Thin Plate Spline gstat, sp, raster, rsaga Deterministic
MQS Modified Quadratic Shepard gstat, sp, raster, rsaga Deterministic
NN Nearest Neighbour gstat, sp, raster, rsaga Deterministic
OK Ordinary Kriging gstat, raster, automap Geostatistical

KED Kriging with External Drift gstat, raster, automap Geostatistical

2.5. Performance Assessment of the Interpolation Methods

Performance of the various spatial interpolation methods was evaluated using a leave-one-out
cross validation (LOOCV) technique on the HSR network only (Figure 1a). Cross validation statistics
serve as diagnostic tools to determine whether the performance of the selected interpolation method
was acceptable. In LOOCV, a subset of stations from the entire data set is temporarily removed and the
values at the same locations are estimated using the remaining stations (in this case, 25% of the stations
without repetitions). LOOCV was sampled randomly with no data repetition due to the temporal
discontinuities of the HSR sub-network. The procedure was repeated until all the stations in the data
set were temporarily removed in turn and estimated. Cross validation was limited to the period
1961–1987 for all climatic regions except for the Central-Valley and Caribbean regions, since after
1987 there were not sufficient stations to properly calculate semi-variograms for OK and KED. Two
indicators were used to quantitatively compare interpolated estimates against rain-gauge observations,
the mean absolute error (MAE) and the root-mean square error (RMSE) according to:

MAE =
1
n

n

∑
i=1
|Pi −Oi| (8)

RMSE =

√√√√ 1
n

n

∑
i=1

(Pi −Oi)
2

(9)

where Pi and Oi are the predicted and observed values respectively.
The MAE is an absolute measure of bias that varies between 0 to +∞. A MAE value close to 0

indicates an unbiased prediction. The RMSE ranges from 0 to +∞, and it is used for checking the
estimation accuracy between observed and predicted values. A RMSE value close to 0 indicates a
higher accuracy in estimation. The two indicators were calculated at each time step and presented as
monthly average for each climatic region.

2.6. Validation Datasets

The Global Precipitation Climatology Centre (GPCC), the Climate Research Unit (CRU), and
WorldClim global precipitation datasets were used to assess the performance of the generated IDW
climatology for all climatic regions of Costa Rica based on data from the HSR network (Figure 1a). The
full GPCC version 2018 dataset [21], which covers the period 1891–2016 at a 0.25◦ spatial resolution
(~25 km), is the most accurate in situ centennial monthly global land-surface precipitation product
of GPCC. It is based on the ~80,000 stations worldwide that feature record durations of 10 years or
longer. The data coverage per month varies from ~6000 (before 1900) to more than 50,000 stations.
Since GPCC covers the period 1891–2016, monthly totals were isolated for the period 1961–1990 only.
The CRU-CL version 2.0 monthly precipitation dataset [19], which covers the period 1961–1990 with a
spatial resolution of 10 min (~18.5 km), was constructed based on observations of a number of sources
including national meteorological agencies and archive centres, the WMO and the International Centre
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for Tropical Agriculture (CIAT). The CRU-CL includes not only precipitation but also temperature
and relative humidity among other variables. The WorldClim version 1.0 monthly precipitation
dataset [20], which was generated through interpolation of average monthly climate data from weather
stations, covers the period 1960–1990 and was distributed at spatial resolutions of 30 arc-s, 10 min,
5 min and 2.5 min. Major climate databases used in the generation of WorldClim include the Global
Historical Climatology Network (GHCN), the Food and Agriculture Organization of the United
Nations (FAO), the WMO, the International Centre for Tropical Agriculture (CIAT) and a number of
additional national databases. For comparison purposes, all global precipitation datasets, along with
the final IDW-generated climatology for Costa Rica, were resampled to a 25 × 25 km spatial resolution
using the bilinear resampling technique; mainly selected on the basis of the GPCC 0.25◦ (~25 km)
original spatial resolution (Figure 1a). The resulting spatially averaged time series were analysed for
each climatic region using the mean absolute error (MAE), the root-mean square error (RMSE) and the
Pearson’s correlation coefficient (CORR), intended to quantify the goodness of fit between the local
precipitation climatology and the aforementioned global datasets.

