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Abstract: Water resources are threatened by many pollution sources. The harmful effects of pollution
can be evaluated through biological indicators capable of tracing problems in life forms caused by
the contaminants discharged into the streams. In the present study, the effects on stream water
quality of landscape configuration, season, and distance from contaminant emissions of diffuse
and point sources were accessed through the evaluation of a Portuguese macroinvertebrate index
(IPtIN) in 12 observation points distributed within the studied area (Ave River Basin, Portugal).
Partial least-squares path models (PLS-PMs) were used to set up cause–effect relationships between
this index, various metrics adapted to forest, agriculture, and artificial areas, and the aforementioned
emissions, considering 13 distances from the contaminant sources ranging from 100 m to 56 km.
The PLS-PM models were applied to summer and winter data to explore seasonality effects. The results
of PLS-PM exposed significant scale and seasonal effects. The harmful effects of artificial areas were
visible for distances larger than 10 km. The impact of agriculture was also distance related, but in
summer this influence was more evident. The forested areas could hold onto contamination mainly
in the winter periods. The impact of diffuse contaminant emissions was stronger during summer,
when accessed on a short distance. The impact of effluent discharges was small, compared to the
influence of landscape metrics, and had a limited statistical significance. Overall, the PLS-PM results
evidenced significant cause–effect relationships between land use metrics and stream water quality
at 10 km or larger scales, regardless of the season. This result is valid for the studied catchment,
but transposition to other similar catchments needs to be carefully verified given the limited, though
available, number of observation points.
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1. Introduction

The growing population and demographic expansion threaten hydric resources, not only by
inducing stressful water demands but also because of the continuous surge of pollution sources.
The response to anthropogenic pressures relies on proper management that should always stand on
environmental research. The risks to water quality are well known by experts, but continuous research
should be applied since the world is in constant change [1,2]. Effluent discharges are an undeniable
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threat. The potential contamination by wastewaters is frequently reduced in urban and industrial
areas where treatment stations are efficient, but in many regions proper treatment is not applied [3].
In those situations, surface waters are directly contaminated by bacteria [4], nutrient loads [5–7],
heavy metals [8,9] and even microplastics [10]. The runoff transports herbicides and pesticides from
agriculture [11] and high organic loads from livestock [7] to surface waters. The presence of forested
areas or riparian vegetation can create a barrier that retains such flow of contaminants [12,13]. Wildfires
are another threat to water quality [14,15], not only because they can destroy the aforementioned
barriers [16], but also because soil erosion increases [17], and ash-derived contaminants are leached
towards the streams [18]. Another factor that can affect water quality is land occupation planning.
When land use is not conformed to land capability (natural use), land use conflict is generated [19],
which amplifies soil losses [20] and accelerates other phenomena that cause water deterioration [21].
Land use type and configuration are other key aspects that have been studied by many authors in
the context of water quality changes [22]. Relevant conclusions achieved in these studies are that
landscapes retain nutrients [23]; a high edge density is an indicator of high anthropogenic activity [24];
as Shannon’s diversity index (SHDI) increases, the water quality decreases [25]; and aggregated urban
land uses are more suited to preserve surface water quality [24], among others.

The effects of landscape metrics on water quality are commonly accessed by Spearman or
Pearson correlation coefficients and, when predictions are involved, through multiple linear regression
analyses [26]. When these matters are studied, the authors are aware that the spatial resolution of land
cover maps can affect the results [23,27]. But another critical aspect that is questioned by many authors
is the spatial extent for statistical sampling [28]. This can vary from circular buffers, riparian extents, or
catchments [29,30]. For proper management of river basins or even urban planning, it is essential to use
an appropriate scale. By comparing different studies, some inconsistencies can be detected regarding
the option for a suitable scale. Some authors infer that the use of entire watersheds provides better
results [28,31–34], but other working groups argue that a riparian scale is more suitable [35–37]. These
inconsistent results can be attributed to differences between study designs and study areas [38], but
other factors such as stream order [28], season [39], and topology [34,39] can also play prominent roles.

