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Abstract: This study examines the hydrologic and environmental performance of three types of
permeable pavement designs: Porous Concrete Pavement (PCP), Permeable Interlocking Concrete
(PICP), and Interlocking Block Pavement with Gravel (IBPG) in the semi-arid South Texas. Outflow rate,
storage, Normalized Volume Reduction (NVR), Normalized Load Reductions (NLR) of Total Suspended
Solids (TSS), and Biochemical Oxygen Demand (BOD5) were compared to results obtained from adjacent
traditional pavements at different regional parking lots. A notable percentage of peak flow attenuation of
approximately 31–100% was observed when permeable pavements were constructed and implemented.
IBPG was capable to hold runoff from rainfall depths up to 136 mm prior to flooding. PCP was the
most satisfactory in reducing surface runoff (NVR: 2.81 × 10−3

± 0.67 × 10−3 m3/m2/mm), which was
significantly (p < 0.05) higher (98%) than the traditional pavement. PCP was also very effective in TSS
removal (NLR: 244 × 10−5

± 143 × 10−5 kg/m2/mm), which was an increase of over 80% removal than
traditional pavement. IBPG (NLR: 7.14 × 10−5

± 7.19 × 10−5 kg/m2/mm) showed a significantly (p < 0.05)
higher (46%) BOD5 removal over traditional pavement. These results demonstrate that the type of
permeable pavement and the underlying media can significantly influence the runoff reduction and
infiltration in this climatic region.

Keywords: urban runoff; water quality; Low Impact Development (LID); permeable pavement;
stormwater management

1. Introduction

The Lower Rio Grande Valley (LRGV) is located at the southernmost tip of semi-arid South Texas,
separating Mexico from the United States. Due to rapid urbanization, a significant portion of the total
LRGV regional runoff is being exacerbated by impervious and traditional practices, including asphalt
commercial and industrial parking lots in different cities. This uncontrolled overflow eventually finds
its way toward the Arroyo Colorado water body, which serves as a floodway and provides the region
with fresh water. The water quality of this watershed does not support optimum living conditions for
aquatic life due to low dissolved oxygen levels. Consequently, the Arroyo watershed has been impaired
by elevated sediments and organic loadings associated with urban stormwater runoff [1]. A regional
effort was established to initiate the Arroyo Colorado Watershed Protection Plan. A major goal was to
incorporate various sustainable on-site stormwater treatment facilities known as Low Impact Development
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(LID) practices in the LRGV. LID implementation will help prevent on-site flooding and filter non-point
source pollutant loadings before draining into the local storm sewer and the watershed [2].

Permeable pavement has been widely accepted as one of many LID eco-technologies that increases
on-site stormwater infiltration and facilitates runoff storage within an aggregate reservoir [3,4]. In addition,
permeable pavements can help recharge groundwater, contribute to healthy ecosystems, and provide
opportunities for stormwater capture and reuse [3,5,6]. The most commonly used permeable pavements
include the following surface paving materials: Porous Concrete (PC), Porous Asphalt (PA), Permeable
Interlocking Concrete Pavers (PICP), Concrete Grid Pavers (CGP), and Plastic Reinforcing Grid Pavers [4,7].

PC is one of the most useful types of surface paving material. It consists of Portland cement
binder, coarse aggregates, water, and admixtures. More durable than PA, it is widely recognized as
a low-cost life cycle option available among the choices in the market [8]. The air voids within its
matrix are usually increased by the omission of fine aggregates to facilitate the infiltration through the
pavement system [5,8,9]. Designed to act like an underground detention basin, stormwater infiltrates
the void spaces within the concrete–aggregate matrix of PC [5].

Another useful form of permeable pavement, PICP, consists of manufactured precast concrete
block units that are arranged in an interlocking manner [8,9]. This material is highly durable and
attractive, easily functioning as a repairable permeable pavement system that requires low maintenance.
Further, this type of pavement is available in many different shapes, sizes, and combinations [5,8].
When two interlocking blocks are placed together, void spaces form at the midpoint and corner of the
paver; they are often filled with crushed stone, pea gravel, or topsoil for turf plantation [5,9,10].

A number of field-based studies have been carried out over the decades to assess hydrologic
and water quality performance of permeable pavement systems [7,9,11–19]. Permeable pavement
has been examined intensively, especially on the northeast coast of the USA or in cold climatic
regions, where storms produce freezing rain, snow, sleet, or a wintry mix of various precipitation
types [9]. The performance of a permeable pavement system is mainly influenced by factors, such as
pavement type, the thickness of the pavement layer, particle size distributions, and the porosity of the
bedding materials. In addition to other hydrological and pavement conditions, factors such as rainfall
depth, antecedent moisture contents, pavements age, and maintenance could have an impact on the
performance of permeable pavement systems [5,20].

By assessing hydrologic and water quality performance, various field studies have examined the
effectiveness of different permeable pavements types. In Wilmington, North Carolina, no runoff was
recorded from the PC surface for rainfall events below 30 mm [11]. A study explained an interesting outcome
in terms of rainfall intensity requirement, which should be more than 20 mm/h to generate a significant
volume of surface runoff on a PICP surface [15]. Previous studies have found that Porous Concrete Pavement
(PCP) and PICP can reduce peak flows by 60%–74% and 77%–89%, respectively, for maximum rainfall
ranging between 152 and 183 mm [13,21]. A recent study in Northeast Ohio investigated the median peak
flow reduction from PCP and PICP (constructed over low permeability soils) to be approximately 98% and
70%–100%, respectively, for rainfall events ranging between 2.5–89.2 mm [22]. Another field study in Georgia
observed 93% less runoff from PC than traditional asphalt pavement [23]. Some studies have found the
PCP underdrain exfiltration volume was 31%–100% of surface runoff volume for rainfall depths below
97 mm [11,24]. Another study found that when PICP was employed, the exfiltration volume was 24%–47%
of the surface runoff volume at rainfall depths of 22.6 mm [25]. In Kingston, NC, a study evaluated three
types of permeable pavements: PCP, PICP, and Concrete Grid Pavement (CGP). The results demonstrated
that PICP and CGP have higher storage capacity over PCP [13]. A recent study in the state of California, USA,
discussed the prospect of using fully permeable pavement (where all pavement layers are highly permeable)
to enhance the infiltration and storage of the stormwater runoff [26]. Another recent study in California
suggested that the thickness of the base aggregate layer of 0.15–2.9 m would be adequate to capture a range
of rainfall depths over the course of the wet season [27]. The performance of PICP in terms of peak flow
reduction is affected by the variation in rainfall magnitudes [28]. Another study examined the functionality of
permeable pavement in the cold climates of coastal New Hampshire. This pavement resulted in a reduction
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of peak flows by 90% [19]. The effectiveness of PICP was also examined in southwest Calgary, Alberta,
which showed a moderate range (30%–50%) of peak flow reduction, even when the temperature was below
0 ◦C [18]. Previous studies have shown that permeable pavements were capable of removing a significant
amount of suspended solids, ranging from 90%–96% [29]. One PICP system was successful in trapping
over 90% of runoff sediments within its paving and bedding aggregate layers [30]. A porous asphalt
pavement with a Permeable Friction Course overlay removed 90% of total suspended solids as compared
to conventional pavement [31]. Previous studies demonstrated that porous pavement can be capable of
reducing Total Suspended Solids (TSS) by 64%–87% from stormwater runoff [32,33]. Although sediments
enhance clogging within paver voids, proper maintenance that includes sweeping, pressure washing, or
a combination of both can enhance declogging and maximize the life span of porous pavement [34,35].
Some recent studies also demonstrated a significant removal (68%) of inorganic nitrogen species from PCP
and PICP, especially when their design was modified to enhance denitrification process [36,37].