3. Results and Discussion

3.1. Kriging Reduction Efficiency

Monthly box-plots of the kriging reduction efficiency (KRE) for the period 1961–1990 show
significantly diverse responses among all climatic regions for both transformed and non-transformed
datasets (Figure 4). Concerning transformed datasets, KRE returns predominantly positive values
throughout most of the study period regardless of the climatic region, which proves that in most cases,
the HSR sub-network yields lower kriging variance than the HTR sub-network for the same time
step. As kriging variance greatly depends on parameters derived from standard-variograms (range,
nugget and sill), which fitting reflects specific spatial structures of particular time steps; predominantly
KRE positive values suggest that variograms derived from the HTR sub-network are insufficient
to properly represent the regional variability of monthly precipitation. In consequence, the HSR
sub-network captures a more detailed spatio-temporal distribution of the precipitation patterns over
most climatic regions of Costa Rica, even when the network is temporally discontinuous and irregularly
distributed. Despite the HTR sub-network providing the most commensurate, long-term monthly
precipitation records, its density remains below WMO standards for mountainous areas (Figure 3),
which is particularly vulnerable in the analysis and modelling of spatio-temporal climatic variability.

Specifically, the North, North-Pacific and South-Pacific regions show entirely positive values and
similar KRE quantile distributions throughout the study period, with lower median values during the
driest months (JFMA) and a tendency to increase as average precipitation also increases. KRE then
stabilizes during the wettest months (June through October) with narrower quantile distributions, to
finally decrease again at the end of November. This implies that KRE is more effective during the
wet season than during the dry season for these regions, with the North-Pacific and South-Pacific
regions draining towards the Pacific Ocean and the North region discharging towards the Caribbean
Sea (Figure 1a). The Central-Pacific region nonetheless, even when draining directly towards the
Pacific Ocean, exhibits a considerable distinct KRE behaviour when compared to the North-Pacific
and South-Pacific regions, since quantile distributions spread over the entire range (−100% to 100%)
indistinctly of dry or wet months (Figure 4).
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During the months of April, May and December, which represent the transition between the
dry and wet seasons, nearly 50% of the observations reach negative values as does October (the
wettest month) for the Central-Pacific region. This region exhibits higher network densities than the
North-Pacific or South-Pacific regions, but the HTR sub-network is highly concentrated along the
Pacific coastline, with only a few stations in the mountainous areas (Figure 1a). This configuration
suggests that during the analysed period (1961–1990), the Central-Pacific sub-network captured
spatially localized precipitation events throughout the year, which complex responses vary in terms
of their magnitudes, duration and seasonality. The occurrence of spatially localized precipitation
events is exacerbated by various climatic effects associated to the intertropical convergence zone
(ITCZ) [41,42], which most certainly occur at daily or hourly time scales and are ultimately aggregated
into monthly timescales. Subsequently, HTR fitted variograms exhibit lower nugget, lower sill and
shorter ranges values as compared to their HSR counterpart, which nevertheless is applicable to
the entire Central-Pacific region. To illustrate such situation, the HTR and HSR fitted variograms
for August 1971 are compared (Figure 5). In this case, the kriging-standard-error (square root of
the kriging variance) for the HTR sub-network (expressed in mm/month) tends to represent only
a small and localized fraction of the Central-Pacific coastline (Figure 5a), whereas the same metrics
are more spatially distributed for the HSR sub-network (Figure 5b). In consequence, even when the
average kriging variance for the HTR sub-network (0.112) is lower than its HSR counterpart (0.136),
which results in a negative KRE value (−21.401%), the metrics seem to be spatially biased due to the
abovementioned concentration of rain-gauge stations near the Pacific coastline. The presence of KRE
negative values in the Central-Pacific region should not suggest that the HTR sub-networks yield
a more accurate estimate of a point precipitation average than the HSR sub-networks do, since this
tendency is highly variable and does not replicate during the entire period of analysis. In summary,
OK is unable to explain a high portion of the spatial variability within the Central-Pacific region if
only stations from the HTR sub-network are included. Similar arguments can be used to explain the
presence of scattered KRE negative values in the Caribbean and Central-Valley regions, both of which
have the highest and more temporally stable network densities of all climatic regions (Figure 3).
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In the case of the Central-Valley region, in agreement to the Central-Pacific region; the transitional
months of April and December show the widest KRE quantile distributions, with a clear tendency
to stabilize during the wettest months (May to November). Similar to the North, North-Pacific and
South-Pacific regions, KRE is more effective during the wet season than during the dry season for the
Central-Valley region. In this case, the incidence of higher network densities does not prevent the
presence of KRE negative values during the driest months.