Water quality research requires the use of statistical or process-based models [40]. The first type
has the advantage to access the relationships between the pertinent variables, while in mechanistic
models, the interactions are already determined by chemical, biological, and physical processes, which
makes them preferable for prediction purposes [41].

An example of a statistical method is the multivariate method called partial least-squares path
modeling (PLS-PM). The first steps of PLS-PM have been given in social sciences [42]. Nowadays, this
method is being practiced in many studies in diverse research areas, namely the environment [43–46],
geology [47], flood effects [48], and ecological conservation [49], among others. The authors have
adopted this technique because it can exhibit cause–effect relations straightforwardly using a graphical
interface. The present work continues a sequence of studies developed by this research team, who has
been studying the quality of water in the Ave River Basin (Portugal) through multivariate statistics. In
the first study, three PLS regression models were tested in a row to explain the pollution of surface
waters and the resulting impacts on ecological integrity [50]. In a second study, an identical dataset
was used in PLS-PM [51] to trace the difference of cause–effect relations between an anthropogenic
(Ave River) and a rural (Sabor River) basin. Since the results were promising in both studies, in a third
study they were used to predict the ecological status of the Ave River Basin in the near future [52].
The aim in the present work was to take another step forward and explore the influence of landscape
metrics and contaminant emissions on ecological integrity, as well as the impact of season and scale on
the results.
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2. Materials and Methods

2.1. Study Area

The Ave River Basin is located in the northern region of Portugal (Figure 1A), occupying an area
of approximately 1322 km2. The main water course extends for 100 km, the most important tributary
catchments are the Este (247 km2) and Vizela (323 km2) rivers. The altitude ranges from 0 m along
the Atlantic coast to 1254 m at the Cabreira mountains, where the catchment headwaters are located.
This river basin is surrounded to the west the by the Atlantic Ocean, to the south by the Leça River
Basin, to the east by the Douro River Basin, and to the north by the Cávado River Basin. The group of
three river basins, Ave, Leça and Cávado, belong to the same management unit, namely hydrographic
region number 2 [53].
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Figure 1. (A) Map of Portugal with the distribution of hydrographic regions. (B) Ave River Basin
and sampling sites. (C) Drainage area of sampling site 111 and intersection of buffer limits with the
drainage area.

In the second half of the 20th century, the Ave River Basin was heavily contaminated by untreated
domestic and industrial effluents, being tagged as “Europe’s Great Sewer”. Following the construction
of public wastewater treatment plants in the 90s, water quality increased, but some microbial
contamination persisted related to improper functioning of some domestic plants. The heavy pollution
of Ave comprised high concentrations of heavy metals in sediments and freshwater, especially in the
Este, Selho, and Vizela rivers [9,54]. This condition improved after public investment in the wastewater
treatment plants [55,56]. The abundant and persistent nutrient and metal contamination deteriorated
the river’s ecological status at the central area and lowlands of the Ave River Basin [57,58] where
industrial areas have been settled on the river banks for years. Besides the effluents from domestic and
industrial origins, contributions from agriculture and livestock production have also been reported as
significant causes of water quality and ecological deterioration [59–61].
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2.2. Workflow