Previous studies have recommended the assessment of runoff reduction and the water quality
improvement aspect of permeable pavements through continued field data collection in different climatic
conditions and geographic locations [38]. Additionally, climate change and changing rainfall patterns will
influence the future performance of permeable pavement systems [39]. In southern semi-arid climatic
regions, such as the LRGV in South Texas, summers are hot and humid with a daily average temperature
above 32.2 ◦C for most of the year due to currents in the Gulf of Mexico [40]. Tropical storms in the coastal
region of the LRGV are abundant during summer months. The region experiences deep drought-like
weather in mid-summer, and peak precipitation occurs in the spring and fall. Snowfall and freezing
rain are rare in the cooler and drier winter months [41,42]. Dissimilar storm patterns have emerged
between the east and the south-coast of USA, producing two conflicting scenarios of assessing runoff.
These specific scenarios may add new zone-specific and much-needed knowledge about the performance
of permeable pavement systems under different scenarios. Therefore, the goal of this field study was
to evaluate the design performance of three different types of permeable pavement in terms of peak
flow, runoff volume reduction, and water quality improvement in the semi-arid climatic region of the
LRGV with a detailed investigation of parameters that can affect performance. The information generated
through this evaluation should provide planners and developers with more reliable predictive runoff
reduction for these pavements to be applied in watershed management and development planning.

2. Materials and Methods

2.1. Site Description

Under the Texas Commission for Environmental Quality (TCEQ) sponsored LRGV LID implementation
project, several permeable pavements were utilized in different cities within the LRGV. In this study, three sites
were chosen, where three different types of permeable pavements and two adjacent traditional pavements
were monitored in terms of runoff reduction and water quality improvement aspects. Table 1 shows the
types of monitored permeable pavements and field-measured attributes of the study areas within the (TCEQ)
LID Implementation Project in the LRGV of Texas. Figures 1 and 2 show the geographic locations and top
surface of the three different monitoring sites for permeable pavements within this project.

Table 1. Summary of attributes (field-measured) of monitored sites for permeable and traditional
pavements under the Texas Commission for Environmental Quality (TCEQ) Low Impact Development
(LID) Implementation Project in the Lower Rio Grande Valley (LRGV) of TX.

Site Location City Pavement Type
Pavement

Surface Area
(m2)

Drainage Area
(m2)

Drainage to
Pavement Area
Ratio (DA/PA)

Monte Bella Park
Parking Lot Brownsville, TX

Porous Concrete
Pavement (PCP) 37 92.9 2.5:1

Traditional Asphalt
Pavement (TAP) 153.29 153.29 1:1
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Table 1. Cont.

Site Location City Pavement Type
Pavement

Surface Area
(m2)

Drainage Area
(m2)

Drainage to
Pavement Area
Ratio (DA/PA)

La Feria Recreation
Center Parking Lot La Feria, TX

Interlocking Block
Pavement with
Gravel (IBPG)

209 785 3.76

Traditional Block
Pavement (TBP) 242 913 3.77

Cascade Park
Parking Lot Brownsville, TX

Permeable
Interlocking

Concrete
Pavement (PICP)

372 518 1.39:1
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crown provided in the driveway to prevent receiving any runoff outside of the drainage area 
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panels) were installed on the site in September 2014. 
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The City of Brownsville (COB) finished the construction of a parking lot facility with porous
concrete at the Monte Bella Trail Park on February 2014. The parking lot was divided into three
sections with two parking spaces in each (Figure 3). Each PCP section was isolated by the pavement
crown provided in the driveway to prevent receiving any runoff outside of the drainage area boundary.
The drainage area was divided into different source areas (e.g., traditional driveway and concrete trail)
from where the runoff drained into the monitored section through the curb cut. All monitoring and
supplementary equipment (such as rain gauges, flow meters, autosamplers, and solar panels) were
installed on the site in September 2014.

Water 2019, 11, x FOR PEER REVIEW 5 of 25 

 
Figure 2. Surface of monitored pavements in different LRGV parking lots: (A) Monte Bella Park, 
Porous Concrete Pavement (PCP); (B) Cameron County Drainage District #1, Permeable Interlocking 
Concrete (PICP); (C) La Feria Recreational Center, Interlocking Block Pavement with Gravel (IBPG); 
(D) Monte Bella Park, Traditional Asphalt Pavement (TAP); and (E) La Feria Recreational Center, 
Traditional Block Pavement (TBP). 

The City of Brownsville (COB) finished the construction of a parking lot facility with porous 
concrete at the Monte Bella Trail Park on February 2014. The parking lot was divided into three 
sections with two parking spaces in each (Figure 3). Each PCP section was isolated by the pavement 
crown provided in the driveway to prevent receiving any runoff outside of the drainage area 
boundary. The drainage area was divided into different source areas (e.g., traditional driveway and 
concrete trail) from where the runoff drained into the monitored section through the curb cut. All 
monitoring and supplementary equipment (such as rain gauges, flow meters, autosamplers, and solar 
panels) were installed on the site in September 2014. 

 

Figure 3. Computer-aided topographic map of the COB in Monte Bella Park parking lot. (Dotted
rectangle represents the drainage area for the corresponding PCP and TAP sections). Note: Rc =

Runoff Coefficient.