On the other hand, performance of the kriging variance-reduction (KRE) noticeably benefited
from the Box–Cox optimization technique when applied to the North, North-Pacific, South-Pacific
and Central-Pacific regions, since in most cases non-transformed datasets produced predominantly
negative KRE values regardless of dry or wet months (Figure 4), which proves that data transformation
did improve Gaussianity of the precipitation field. Furthermore, for the North, North-Pacific and
South-Pacific regions, interquartile ranges are hardly distinguishable for most non-transformed
boxplots, indicating that precipitation is a highly skewed, heteroscedastic and intermittent field
in nature, which usually contradicts the assumptions of data normality [31]. This seems particularly
evident in Costa Rica, as mean monthly precipitation exhibits a strong seasonal cycle and regional
variability (Figure 2). Data transformation, nonetheless, is not as beneficial for the Caribbean and
Central-Valley regions, both of which exhibit the highest network densities (Figure 3). On one hand,
non-transformed KRE values outperform their corresponding transformed counterpart during the
wettest months (May to October) for the Central-Valley region. The opposite situation occurs during the
driest months. On the other hand, the Caribbean region, which exhibits the most persistent year-round
precipitation regime (Figure 2), shows little gain in applying data transformation, suggesting a more
normally distributed spatial pattern as compared to the remaining climatic regions. In summary, data
transformation seems to be more effective in regions with lower network densities. In regions with
higher network densities, however, data transformation is more effecting during the wettest months.

3.2. Temporal Evolution of the Observational Network

The temporal increase in rain-gauge density observed from 1961 to 1987 (Figure 3) does not seem
to significantly impact KRE values for the North, North-Pacific, South-Pacific and Caribbean regions
regardless of wet or dry season, since temporal observed-trends remain fairly stable throughout that
segment of the study period (Figure 6).
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This implies that prior to 1987, the HSR rain-gauge sub-network was sufficiently dense to
capture the spatio-temporal variability within each of these climatic regions in more detail. The
Central-Pacific and Central-Valley regions nonetheless, do not follow the same pattern when compared
to the remaining climatic regions. In the first case, there is in fact a temporal decrease in KSE as
rain-gauge density increases for all months except June, July and December, which once again could
be related to the highly concentrated number of stations along the Pacific coastline. The Central-Valley
region, on the other hand, shows a contradictory behaviour with a decreasing KRE tendency during the
driest months (JFM) and an increasing KRE tendency during the wettest months (ASO). In the case of
the Central-Valley region, this could also be related to the occurrence of spatially localized precipitation
events during the dry season that do not necessarily generate semi-variograms representative of the
entire climatic region. Once again, mean monthly precipitation exhibits a strong seasonal variability
all around the country [39,43].