The purpose of the present study was to show how the cause–effect relationships between ecological
integrity and pollution sources/indicators changed with the season and distance from contaminant
sources. Ecological integrity was assessed through the measurement of a macroinvertebrate index
(IPtIN; see Equation (1) below) in 12 sampling sites along the Ave River Basin (Figure 1B) during the
winter and summer seasons of 2017. For these sites, the entire upstream drainage area was delineated
and then sectioned at predefined distances from the sampling site (Figure 1C). Subsequent to catchment
delineation and sectioning, land use and contaminant emission data were prepared for each section to
be used in PLS-PM models. Two separate models were defined based on IPtIN values determined
in winter and summer, respectively. The purpose was to explore how the effects of anthropogenic
pressures could change as a function of season and scale. Figure 2 displays the adopted workflow,
summarized in 6 steps.
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For the delineation of drainage areas and drainage networks (Step 1), ArcMap [62] and its
embedded module ArcHydro [63] were used. These computer packages are the key technical elements
used in environmental studies with a strong spatial incidence [64–71]. As an input, a digital elevation
model with a pixel resolution of 25 m was used. To design each drainage area, the tool “Batch
Watershed Delineation” was used, followed by previous procedures [72]. For each sampling site, the
“Buffer” ArcMap tool was used to create a circular area, while the created buffers extended for 100, 250,
500, 1000, 2000, 3000, 4000, 5000, 7000, 10,000, 15,000, 20,000, and 56,000 m (Step 2). Each drainage area
intersected with the respective buffer in order to create drainage sections (Step 3). The collected spatial
data (Table 1) were processed and applied in the PLS-PM models (Step 4). The land uses and discharge
emissions were collected using the ArcMap “Intersect” tool. A total of 26 PLS-PM models were created,
one for each season and distance combination. The algorithm was executed in SmartPLS software [73].
PLS-PM analysis was the chosen method because it could establish cause–effect relationships for the
studied latent variables, which were termed “Land Use”, “Contaminant Emissions”, and “Ecological
Integrity”. Formative models were chosen because these have prediction capabilities and, at the same
time, establish the wanted cause–effect relationships [74]. The 26 model outputs were measured with
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weights, path coefficients, and R-squared values. The outputs were compiled and compared using
graphics designed in Excel [75] (Step 6).

Table 1. Data sources.

Data Description Source

Elevation model Elevation model raster file, with a
pixel size of 25 per 25 m. http://www.eea.europa.eu

Effluent discharge points

Flow of discharged biological and
chemical oxygen demands,

nitrogen and phosphorous from
urban effluents in surface water

and underground water.

http://www.apambiente.pt

Diffuse discharge values
Nitrogen and phosphorous yields
sourced from agriculture, forest,
and livestock production areas.

http://www.apambiente.pt

Land use Land uses map of Portuguese
territory in 2015. http://www.dgterritorio.pt

Macroinvertebrate index (IPtIN) Biodiversity of benthic
macroinvertebrates measured in field

2.3. Dataset

In this study, a group of variables was gathered (Table 1) that could be connected to the variation
of IPtIN. The actual data are provided as Supplementary Material. The elevation model was used
for the delineation of drainage areas. The effluent discharge points values were provided by the
Agência Portuguesa do Ambiente (APA; in English, Portuguese Environmental Agency) in the form
of shapefiles. Each point contained was attached to information on the total discharge of nitrogen,
phosphorous, and chemical and biological oxygen demands, expressed in released kilograms during
the year of 2016. The discharge of nitrogen and phosphorous from livestock production, agriculture,
and forestry were also provided by the APA in the form of shapefiles. Each polygon was a catchment
containing the released kilograms of nutrients during the year of 2016. The most recent Portuguese
land use map refers to 2015 (COS 2015) and is available at the Portuguese Territory Planning website.
This map was obtained in the form of a shapefile, containing the land use or occupation from each
zone. The land use types were assembled into 4 categories: agriculture, artificial surfaces, forest,
and seminatural areas and water bodies. For the calculation of IPtIN, samples were collected in situ
during the summer and winter of 2017. After laboratory analyses, the index was calculated for the
twelve locations.