The Cameron County Drainage District#1 (CCDD#1) completed the construction of PICP in the
parking lot of Cascade Park on February 2014. The main objective was to retain and treat the stormwater
runoff and water quality by reducing pollutant loadings as much as possible. Within the drainage site,
the driveway (204 m2) and concrete trail (42 m2) were constructed with traditional asphalt and concrete.
They were graded in such a way as to direct the runoff towards the PICP stalls through the curb cut
(Figure 4). There was no traditional type of pavement monitored in this parking lot. All monitoring
and supplementary equipment were installed at the site in September 2014.

The City of La Feria (COLF) Recreation Center completed the construction of an innovative
permeable block pavement on November 2013, which replaced regular blocks with concrete-brick blocks.
When these concrete-brick blocks were arranged in an interlocking manner, enlarged cell openings
were formed in the pattern filled with pea gravel to improve the infiltration rate. The remainder of the
lot area was finished with Traditional Block Pavement (TBP) and was paved with traditional concrete
brick blocks. The IBPG unit consisted of five stalls and driveway access, whereas the TBP covered
fourteen stalls and a proportional driveway area. The section of TBP (242 m2) located adjacent to
the IBPG was chosen for monitoring and comparison purposes with respect to IBPG performance.
Each monitored pavement section was graded downward so that the overflow was directed toward the
dedicated curb cuts and into the discharge pipe. This section also receives some portions of runoff from
the nearby 40 m2 of the concrete trail and 537 m2 of the vegetative landscape (Figure 5). All monitoring
and supplementary equipment were installed at the site in May 2014.
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2.2. Pavements Cross Section

After infiltration, the runoff is detained in the base porous media reservoir underneath the
PCP before draining to the local storm inlet through a 0.1 m diameter underdrain pipe (Figure 6A).
The estimated storage capacity of the existing PCP design was nearly 7 m3. The generated runoff

was drained to a dedicated overflow discharge pipe through two curb cuts in a corner. The overflow
pipes contained a Thel-mar weir at the downstream of the inlet, which was used to measure the runoff

flow rate from the observed PCP section. For the PICP, permeable linear joints or openings allow the
stormwater to infiltrate into a bedding layer of crushed stone, followed by a 0.25 m base reservoir
consisting of #57 open-graded aggregate. The approximate storage capacity of the existing PICP
design was estimated at 48 m3. The large size of the underdrain pipe (0.2 m diameter) was preferred
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to facilitate rapid drainage from the system (Figure 6B). Regardless of under-drainage, the IBPG
design was actually meant to retain stormwater runoff within the top 0.46 m of the base reservoir.
Therefore, there was no provision for the underdrain pipe in its design. The only mechanism that
governed minimizing runoff was the deep percolation through the subgrade (Figure 6C). The estimated
storage capacity of the existing design was nearly 40 m3. From the geotechnical report of this project,
the subgrade soil was found to be sandy clay with a seepage rate of 1.27 mm/h.
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2.3. Characterization of Pavement Materials

For all the permeable pavements, the surface infiltration rate was measured in the field by a Double
Ring Infiltrometer with inner and outer diameters of 0.3 and 0.6 m, respectively. The porosity of base
aggregates was measured in the laboratory by following ASTM C830-00 Test standard procedure.
Table 2 presents the field and laboratory test results of the characterization parameters of the pavement
surfaces and base reservoir materials.

Table 2. Summary of field and laboratory-measured values of different characterization parameters of
pavement surfaces and materials.

Parameters PCP PICP IBPG

Surface Infiltration Rate
(mm/h) 50,800 22,860 24,892

Surface Porosity 20% (Porous Concrete) 35% (Polymeric Sand
as Joint Filler) 25% Pea Gravel

Base Aggregates Porosity 35% (ASTM #57
Angular Washed Stone)

38% (ASTM #57 Open
Graded Aggregate)

40% (Compacted
Crushed Limestone)

2.4. RunoffMonitoring and Analysis

Within the LRGV LID implementation project, the runoff flow rate at the outfall of each pavement
was monitored, sampled, analyzed, and evaluated for a certain period of time. The overall field
evaluation procedure was conducted in accordance with the TCEQ approved Quality Assurance
Protocol Plan for the LRGV LID implementation project. All instruments or devices used in obtaining
rainfall and flow data were calibrated prior to use as needed by following the manufacturer’s
instructions. From the initial examination of the raw data, it was suggested that rainfall depths above
2 mm or higher over a 1 h period were adequate to generate a significant volume of runoff. In this
study, all monitored permeable pavements were designed to capture and store the runoff volume from
a minimum corresponding rainfall depth of 70 mm over a 24 h period. The total inflow volume towards
a respective pavement section is the summation of the direct rainfall volume onto the pavement
surface (calculated from the measured rainfall depth, multiplied by the area of pavement section)
and runoff volume from surrounding drainage sources (e.g., vegetation, asphalt pavement, concrete
trail, paved playground, and building roof). The inflow through the pavement section was estimated
from rainfall measured by a rain gauge (ISCO 674: Tripping bucket type) installed on the property.
When runoff drains towards the curb cut, it enters the overflow discharge pipe and reaches the tip
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where the Thel-mar weir was placed. Two flow meters (ISCO Signature flow meter with multiple
sensor connectivity) were used and connected to the bubbler-level sensors to measure the flow rate at
2 min time interval from the outfall of the discharge pipe of the respective pavement sections. Outflow
volume was calculated by multiplying the flow rate with time duration. These flow meters were
programmed to send a flow alert to the project team when the flow depth would reach above the notch
up to a certain level. The storage volume of each pavement was assessed by calculating the difference
between inflow and outflow volume.

Equations (1)–(5) show the equations used to calculate the total inflow volume into the pavement
surface, % peak flow reduction, total outflow volume at the pavement’s outfall, total volume
stored into pavements, and Normalized Volume Reductions (NVR) from monitored permeable
and traditional pavements.

Vi = R
(
Ap + C1A1 + C2A2 + C3A3 . . . . . .

)
(1)

where Vi = Total Inflow Volume onto Pavement Surface (m3); R = Rainfall Depth (mm); Ap = Permeable
Pavement Area (m2); A1, A2, A3 = Areas from Surrounding Drainage Sources (m2); and C1, C2,
C3 = Runoff Coefficients of Surrounding Drainage Sources.