After the abrupt drop in the number of rain-gauge stations experienced around 1987 (Figure 3),
all climatic regions show densities way above 250 km2/gauge, which ultimately caused a drastic KRE
decrease, irrespectively of wet or dry seasons. This is directly related to the lesser number of available
rain-gauge stations at a national level, making both sub-networks (HTR and HSR) very much alike in
proportion. As the number of rain-gauge stations between the two sub-networks reaches a constant
value, the estimation of the KRE statistic becomes meaningless, since the ratio of spatially averaged
kriging variances approaches zero. This is to be expected, since progressive improvement on the
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accuracy of interpolated results with increasing rain-gauge densities have been found in various studies
dealing with the application of kriging variance reduction techniques [28,54,55]. During the evaluation
of an experimental catchment in South West England, Otieno et al. [28] found that rain-gauge density
had an effect on the accuracy of interpolated results regardless of geostatistical or deterministic
methods, since they found a gradual improvement in error statistics with a corresponding increase in
the gauge density. In another study by Villarini et al. [54] over the Brue catchment in south-western
England, the effect of both temporal resolution and gauge density on the performance of remotely
sensed precipitation products was evaluated. Their results showed progressive improvement of
interpolated products with increasing rain-gauge density.

In a similar study in Lower Saxony, Germany, Berndt et al. [55] intended to investigate the
performance of merging radar and rain-gauge data for different temporal resolutions and rain-gauge
network densities, comparing among other aspects the influence of temporal resolution and gauge
density on variety of interpolation methods. Their findings indicate that any increase in sampling
density could improve the prediction accuracy of the considered interpolation methods used in spatial
prediction. The general trend observed at higher rain-gauge densities found by these authors also
agree with the findings of Li et al. [30] and Yang et al. [1], which established that the accuracy of the
methods used for spatial prediction increases as rain-gauge sample density also increases.

3.3. Performance of the Interpolation Methods

Cross validation heatmaps of MAE (Figure 7a) and RMSE (Figure 7b) mean monthly values
(colour gradient in absolute units of mm/month, text-labels expressed as percentage with respect
to the corresponding mean monthly precipitation) show that for all climatic regions, IDW, OK and
KED rank the highest positions of all evaluated interpolation methods (Table 2), since significantly
lower deviations (both absolute and percentage) are obtained when compared to the remaining
interpolation methods. In the case of the Central-Pacific region, nonetheless, IDW, TPS and KED
occupy the highest-ranking positions regarding MAE, and IDW, NN and KED regarding RMSE. All
other deterministic methods considerably deviate from IDW, OK and KED both in absolute units and
as percentage; particularly MQS, which seems unreliable to apply in all regions except the Caribbean
and the Central-Valley. Furthermore, MAE and RMSE results from IDW, OK and KED methods
reveal similar patterns of monthly precipitation distributions within each climatic region, whereas all
remaining deterministic methods produced considerably different seasonal patterns throughout the
year, mainly during the wettest months (July to November).

Table 2. Relative ranking of the various interpolation methods per climatic region.

METHOD CARIBBEAN NORTH NORTH_PACIFIC SOUTH_PACIFIC CENTRAL_PACIFIC CENTRAL OF

IDW3 1 2 1 1 1 1 MAE
TS2 7 7 7 7 8 4 MAE

TS2PARA 6 6 8 6 7 6 MAE
TS2LINEAR 8 4 4 4 5 5 MAE

NN 4 5 5 5 4 8 MAE
TPS 5 8 6 8 2 7 MAE

MQS 9 9 9 9 9 9 MAE
OK 3 1 3 2 6 2 MAE

KED 2 3 2 3 3 3 MAE
IDW3 1 2 1 1 1 1 RMSE
TS2 7 7 7 7 8 4 RMSE

TS2PARA 6 6 8 6 7 6 RMSE
TS2LINEAR 8 4 4 4 5 5 RMSE

NN 4 5 6 5 2 8 RMSE
TPS 5 8 5 8 4 7 RMSE

MQS 9 9 9 9 9 9 RMSE
OK 3 1 3 2 6 2 RMSE

KED 2 3 2 3 3 3 RMSE
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The results also suggest that IDW is marginally superior to OK and KED regarding statistics
metrics and computational efficiency. Not only is IDW relatively accurate, but it is computationally
more efficient than functional minimization such as TPS and MQS or spatial covariance-based methods
such as OK and KED. Several studies have found comparable performances between IDW and
numerous variations of kriging interpolation [28,56–58]. Otieno et al. [28] showed that IDW and OK
performed better than NN and TPS methods at various rain-gauge densities. The performances they
obtained from IDW and OK were similar, suggesting that OK though complex in nature, does not
show greater predictive ability than IDW.