For each drainage section, the discharging values of BOD (biochemical oxygen demand), COD
(chemical oxygen demand), N, and P were summed and then divided by the drainage area, creating
four variables representing the discharge of each type of nutrient and oxygen demand. For diffuse
discharges, the total release discharge of N and P in the drainage sections was calculated and then
divided by the respective area, resulting in 4 variables: the releases of N and P from livestock
and forest/agriculture. For each section, landscape metrics were calculated using a python toolbox
embedded in ArcMap [76]. A total of 17 metrics were calculated for all the drainage sections (Table 2).

http://www.eea.europa.eu
http://www.apambiente.pt
http://www.apambiente.pt
http://www.dgterritorio.pt
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Table 2. IPtIN values and classification for the twelve measurement sites for winter and summer of
2017. An identification color was linked to each class that shades the corresponding cells: red—Very
Poor, orange—Poor, yellow—Moderate, green—Excellent. The shades were added to the table for
illustration and prompt interpretation of the quality classes.

Site
Winter 2017 Summer 2017

Value Classification Value Classification
101 0.415 Poor 0.979 Excellent
102 0.632 Moderate 0.398 Poor
103 0.389 Poor 0.364 Poor
104 0.113 Very Poor 0.498 Moderate
105 1.048 Excellent 1.017 Excellent
106 0.307 Poor 0.512 Moderate
107 1.050 Excellent 0.936 Excellent
108 0.493 Moderate 0.582 Moderate
109 0.138 Very Poor 0.346 Poor
110 0.522 Moderate 0.308 Poor
111 0.432 Moderate 0.397 Poor
112 0.219 Poor 0.275 Poor

The north invertebrate Portuguese index (IPtIN) is widely used to evaluate the ecological status
of stream waters in northern Portugal [77]. The IPtIN index reflects the abundance and diversity of
benthic invertebrates that are sensitive to all forms of pollution [77–79].

For the measurement of this indicator, organism samples were collected from 12 surface water
locations, illustrated in Figure 1C. For each site, the organisms were classified and counted, and then
Equation (1) was used to calculate the IPtIN score. The equation is complex since it uses a variety of
parameters, namely, the number of taxonomic groups present in the sample (N◦ taxa); the number
of families that belong to Ephemeroptera, Plecoptera, and Trichoptera orders (EPT); Pioleu index or
evenness [80,81]; biological monitoring working party index divided by the number of families included
in this index (IASPT) [82]; and the sum of individuals belonging to Heptageniidae, Ephemeridae,
Brachycentridae, Goeridae, Odontoceridae, Limnephilidae, Polycentropodidae, Athericidae, Dixidae,
Dolichopodidae, Empididae, and Stratiomyidae families (Sel.ETD):

IPtIN = N◦ Taxa × 0.25 + EPT × 0.15 + Evenness × 0.1 + (IASPT − 2) × 0.3 + Log (Sel.ETD + 1) × 0.2. (1)

Among all possible variables that could be used in this study, only 8 were chosen for the PLS-PM
models. The purpose was to reach low variance inflation factors (VIFs), and hence statistical significance,
making a note that variables of the same domain can be strongly correlated in raising the VIFs. To
represent the effluent discharges, the released annual flow divided by the drainage area was used,
naming this variable as “Point Source”. For diffuse contamination, the discharges of nitrogen from
livestock, forestry, and agriculture were used, naming these variables as “Livestock” and “Forest and
Agriculture”, respectively. The chosen landscape metrics were Shannon’s diversity, the edge density
of forest and seminatural areas, the number of patches of artificial surfaces that were connected at
a distance of 500 m, and the percentage of “agricultural areas” that were connected at a distance of
500 m. The land use variables were named as “Diversity”, “Forest”, “Artificial” and “Agriculture”,
respectively. The Portuguese index of macroinvertebrates was also used, named as “IPtIN” for the
PLS-PM models, as an evaluator of biodiversity as well as water quality.