The flow rate of runoff at the outlets of the pavements was measured by bubbler flow meters.
The following equation was used to calculate the % peak flow reduction for all monitored permeable
pavements:

% Peak Flow Reduction =
(TPPF − PPPF

TPPF

)
× 100 (2)

where TPPF = Normalized peak flow rate at the outfall of traditional pavement (m3/s) and PPPF =

Normalized peak flow rate at the outfall of traditional pavement (m3/s)
The following equations were used to calculate the volume of runoff from all of the

monitored pavements,
Vo = q0 × t (3)

where Vo = Total Runoff Volume (m3), q0 = oufflow rate (m3/s), and t = Flow Duration (s)

Storage Volume, S = Vi − Vo (4)

Normalized Volume Reduction (NVR) =
(

m3

m2·mm

)
=

Vi −Vo

Ap ×R
(5)

2.5. Water Quality Analysis

The runoff sample from the first flush was collected manually through a discreet approach (grab
sampling) from the designated catchment basin (0.3 m × 0.3 m × 0.3 m). This catchment basin was
located at the curb cut and connected to the overflow discharge pipe of each respective pavement section.
Samples were labeled with an indelible marker and were preserved in a designated container. Later,
samples were transported to the Ana-Lab Corp. (a National Environmental Laboratory Accreditation
Conference Institute-certified lab) in Brownsville, Texas, for the water quality analysis. The integrity
of the samples was confirmed from the beginning of sampling to transport, receipt, preparation,
and analysis of samples. All samples were analyzed for two major water quality parameters, Total
Suspended Solids (TSS) and 5-day Biochemical Oxygen Demand (BOD5). This study did not emphasize
comparative nitrogen removal study as the monitored IBPG was designed primarily for subgrade
infiltration to mitigate runoff [5,43]. Equation (6) was used to calculate Normalized Load Reduction
from monitored permeable and traditional pavements:

Normalized Load Reduction (NLR)
(

kg
m2·mm

)
= (Vi −Vo)C/(Ap ×R) (6)
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where C = Pollutant Concentration (kg/m3)
Table 3 summarizes the monitoring period and number of flow and water quality samples collected

during the period from the three different types of permeable pavements.

Table 3. Summary of flow monitoring events and water quality (Total Suspended Solids (TSS) and
Biochemical Oxygen Demand (BOD5)) samples collected from the catchment basin installed at the
outfall of monitored permeable pavements.

Site Location Monitoring Period Type of
Pavements

No. of Flow
Monitoring Events

No. of Water Quality
Samples Collected

TSS BOD

COB 09/2014–11/2014 PCP 13 4 4
TAP 13 4 4

COLF 05/2014–01/2016 IBPG 42 23 20
TBP 42 23 20

CCDD#1 08/2014–03/2015 PICP 20 5 5

All calculated NVR and NLR values were checked using the Kolmogorov–Smirnov test to see
whether these data follow the characteristics of a normal distribution. If these data did not follow
the pattern of a normal distribution, any significant difference in results between two pavements was
statistically evaluated by using the Mann–Whitney U test or the Wilcoxon Rank-sum Test.

3. Results and Discussion

3.1. Peak Flow, Runoff Reduction, and Storage

A total of 13, 20, and 42 flow monitoring events were considered for the daily hydrograph analysis
at the outfall of all the monitored pavements in COB, CCDD#1, and COLF sites, respectively. Flow data
were collected for each rainfall event for the three permeable pavements and adjacent traditional
pavements sections throughout the monitoring period. From each site, pavement behavior across
the monitoring period was analyzed to determine runoff reduction and storage capacity at different
rainfall depths. Storm events that had a total rainfall depth of less than 2 mm were not considered
significant and excluded from the database. The total flow rate was used to calculate total runoff and
storage volumes, which were then plotted against the corresponding rainfall depths. The flow results
demonstrated that permeable pavements not only reduced the runoff volumes but also attenuated the
peak flow at different rainfall depths. Among the three pavements, PCP showed improved reduction
performance for both runoff volume and peak flow when compared to PICP and IPBG.

Figures 7–9 show examples of hydrographs for the three pavements for a particular rainfall event
for each monitored site. These hydrographs demonstrated that the permeable pavements significantly
reduced the discharge volume as compared to traditional pavements. In all cases, the runoff of
traditional pavements usually mirrored the rainfall spikes, whereas the discharge from the permeable
pavements was relatively stable once the peak was reached. For the COB site, the highest rainfall depth
was recorded on 13 September 2014, with a total depth of 67 mm. For that event, a hydrograph taken
over 3 h is shown, which corresponds to PCP and TAP surface runoff flow rates (Figure 7). The TAP
runoff flow rate was reported at the start of the rainfall interval. The traditional asphalt pavement
runoff discharge displayed several peak flows for 3-h of rainfall with a total flow volume of 37.5 m3.
However, the PCP flow was reported for the duration of only 10 min from 00:14 to 00:24 with a total
volume of 0.66 m3. No runoff volume was recorded for the remainder of the storm event. PCP seemed
to demonstrate a substantial attenuation of 86% for the peak flow and an increase of lag time from TAP
for that flow event.
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Figure 7. A segment of observed 3-h runoff hydrographs with flow measured at the outfall of monitored
PCP and TAP at the Monte Bella Park Parking Lot, Brownsville, TX, from a total depth of 67 mm of
rainfall, which occurred on 13 September 2014.

At the CCDD#1 site, a storm event occurred on 22 October 2014, with a total rainfall depth of 17 mm.
Similarly, a hydrograph of PICP and TAP flow rates for more than 6-h is shown in Figure 8. Since there
was no traditional pavement monitored at the CCDD#1 station, PICP runoff volume was compared to
the COB-TAP runoff for that particular rainfall event. The PICP section has shown a dramatic reduction
in the surface runoff volume and peak flow when compared to the TAP. From Figure 8, it appears that
TAP demonstrated multiple peaks within the first 57 min of the flow event. The runoff continued
with a steady rate after 1 h with a total volume of 16.9 m3. On the other hand, PICP demonstrated
an increase in the lag time, showing only a single peak after 30 min of the event. For 6 h of runoff

monitoring, the PICP runoff rate was reported for only 45 min, whereas no runoff was observed for the
rest of the event. The PICP total runoff volume of 0.87 m3 was calculated, showing an 84% reduction
for peak flow as compared to TAP.Water 2019, 11, x FOR PEER REVIEW 12 of 25 
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Figure 9 depicts the runoff flow rates for IBPG and TBP at the COLF site; the total rainfall depth
was 15 mm and occurred on 20 November 2015. For 7 h of the monitoring period, there was a greater
runoff volume from the TBP section, as well a higher runoff peak flow rate despite the observed low
rainfall intensity. The total flow volumes for TBP and IBPG were 0.2 and 0.088 m3, respectively.
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IBPG and TBP at the La Feria Recreational Center Parking Lot, La Feria, TX, from a total depth of
15 mm rainfall, on 20 November 2015.