KED did not significantly benefit from the inclusion of elevation as a covariant, since KED ranked
below OK (Table 2), suggesting that in most cases the inclusion of elevation would mostly result
in higher model uncertainty. This behaviour is supported by Ly et al. [57], whose results in the
comparison of IDW, NN and several kriging methods showed that incorporating elevation into KED
and OCK did not improve the interpolation accuracy of average daily precipitation at a catchment
scale. Similarly, Dirks et al. [56] compared various kriging interpolation methods against IDW and
NN in a catchment with a dense rain-gauge network, with their results showing that IDW performed
slightly better.

In similar circumstances, during the calibration of the SWAT hydrological model over the Pengxi
River basin of the Three Gorges Basin in China, Cheng et al. [58] found very similar results in the
comparison of precipitation interpolation products generated using the Thiessen Polygon (TP), Inverse
Distance Weighted (IDW) and Co-Kriging (CK) interpolation methods, and determined that IDW
outperformed all methods in terms of the median absolute error.

Regardless of interpolation method, mean monthly MAE (Figure 7a) and RMSE (Figure 7b)
deviations increase as monthly precipitation also increases (Figure 2), particularly for the Caribbean,
North and South-Pacific regions, which suggests that precipitation temporal and spatial variability
is higher during the wettest months as a consequence of orographic and convective precipitation
mechanisms that are not always captured by the HSR sub-network. Higher deviations during the
wettest months are even more extreme for the remaining deterministic methods, which suggest that
these methods are unable to properly capturing the true-nature of spatial precipitation patterns over
these regions, especially during the rainy season.

During the driest months (December to May), even when the corresponding MAE and RMSE
values for the Central-Valley, North-Pacific and Central-Pacific regions are relatively low; when
expressed as percentage with respect to the corresponding mean monthly precipitation, their
relative importance increases considerably, demonstrating that during these months, mean monthly
precipitation is not only relatively low but also highly variable (Figure 2).

The marginally lower performance of OK and KED as compared to IDW could be attributed to:
(1) data stationarity and normality required by OK and KED cannot always be satisfied by Box–Cox
transformation. Possible values for “λ” were constrained to a minimum value of 0.2 in order to avoid
excessive data transformation, which might not be the most appropriate power for all time steps,
particularly during the driest months; (2) data back-transformation may result in a biased estimation
of the primary precipitation variable (mm/months). Close to logarithmic transformations introduce a
positive bias in the residual distribution, which is related to an exaggeration of the upper tail of the
resulting PDF. This excessive skewness ultimately could lead to overestimates in kriging precipitation
estimates and variance; (3) the mechanical models selected for variogram auto-fitting (Sph, Exp, Gau,
Mat and Sten) may not be sufficient to capture specific spatial structures of particular time lapses,
and therefore could represent a disadvantage of the automation process. During the wettest months,
convective precipitation events are extremely localized, for which the spatial variability of precipitation
at a pixel scale causes the rain-gauges to disagree more profoundly among themselves. Convective
storms travel in different directions and their magnitudes also vary. The distribution of precipitation
changes from one event to another as well. Consequently, a wider family of mechanical variograms
models should be evaluated; (4) even when a resolution of 1 × 1 km was chosen for the entire Costa
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Rican territory, mainly on the grounds of computational costs, the impact of various spatial resolutions
of the interpolation process should also be evaluated; (5) resampled elevation from the ALOS DEM
was preferred over the actual rain-gauge station-elevations in order to improve spatial representation
of orographic and convective precipitation mechanisms. Nonetheless, this approach could have
generalized topographic information to an undesired level. KED however, performs slightly superior
than OK during the wettest months for the North-Pacific and Central-Pacific regions. In contrast to
the general tendency shown by IDW, OK and KED; methods NN and TPS rank respectively in the
second and third positions for the Central-Pacific region. This could be related to the aforementioned
high concentration of rain-gauge stations along the Pacific coastline, with only a few stations in the
mountainous areas (Figure 1a). Once again, the rain-gauge network captures spatially localized
precipitation events for this region throughout the year, irrespectively of dry or wet, which ultimately
affects most of the geostatistical methods assumptions.