3. Results

3.1. Spatial Data

Figure 3 illustrates the spatial distribution of pressures in the Ave River Basin. Figure 3A depicts
the land use map of 2015. It can be noted that 50% was occupied by the dominant land use, forest
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and seminatural areas. Agricultural areas occupied 30% of the river basin, 20% was artificial surfaces,
and less than 0.5% was water bodies. The values of discharged nitrogen from livestock, forest, and
agricultural areas in the river basin catchments can be seen in Figure 3B,D. The scattered effluent
discharge sites are represented in Figure 3C. Among a total of 60 locations, 24 were discharge sites of
industrial treatment plants, while 36 were from domestic sewage treatment plants.
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The twelve river sites where the IPtIN was measured are represented in Figure 1, numbered from
101 to 112. Table 2 depicts the IPtIN values and respective classification. During the winter of 2017, the
ecological status was classified as “Excellent” in two sites, “Moderate” in 4, “Poor” for another 4 sites,
and “Very Poor” in 2. Overall, the values increased from winter to summer, as none of the sites was
classified as “Very Poor” in summer, 6 were classified as “Poor”, 3 as “Moderate”, and 3 as “Excellent”.
In the locations 103, 105, 111, 112, 107, and 108, the classification changes were minimal. Besides, in
site 111 the classification changed from “Moderate” to “Poor” because the IPtIN value was very close
to the class threshold. In site 106 the classification changed from “Poor” to “Moderate”, but in sites
109, 110, 103, and 104 the decrease in ecological status was startling because there was a significant
decrease in IPtIN and subsequent classification of a less-rich class. For site 101 there was a significant
increase, from “Poor” to the maximum class “Excellent”. These changes of values were dependent
upon seasonal effects but also on the pressures in surface waters.
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3.2. Interpretation of a PLS-PM Example Model

The output models of SmartPLS were all similar to the one represented, as an example, in Figure 4.
Each measured variable (MV) is represented as a yellow rectangle, and latent variables (LVs) as
blue circles. Inside the LVs preceding other LVs, the R-squared value is portrayed. In the example
model, only “Ecological Integrity” has an R-squared value, since this is the only variable that has a
measured score (calculated by the sum of the product of MVs with the own weight) and a predicted
score (calculated by the sum of the product between the LVs). In a PLS-PM model, weights and path
coefficients are determined through an iterative process, termed the path algorithm [83], with the
purpose to maximize the R-squared value.
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Figure 4. PLS-PM example model.

Several PLS-PM models were built and analyzed in this study. In order to exemplify how these
models can be interpreted, a PLS-PM model is demonstrated in Figure 4, where the data were gathered
for the drainage sections within a distance of 4 km and IPtIN values measured during the winter
of 2017.

Each LV was formed by one or more MVs. For the present case study, an LV “Land Use” was
created and composed of 4 MVs, namely “Diversity”, “Forest”, “Agriculture”, and “Artificial”. The LV
“Contaminant Emissions” was composed of three MVs pertaining to different types of contaminant
flows: “Point Source”, “Livestock”, and “Forest and Agriculture”. “Ecological Integrity” was formed
by a single MV, which is the IPtIN. This LV accumulated the effects of the other LVs that were
pressures in surface waters, which is why “Contaminant Emissions” and “Land Use” were connected
to “Ecological Integrity”. The PLS-PM model was divided into two sub-models, inner and outer. The
equations of the measured scores of each LV were calculated according to Equations (2)–(4) for “Land
Use”, “Contaminant Emissions”, and “Ecological Integrity”, respectively, and are the equations that
composed the outer models. The inner model was composed of relations between latent variables,
which, in this case, is solely expressed by Equation (5).

Land UseMeasured Score =

Artificial × (−0.033) + Agriculture × (0.516) + Forest × (−0.569) + Diversity × (0.208);
(2)

Contaminant EmissionsMeasured Score =

Point Source × (−0.264) + Forest and Agriculture × (−1.060) + Livestock × (1.222);
(3)

Ecological IntegrityMeasured Score = IPtIN × (1.000
)

(4)
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Ecological IntegrityPredicted Score =

Land UseMeasured Score × (−1.085)+ Contaminant EmissionsMeasured Score × (0.266);
(5)

Ecological IntegrityPredicted Score =

Artificial × (0.035) + Agriculture × (−0.560) + Forest × (0.627) + Diversity × (−0.226);
+

Point Source × (0.070) + Forest and Agriculture × (−0.282) + Livestock × (0.325).