Within the first 2-h of the flow event, IBPG showed a 67% reduction in the peak flow in comparison
to TBP. However, IBPG did not show an increase in the lag as observed in the first two types. This result
can be explained in terms of the larger drainage area of the COLF site in comparison to COB and
CCDD#1 and the lower surface infiltration areas. The drainage to pavement area ratio for COLF was
3.8, whereas the ratio for COB and CCDD#1 was 2.5 and 1.4, respectively. The larger drainage area
increased the COLF site runoff catchment and allowed it to receive run-on from the surroundings.
At the same time, the IBPG surface area was approximately four times smaller than the drainage
area. This outcome could possibly be the reason for the continuous runoff flow to the pavement,
which caused no difference in hydrograph lag time between the IBPG and TBP sections.

Several studies concluded that permeable pavements can infiltrate the runoff and reduce its
peak flow rate [4,13,19,21,44]. Based on the three series of hydrographs in this work, the peak flow
was subjected to a significant attenuation when permeable pavements were brought into application
in the semi-arid climatic region of the LRGV. After achieving the peak flow, the runoff volume was
diminished as time elapsed for all permeable pavements. Meanwhile, a higher runoff volume was
observed at the traditional pavement monitoring sections while permeable pavements demonstrated
nearly a negligible discharge. When comparing the three representative hydrographs, PCP showed
the highest performance in peak flow reduction despite the high rainfall intensity. Both PICP and
PCP showed an increase in lag time, peak flow, and volume reduction. However, data from IBPG are
indicative of peak flow and volume reduction with a subtle difference in the lag time.

In cold climatic regions (such as Calgary, Alberta), peak flow from PCP and PICP varied over
a range from 21% to 50% [18]. In subtropical and humid climatic regions (such as the US State
North Carolina), peak flow was reduced by 67% and 60%–74% for PCP and PICP, respectively [13].
In the semi-arid climatic region of the LRGV, the attenuation of peak flow was quite impressive as
compared to other regions studied, ranging from 31% to 100% for PCP, 38% to 100% for PICP, and 42%
to 100% for IBPG, perhaps because of increased infiltration due to having little to no sediments/sanding
materials or frost penetration effects [19,45,46].
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Table 4 shows a summary of the performance of the pavements in terms of Normalized Volume
Reduction (NVR). Results from the Kolmogorov–Smirnov test suggest that the NVR data does not
follow or slightly follow the characteristics of a normal distribution (skewness: −2.1 to −0.10; kurtosis:
−1.22 to 4.6). All monitored permeable pavements showed substantially higher mean and median
NVR values as compared to traditional types. In the COB monitoring station, a total of 13 significant
rainfall events (Tables S1 and S2) were considered for the analysis of the PCP outflow volume from
the monitoring section (Figure 10). PCP produced significantly reduced surface runoff versus TAP
throughout the monitoring period. In a study of PCP in Wilmington, NC, no substantial runoff was
produced for events up to 30 mm [11]. In this project, no runoff was observed from the PCP surface
for six rainfall events; each was below 35 mm of depth with a total of 84 mm. In comparison to
the adjacent traditional pavement, the PCP mean NVR has been observed at 2.8 × 10−3 m3/m2/mm,
which is 98% higher than a TAP value of 0.07 × 10−3 m3/m2/mm. Furthermore, the Mann–Whitney
U test results indicated that the mean NVR from PCP was significantly (p < 0.05) higher than TAP.
Storage regression lines demonstrated that the existing PCP design can capture and store infiltrated
runoff for to rainfall events up to 70 mm of depth (Figure 10). Although rapid drainage of infiltrated
runoff might be anticipated due to the provision of a 10.1 cm polyvinyl chloride underdrain in the
sub-base layer, a very gradual storage increment was noted as rainfall depths increased.

Table 4. Summary of the performance of pavements in terms of normalized runoff volume reduction
monitored under the LRGV LID Implementation Project.

Pavement
Type

Normalized Volume Reduction × 10−3 (m3/m2/mm)
Runoff Reduction (%)

Mean STD Median 25% Percentile 75% Percentile

PCP 2.81 0.67 3.20 2.49 3.22 98 * 87 **
IBPG 2.20 0.46 2.45 2.07 2.48 46 * 88 **
PICP 1.28 0.52 1.62 1.06 1.63 96 * 80 **
TAP 0.05 0.90 0.36 0.15 0.50 - -
TBP 1.2 0.94 0.38 0.13 0.50 - -

* Average runoff reduction in comparison to the adjacent traditional pavement; ** Average runoff reduction
in comparison to inflow calculated runoff volume.
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Figure 11 shows the outflow volume of 20 rainfall events (Table S3) considered for CCDD#1-PICP.
For certain events, no runoff was observed, even for seven rain events that were less than 39 mm and
a total of 93 mm. By comparing PICP to TAP at the COB site, the permeable pavement system NRV
was 96% higher than the traditional pavement. From the regression equation of storage, the gradient
was determined to be 0.38 m3 per millimeter of rainfall depth. As the drainage was facilitated with
a 20.3 cm diameter of underdrain pipe, this might lead to a more rapid release of infiltrated runoff

from the reservoir.
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Figure 12 shows the results of IBPG at the COLF site for 42 (Table S4) significant rainfall–runoff

events. Negligible to no runoff was observed for 17 events with rainfall depths less than 20 mm and
a total of 131 mm. Normalized runoff volume was observed to be 46% lower in IBPG surface as
compared to TBP (Table S5) with the average NVR of 2.2× 10−3 and 0.05× 10−3 m3/m2/mm, respectively.
Results from the Mann–Whitney U test demonstrate that NVR is significantly (p < 0.05) higher in IBPG
over TBP throughout the entire monitoring period. As there was no underdrain provision in IBPG
design, the extensive 0.46 m of base storage might be adequate to store the infiltrated runoff for a certain
time period prior to percolating through the subgrade. From the regression equation of storage,
the outflow gradient was determined to be 0.28 m3 per millimeter of rainfall depth. The calculated
rainfall depth was 136 mm, up to which the existing IBPG design appears to hold the infiltrated runoff