3.4. Comparison with Global Validation Datasets

The generated IDW climatology is generally in good agreement with GPCC, CRU and WorldClim
global datasets for the Caribbean, Central-Valley, Central-Pacific, North-Pacific and North climatic
regions during the period 1961–1990 (Figure 8). GPCC shows in general, the highest average
correlations (0.913, 0.994, 0.940, 0.917 and 0.886, respectively) and lowest MAE (28.860, 10.759, 21.670,
13.407 and 36.903 mm/month, respectively) and RMSE (35.209, 12.786, 28.405, 15.453, and 48.959
mm/month, respectively) deviations for these five regions. The Central-Valley region shows the
highest CORR and the lowest MAE and RMSE deviations, whereas the North region shows the
lowest correlation and the highest MAE and RMSE deviations. This is somehow expected, as the
Central-Valley has the highest observational density of all climatic regions and the North region, one of
the lowest observational densities (Figure 3). Furthermore, for the period 1987–1990, the North region
has only four operational rain-gauge stations, which makes the comparison between the HTR and the
HSR sub-networks meaningless, since four is the minimum number of stations needed to estimate a
variogram. CRU on the other hand, generally shows lower correlations (0.884, 0.926, 0.896, 0.910 and
0.884, respectively) and higher MAE (38.509, 25.103, 30.541, 14.869 and 35.567 mm/month, respectively)
and RMSE (49.031, 27.736, 40.466, 17.405, 45.133 and 42.028 mm/month, respectively) deviations for
these five regions when compared to GPCC, particularly for the Central-Valley region, where a
considerable drop in correlation can be seem between the wettest months (September and November).
A similar drop can be seen for the Caribbean region during the month of April, which produces
the lowest correlation of the CRU dataset (0.884) and highest RMSE deviation (49.031 mm/month).
WorldClim typically shows average correlations (0.908, 0.956, 0.927, 0.932 and 0.893, respectively), and
MAE (26.591, 25.079, 26.961, 16.034 and 25.799 mm/month, respectively) and RMSE (36.871, 29.170,
37.654, 19.276 and 32.889 mm/month, respectively) deviations between GPCC and CRU, rating some
months even better than GPCC. WorldClim dataset also exhibited a drop in correlation and an increase
in deviation during the driest months (December to April) for the Central-Valley region, which has the
highest observational density of all climatic regions (Figure 3).
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Regardless of the global dataset, there is an overall increasing tendency in deviation (both MAE
and RMSE) for these five climatic regions as monthly precipitation moves from the dry to the wet
season; with the lowest deviations found in the North-Pacific region. Furthermore, all three global
datasets exhibit a considerable drop in correlation during the wettest months (August to November)
for the North region, with a corresponding peak in deviation between the transitional months of June
and July. The South-Pacific region however, exhibits an entirely different pattern when compared to
the remaining climatic regions, since GPCC, CRU and WorldClim exhibit the lowest average CORR
(0.773, 0.594 and 0.665, respectively) of all climatic regions, even when average MAE (18.607, 35.429
and 33.589 mm/month, respectively) and RMSE (23.683, 42.028 and 40.577 mm/month, respectively)
are similar in proportion to other regions.