(6)

To interpret the example model, the weights and path coefficients should be analyzed
simultaneously, which can be viewed in Equation (6), where the combination of Equations (2)–(5) is
made. For example, the MV “Diversity” has a positive weight (0.208), so it increases the LV “Land Use”,
while the same applies to “Agriculture” (0.561). Conversely, “Forest” and “Artificial” have negative
weights, namely −0.569 and −0.033, and therefore decrease “Land Use”. But since the path coefficient of
“Land Use” in “Ecological Integrity” is negative (−1.085), “Diversity” and “Agriculture” are variables
that decrease “Ecological Integrity” because the product of the weight and path coefficient is negative:
−0.226 and −0.560, respectively. On the other hand, “Forest” and “Artificial Areas” increase “Ecological
Integrity”, since the product between the path coefficient and weight is positive, respectively 0.617 and
0.036. Equation (6) expresses the total effect of each pressure in “Ecological Integrity”. The results of
this study were based on the analysis of the product between the path coefficients and weights (termed
pcw) for the studied 26 models.

3.3. Results of All PLS-PM Models

As shown in Table 2, the IPtIN values were collected during two seasons, winter and summer. For
this reason, the 26 PLS-PM models were divided into two groups, winter (2017) and summer (2017),
and traced as two dot arrays colored as blue and red, respectively, in Figure 5. For each model in the
respective group, the pressure values were used as input data, gathered from the 13 drainage sections
and the IPtIN values collected in winter or summer. Figure 5 portrays the results of the PLS-PM models.
Each graphic describes the pcw of a measured variable in all models (y axis). The x axis represents the
logarithm of the buffer distance for the respective model. For the distances of 100, 250, 500, 1000, 2000,
3000, 4000, 5000, 7000, 10,000, 15,000, 20,000, and 56,000 meters, the log10 scores were 2, 2.4, 2.7, 3, 3.3,
3.5, 3.6, 3.7, 3.8, 4, 4.2, 4.3, and 4.7, respectively. The purpose of the plots was to illustrate the effects of
the pressures in “Ecological Integrity” (“IPtIN”).

The effect of “Artificial” was independent of the season since the variations with distance were
practically identical for both winter and summer. For distances shorter than 10 km, the effect was
positive, but for longer distances the effect became negative. The strongest positive effects were
detected for a distance of 100 m in summer (pcw = 0.386) and for 1000 m in winter (pcw = 0.310). The
strongest negative effects were detected for the maximum distance (56 km) (i.e., for the entire drainage
areas) either in winter (pcw= −0.247) or summer (pcw= −0.201).