within the base reservoir. These results indicate that the existing IPBG can capture runoff volume
corresponding to rainfall depths far above the design depth of 70 mm.
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Overall, the analyzed results clearly demonstrate a higher runoff reduction potential for all of
the permeable pavement systems, as opposed to traditional pavement systems, which were limited
to a certain rainfall range, design, and drainage condition. In cold climatic regions, the reduction
in surface runoff volume has been observed at ~16–57% for maximum rainfall depths ranging between
52 and 90 mm and DA/PA of at least 4:1 [22,47]. In subtropical and humid climatic regions, exfiltrate
volumes were 37%–66% of the surface runoff volumes for monitored permeable pavements with
a maximum rainfall depth of 183 mm and DA/PA of 1:1 [13]. For the semi-arid climatic region, our data
demonstrated improved runoff reduction potential for PCP; between 80% and 87% for maximum
rainfall depths of up to 70 mm and DA/PA at least 2.5:1. Clearly, the regional hydrologic performance
of permeable pavements depends on the geographic location and soil type and climate conditions,
probably linked to the change in infiltration potential. Since the local performance of a permeable
pavement system is influenced by its design and construction, the results can be discussed based
on several factors, including storage depth, paver configuration, and characteristics of materials [5].
Comprehensively, the PCP type was observed to have an improved runoff reduction potential as
compared to IBPG and PICP types in this project. This result might be explained in terms of the high
surface infiltration rates of the PCP in this installation.

Unlike conventional concretes, the fine portion of the porous pavement was greatly reduced in the
porous concrete mix, which allows for the forming of inter-connected void spaces within the concrete
matrix while curing [11]. In the COB-PCP design, the 15.2 cm base reservoir of PCP consisted of highly
permeable #57 open-graded washed stone with 35% porosity. This design probably helped detain
a significant volume of runoff after infiltration through the porous surface. The stability of storage layers
was ensured by installing 5 cm sand layer above the reservoir to prevent the migration of aggregates.
In most block pavers, the runoff reduction mechanism is usually dominated by the infiltration through
linearly permeable joints and concrete absorption. Additionally, the pea gravel-filled enlarged cell
opening units in the existing IBPG design (Figure 2) helped to improve the infiltration capacity
throughout the paver surface. Furthermore, an extensive base reservoir (45.7 cm) in IBPG consisted of
crushed limestone with 40% porosity. This surface might prolong the IBPG storage over regular PICP.
Unlike IBPG, infiltration was typical through permeable joints in existing PICP design at the CCDD#1
site. An enlarged (20.3 cm) perforated underdrain overlapped the base and subbase layer (Figure 3)
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and appeared to facilitate the rapid drainage of runoff outside of the site rather than detaining the
water within the base reservoir.

3.2. Water Quality Analysis

Figure 13 demonstrates observed TSS and BOD5 concentrations from the surface runoff, sampled
at the outfall of monitored PCP, PICP, and TAP at different LRGV sites. The bar graph represents the
observed concentration of TSS and BOD5 samples collected during four significant rainfall events.
For comparison, a total of four TSS and BOD5 samples (Tables S6–S8) were analyzed for COB-PCP,
COB-TAP, and CCDD#1-PICP during the monitoring period. Although our number of water quality
samples for these two sites was sparse, the dataset was justifiable in the assessment BMPs performance,
as advocated by previous studies [48–51]. TSS concentration was relatively high in those pavement
surfaces in comparison to values from the International Stormwater Database (ISD). Within the
monitoring timeframe, the TSS median for COB-PCP and COB-TAP was 621 and 900 mg/L respectively,
whereas the ISD median was 58 mg/L. Overall, TSS concentration in PCP and PICP was observed to be
lower than TAP in three events. The maximum TSS concentration was observed on 23 October 2014
in the COB site with a total rainfall depth of 52.8 mm. For that event, the TSS concentration was 2120 and
3980 mg/L for PCP and TAP, respectively. However, the maximum TSS concentration in CCDD#1-PICP
was observed on 21 October 2014, which was about 960 mg/L. The higher TSS concentration for these
sites can be explained through erosion of soil and dirt from the areas outside the parking lot, especially
for the higher rainfall events. The drainage area surrounding the parking lot was mostly undeveloped
unvegetated surfaces. On the other hand, BOD5 concentration showed a slight difference from ISD.
The average BOD5 concentration for PCP and TAP was 13.3 and 17 mg/L, respectively, whereas ISD
was 14.1 mg/L. The maximum BOD5 concentration was observed on 21 October 2014 from TAP, which
was about 26 mg/L. Overall, BOD5 concentration was observed lower in PCP than TAP for two events.
For those events, BOD5 concentration was 7.0 and 7.44 mg/L for PCP and PICP, respectively. At the
CCDD#1 site, the BOD5 concentration for the PICP was observed lower than TAP for three events,
which was about 960 mg/L.Water 2019, 11, x FOR PEER REVIEW 17 of 25 
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A total of 23 samples (Tables S9 and S10) for TSS and 20 for BOD5 were analyzed from the COLF
recreation center parking lot for both pavement types (Figure 14). For nearly all rainfall events, TSS
and BOD5 concentrations were lower for the IBPG surface as compared to the TBP. The average TSS
concentration for IBPG and TBP was 178 ± 74 and 356 ± 187 mg/L, respectively. However, BOD5

collected samples showed similarity in the values for both sections; the average concentration was
37.6 ± 24 and 36.6 ± 22.7 mg/L for TBP and IBPG, respectively. Like the COB site, BOD5 concentrations
were substantially higher than ISD median values. The drainage area contribution for the COLF
site was mainly composed of vegetated areas, and this may explain such a result. Organic materials
probably coalesced in the parking lot whenever a storm event occurred. Overall, the results indicate
that the design of all existing permeable pavements was adequate for the removal of suspended solids
and organic materials to a certain extent.

For subtropical and humid regions, TSS concentrations were observed at 95–295 mg/L and
27–70 mg/L from PCP and PICP, respectively [13]. In cold climatic regions, TSS concentrations
were observed to range between 30 and 550 mg/L for different types of monitored permeable
pavements [18,46]. In the semi-arid climatic region of the LRGV, the TSS concentration at the PCP, PICP,
and IBPG outfalls ranged from between 400 and 2200, 170 and 1000, and 10 and 1000 mg/L respectively,
which were significantly higher than the values obtained from other climatic regions. The original
solid concentrations were far more pronounced at the COB and CCDD#1 sites, whereas original BOD5

levels were observed to be much higher at the COLF site. This occurrence may be a possible reason
that the monitored parking lot at the COLF Recreation Center was restricted to lower traffic volume.
Furthermore, all monitored COLF pavements cover a significant percentage of the adjoining vegetative
drainage sources, which may lead to a higher chance of contamination from organic fertilizers during
heavy rainfall events. The monitored parking lots at COB and CCDD#1 recreational park were more
open to the public and high traffic volumes, which might carry a significant amount of debris and dirt
to the surface of those pavements.Water 2019, 11, x FOR PEER REVIEW 18 of 25 
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Figure 14. TSS and BOD5 concentrations of runoff samples collected from the monitored IBPG and
TBP at the La Feria Recreational Center Parking Lot, La Feria, TX.