CRU and WorldClim climatologies exhibit even lower CORR values for most of the year for this
climatic region. The causes of such discrepancies, which include all climatic regions but especially the
South-Pacific region can generally be attributed to: (1) the number of rain-gauge stations included in
the reconstruction and interpolation of the generated IDW climatology, which includes all rain-gauge
stations from the HTR sub-network regardless of the duration of the recording period. The total amount
of stations included in the three global dataset is most likely lower than the 416 rain-gauge stations
active during the period 1961–1990; (2) the blended data from different remote-sensing products and
the number of rain-gauge stations used in each global datasets. The algorithms used for estimation of
precipitation from satellite radiances may underestimate precipitation, particularly for those satellites
with visible and infrared sensors [9]; (3) the influence of orographic and convective precipitation
mechanisms that are not properly captured by any of the methods used in the generation of each
global datasets [59]; and (4) the complex topography and low rain-gauge density in the highlands and
valleys, particularly in the peninsular area of the South-Pacific region (Figure 1a).
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Even when the spatial resolution of the included global datasets (GPCC, CRU and WorldClim) is
much lower than that of the generated IDW climatology, the overall spatial and temporal coherence
among these products is considered satisfactory for all climatic regions except for the South-Pacific
region. In general, however, GPCC captures more of the spatial and temporal precipitation variability
within most climatic regions of Costa Rica.

This gives sufficient assurance that this new climatology can be used in the development of
local climate impact studies, which are needed to provide fine-scale climate information for impact
assessment and adaptation purposes. Furthermore, this new climatology is a valuable source of
information to validate and statistically downscale GCM and RCM precipitation projections over the
Costa Rica territory.

4. Conclusions

The generation of monthly precipitation climatologies for Costa Rica using irregular rain-gauge
observational networks was evaluated through the application of kriging variance-reduction
techniques. The following conclusions can be drawn:

i. Based on the analysis of the Kriging Reduction efficiency objective function (KRE), the HSR
sub-network captures a more detailed spatio-temporal distribution of the precipitation patterns
over most climatic regions of Costa Rica even when the network is temporally discontinuous
and irregularly distributed. Consequently, in the case of Costa Rica, it is better to increase
the density of the rain-gauge network at the expense of temporal fidelity by including more
stations even though their records may not exactly represent the same time step.

ii. The accuracy of the spatial interpolation methods and the subsequent estimation of the KRE
increases as rain-gauge sample densities also increase. Conversely, rain-gauge densities above
250 km2/gauge severely impact KRE regardless of the climatic region.

iii. IDW interpolation is marginally superior to OK and KED concerning error metrics and
computational efficiency. The remaining deterministic interpolation methods considerably
deviate from IDW, OK or KED, which suggests that these methods are incapable of properly
capturing the true-nature of spatial precipitation patterns over the considered climatic regions.

iv. Box–Cox data transformation is more effective in regions with lower network densities. In
regions with higher network densities however, data transformation is more effecting during
the wettest months. Data stationarity and normality required by OK and KED cannot always
be satisfied by Box–Cox transformation, which might not be the most appropriate technique
for all time steps.

v. The mechanical models selected for variogram auto-fitting may not be sufficient to capture
specific spatial structures of particular time lapses and therefore could represent a disadvantage
of the adopted automation process. In spite of the fact that elevation and the orientation of the
major cordilleras in Costa Rica are important modifiers of local precipitation patterns, their
exact role in enhancing or reducing precipitation in the various climatic regions is a question
open to debate.

vi. The overall spatial and temporal coherence of the generated IDW climatology with GPCC, CRU
and WorldClim global datasets is considered satisfactory for all climatic regions except for the
South-Pacific region. Nonetheless, GPCC performed generally better in capturing the spatial
and temporal patterns of observed precipitation in most climatic regions. Such agreement
gives assurance about the use this new climatology in the development of local climate impact
studies, which are needed to provide fine-scale climate information for impact assessment and
adaptation purposes.
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