Figures 15 and 16 demonstrate a comparative results summary between all monitored pavement types
in terms of TSS and BOD5 Normalized Load Reduction (NLR). Results from the Kolmogorov–Smirnov
test determined that the NLR data for each pavement do not match or slightly match the characteristics
of a normal distribution (skewness: 1.0 to 3.0; kurtosis: 0.75 to 8.25). Thus, any significant results
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were interpreted through nonparametric statistical tests, such as the Wilcoxon rank-sum test or the
Mann–Whitney U test, depending on the characteristics of the data. The box–whisker plot represents NLR
potentials of pavements at each quartile of the data analyzed. The pollutant load removal is dependent
on the runoff volume reduction. From the hydrologic analysis, PCP runoff volume was significantly
lower than TAP. The Wilcoxon rank-sum results confirmed that the PCP design was significant (p < 0.05)
in TSS removal (NLR: 244 × 10−5

± 143 × 10−5 kg/m2/mm) as compared to TAP, with an 80% additional
reduction on average. This result can be explained due to the excessive TSS residuals received by the COB
site, which were considered notably high as mentioned previously. Also, the BOD5 load reduction from
PCP (NLR: 3.61 × 10−5

± 1.78 × 10−5 kg/m2/mm) was found to be significant (p < 0.05), with an average of
86% additional reduction over TAP. By statistically analyzing the NLR data between the CCDC#1-PICP
and TAP, the median values were found significantly (p > 0.05) close. In contrast to the PCP type,
the PICP showed only 17% additional TSS removal over TAP. However, the assessment between the
two pavements for TSS removal did not reflect the actual PICP’s individual water quality performance
(NLR: 58 × 10−5

± 54 × 10−5 kg/m2/mm). Load reduction for BOD5 from PICP (NLR: 3.0 × 10−5
± 3.0 ×

10−5 kg/m2/mm) was significant (p < 0.05), with an additional 81% on average load reduction over TAP.
Relative to PCP and PICP, IBPG showed a maximum BOD5 removal (7.14× 10−5

± 7.19× 10−5 kg/m2/mm),
with an additional 46% removal over the adjacent TBP on average. Conversely, TSS removal performance
was slightly degraded (40 × 10−5

± 57 × 10−5 kg/m2/mm) as compared to PICP, with an additional 44%
removal over TBP.Water 2019, 11, x FOR PEER REVIEW 19 of 25 
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Figure 16. Box–whisker plot representing detailed comparisons of BOD5 Normalized Load Reductions
(NLR) between different types of monitored pavements under the LRGV LID implementation project.

These results indicate that these pavements can improve runoff water quality, and their performance
was consistent with additional runoff reduction. Along with runoff mitigation, PCP has been most
promising in reducing TSS loadings versus IBPG and PICP. This result may be due to its rough and
porous surface structure, which is capable of trapping sediments while storing water volume within
the surface and media [52–56]. Furthermore, the existing innovative storage design (0.13 m), consisted
of #2 open-graded aggregates followed by #52 washed stone, which might be effective in particulate
trapping within its enlarged void spaces. An interim 0.08 m sand filter between the bedding and base
reservoir might enhance its solids accumulation potential to some extent as well. In the case of IBPG,
the existing permeable linear joints presumably enhance the TSS and BOD5 removal from the surface
runoff. Furthermore, some portion of solids might be physically trapped within void spaces of the
base reservoir aggregates [18].

In terms of paver characteristics, there were no significant dissimilarities observed between
PICP and TBP. In terms of PICP for BOD5 removal, the only observable difference was the presence
of linear permeable joints. In fact, the existing TBP design was slightly better in BOD5 removal
(2.9 × 10−5 kg/m2/mm) over PICP. The possible explanation might lead to the entrapment of organic
particulate solids into void spaces of pea gravel within the paver surface. An existing 1” sand filler
beneath the paver surface might be effective as well in the treatment of a range of solid organic particles.
A longer travel path within an enlarged and uniform base reservoir (0.46 m) might presumably enhance
the entrapment of organic particulates from the stored runoff. Although TAP demonstrated some
reduction, TBP demonstrated a surprisingly improved BOD5 reduction.

3.3. Influence of Design Parameters on Permeable Pavements Performance

The results from recent research suggest that the hydrologic performance of permeable pavements
can be affected by many factors, such as surface type, pavers geometrical configurations (e.g., block
dimensions, spacing, cross-sectional design, aggregate characteristics, and climatic conditions
(e.g., rainfall depth and intensity), and soil conditions [44,46,51,57–60]. This work emphasized
how permeable pavement performance can be affected by as-built design properties in terms of surface
and base reservoir in the semi-arid climatic region based on design values and aggregate properties.
The analyzed hydrologic and water quality data suggest that both surface and base reservoirs have
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an influence on the rainfall holding depth and the reduction of peak flow, runoff volume, TSS, and BOD5

loadings, as shown in Table 5.

Table 5. Design parameters affecting the hydrologic and environmental performance of three different
types of permeable pavements monitored in the semi-arid LRGV region.

Design Properties Type of
Permeable Pavements

Max. Rainfall
Holding Depth

(mm)

%Normalized
Peak Flow
Reduction

Mean NVR (×10−3

m3/m2/mm)

Mean TSS
NLR (×10−3

kg/m2/mm)

Mean BOD5
NLR (×10−3

kg/m2/mm)

Surface
(materials, porosity,
and infiltration rate)

PCP: Porous concrete;
20%; 50,800 mm/h - 38–100 2.81 2.44 3.6

PICP: Interlocking
blocks with sand as

joint filler; 35%;
22,860 mm/h

- 31–100 1.28 0.58 2.8

IBPG: Interlocking
blocks with pea

gravel; 25%;
24,892 mm/h

- 42–100 2.20 0.4 3.9

Base Reservoir (max.
storage capacity,

aggregates porosity)

PCP: 3 m3; #57
washed stone; 35%

70 - - - -

PICP = 36 m3; #57
open graded

aggregate; 38%
123 - - - -

IBPG: 38 m3; crushed
lime stone; 40%

136 - - - -

Some influence of the surface characteristics on runoff mitigation was observed including several
characteristics of the base aggregates. The infiltration from surfaces was a dominant factor for
the differences in the normalized surface volume reduction from different permeable pavements.
The laboratory test data suggest that the finer particle size of aggregates provides a greater value of
porosity. In PCP, the highly porous structure (20% porosity) of the concrete matrix led to the potential
development of favorable paths for the water to pass through, thereby minimizing the runoff from the
site and reducing the lag time. For the IBPG, the combination of highly permeable pea gravel and
interlocking blocks demonstrated a still significant infiltration behavior, which enhanced the runoff

attenuation capacity in terms of peak flow.
It was observed that characteristics of the base reservoir aggregates had a large influence on surface

infiltration and the maximum rainfall storage depths prior to flooding. PCP had a low potential to
capture rainfall–runoff because of the undersized as-built base reservoir capacity, with lowest aggregate
porosity (38%). On the other hand, the IBPG design seemed to be most promising in holding the
infiltrated runoff depth, as higher as triggered from 136 mm rainfall depth. Possibly, the round graded
crushed limestone attributed to better retention properties than #57 open aggregates, which might
enhance the storage capacity of IBPG to some extent as compared to PICP.

Water quality results suggest that the pavement surface materials have a large impact on TSS and
BOD5 removal. In terms of TSS removal, the highly porous and rough concrete structure might be
dominant in the entrapment of larger sediment particles in the surface of the PCP. Due to the presence
of pea gravel filled openings, IBPG performance was improved over PICP in capturing suspended
solids from the runoff. The pea gravel was found to be more effective in entrapping organic solids that
led to higher BOD5 removal potentials in the IBPG.

4. Conclusions

The performance of permeable pavements has not been totally consistent globally but the
overall results have been very positive to improve water quality and runoff. Some researchers have
recommended continued field data collection from permeable pavements and other LID control
practices for different climatic regions (cold, subtropical, and semi-arid) and geographic locations
with specific land use including low traffic areas, such as parking lots, walkways, parking lanes,
highway shoulders [38,44,51,57]. Current research trends suggest an assessment of optimal permeable
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pavement system design for different climatic regions through field investigations of performance
and analysis of parameters that affect the performance [60]. This study focused on adding some
useful information in the context of previous and current research trends in the field investigation of
permeable pavement performance in different climatic regions and the significant factors that might
influence the performance.

This study investigated the hydrologic and environmental performance of three different types of
permeable pavement designs in the semi-arid climatic region of the LRGV with a detailed discussion
of several parameters that should affect the performance. The following are highlights of significant
findings of this evaluation.

• PCP, PICP, and IBPG showed a significant attenuation of peak flow and surface runoff volume for
most of the monitoring events in the semi-arid climatic region of South Texas.

• Because of the higher infiltration rates and underdrain provision, the existing PCP design
demonstrated the most optimal higher runoff volume reductions over PICP and IBPG.

• In terms of storage perspective, the existing IBPG design might have a better prospect of holding
a significant volume of infiltrated runoff prior to subsurface drainage.

• The attenuation of peak flow and runoff volume was quite notable for this region as compared to
other regions studied, perhaps because of the increased infiltration due to enhanced aggregate
porosity in the bedding layers and soil types.

• PCP and IBPG significantly demonstrated an improved TSS and BOD5 removal over monitored
traditional pavements. PCP was the most optimal in accumulating particulate solids within its
surface and void matrices. However, IBPG appeared to be a better solution for BOD5 removal,
perhaps due to its potential to trap organic particles within the pea gravel filled cell openings.
In this semi-arid climatic region of the LRGV, the TSS concentrations at the PCP, PICP, and IBPG
outfall was somewhat higher than the values obtained from other climatic regions.

• The surface characteristics of permeable pavements have a large effect on surface runoff volumes
despite having similar characteristics of the base aggregates.

• The characteristics of the base reservoirs (storage capacity and aggregate size) had a higher
influence on surface infiltration and the maximum rainfall holding depth prior to flooding.

However, it is important to note that this study did not emphasize the measurement of surface
clogging or the concentration of runoff water after infiltration. Additionally, the effects of temperature,
maintenance, and antecedent moisture on the behavior of pavement need to be studied. Future studies
should emphasize the laboratory or computer-based simulations of different permeable pavement
designs to understand underlying mechanisms of pollutant removal in different layers. Field-scale
modeling tool can be used to investigate the hydrologic and environmental performance of permeable
pavements for different drainage area contributions and installation sizes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/10/1992/s1.
Table S1. NVR, %volume reduction, and Normalized Peak Flow results of the Porous Concrete Pavement (PCP) for
the City of Brownsville (COB) site. Table S2. NVR, %volume reduction, and Normalized Peak Flow results of the
Traditional Asphalt Pavement (TAP) for the City of Brownsville (COB) site. Table S3. NVR, %volume reduction,
and Normalized Peak Flow results of the Permeable Interlocking Concrete Pavement (PICP) for Cameron County
Drainage District#1 (CCDD#1) site. Table S4. NVR, %volume reduction, and Normalized Peak Flow results of the
Interlocking Block Pavement with Gravel (IBPG) for the City of La Feria (COLF) site. Table S5. NVR, %volume
reduction, and Normalized Peak Flow results of the Traditional Block Pavement (TBP) for the City of La Feria
(COLF) site. Table S6. TSS Concentration and NLR results of the Porous Concrete Pavement (PCP) and Traditional
Asphalt Pavement (TAP) for City of Brownsville (COB) site. Table S7. BOD5 Concentration and NLR results of the
Porous Concrete Pavement (PCP) and Traditional Asphalt Pavement (TAP) for City of Brownsville (COB) site.
Table S8. TSS and BOD5 Concentration and NLR results of the Permeable Interlocking Concrete Pavement (PICP)
for the Cameron County Drainage District#1 (CCDD#1) site. Table S9. TSS Concentration and NLR results of the
Interlocking Block Pavement with Gravel (IBPG) and Traditional Block Pavement (TBP) for the City of Brownsville
(COB) site. Table S10. BOD5 Concentration and NLR results of the Interlocking Block Pavement with Gravel
(IBPG) and Traditional Block Pavement (TBP) for the City of Brownsville (COB) site.
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