For “Agriculture” it was seen that for both winter and summer periods, the effect was practically
identical, but the summer line was below the winter line for a majority of buffer distances (only between
3 km and 5 km is the red line above the blue). The effect of agriculture was practically null for a distance
of 100 m in summer (pcw = 0.008). For the same distance, it was positive during winter (pcw = 0.276)
and practically null for a distance of 250 m (pcw = 0.01). For longer distances, the effect was negative,
which indicated that agriculture decreased water quality. Peak values were found for distances of 4 km
in winter (pcw = −0.560) and 10 km in summer (pcw = −0.648), but for distances larger than 10 km, the
changes were minimal. The results lead to the conclusion that, for the Ave River basin, agriculture is a
threat to water quality, while the impact seems to be stronger during the summer period.
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Peak values of “Diversity” were detected for the minimum distance, 100 m, either in winter
(pcw = −0.856) or in summer (pcw = −0.456). The effect was always negative for winter periods, and
stronger in this season for almost all distances, except between 4 and 5 km. For the summer period, the
effect was close to zero, but still negative; only distances of 500 m, 10, and 15 km were close to zero,
since the pcw values were −0.024, 0.059, and 0.026, respectively. For the longest distance (56 km), the
effect was practically the same for winter (pcw = −0.290) and summer (pcw = −0.298). The results
provide evidence that the impact of “Diversity” is a threat in winter.
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The effect of “Forest” was essentially positive. For the winter period, the effect was positive for all
distances, and always higher than in summer, where the effect was negative but close to zero for the
distances 500 m (pcw = −0.080) and 56 km (pcw = −0.049). Peak values occurred on the shortest scale,
100 m. In winter the pcw was 0.853, and in summer it was 0.419. As the buffer distances increased,
the effects changed irregularly (drop and rise), but from an overall view, values were always between
0.853 and 0.374 during winter. It can be said that globally (for winter and summer), “Forest” favors
water quality.

The variable that had less effects along all distances and seasons was “Point Source”. For this
variable and the models that comprehended distances between 100 to 500 m, the attributed weight was
0, since for short distances there were no discharge points. Even so, compared to all the other variables,
it had less impact because the pcw values were contained in a short range that varied from −0.198
to 0.226. For winter, negative values were found in 1 km (pcw = −0.198) and 7 km (pcw = −0.006),
while in summer the negative values were observed for distances longer than 7 km. This indicates that
the effect of effluent discharges only decreased IPtIN values during the summer period when long
distances were analyzed, but with minimal impact.

The discharges of nitrogen from diffuse pressures were represented by the variables “Forest and
Agriculture” and “Livestock”. When both graphics were compared, it was seen that there was an
inverse relationship between these two variables for all models in both seasons. When the effect
“Forest and Agriculture” increased, “Livestock” decreases. For the summer period, the effect of
“Livestock” was always negative, while the effect of “Forest and Agriculture” was always positive.
These effects were stronger over shorter distances, since maximum values for “Forest and Agriculture”
and minimum values for “Livestock” appeared over the short distances. But as the distance increased,
both effects approached zero. The variations of both variables were minimal for short distances (≤1 km),
positive for “Forest and Agriculture”, and negative for “Livestock”. At the distances 2, 3, and 4 km,
the effect became positive for “Livestock” and negative for “Forest and Agriculture”, with a peak at
4 km. For distances longer than 4 km, the effect tended to zero.

The analysis of the pcw variations for the 7 measured variables for all the models is crucial to
comprehend the cause–effect relationship changes as function of season and distance. But the analysis
of the R-squared values (Figure 6) reveals the models’ capacity to explain IPtIN variations.
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The calculated R-squared values of summer varied less than the winter counterparts. The range
of values varied from 0.75 (1 km) to 0.91 (56 km) in summer, while in winter they ranged from 0.58
(500 m) to 0.93 (7 km). For the winter period, for distances comprehended between 250 m and 3 km, the
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model’s explicability was below 0.75, but the in winter models that comprehended distances between
4 to 20 km, the values were higher than in the corresponding summer models.

In order to assure that the models had no multicollinearity, it was ensured that all the VIF values
were below 5 (please see Supplementary Material). The significance of weights and path coefficients was
accessed through bootstrapping. By approaching the traditional threshold for statistical significance,
p values larger than 0.05 were achieved for the weights (please see Supplementary Material). On the
other hand, it was verified that the path coefficients of “Land Use” were significant, characterized by p
values lower than 0.05 for long distances (Figure 7).
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The significance of land uses seemed to follow a sigmoid pattern. For the summer period,
statistical significance (p < 0.05) was achieved for distances larger than 5 km, but for the winter period,
significance was achieved for distances larger than 3 km. When it comes to “Contaminant emissions”
none of the models achieved statistical significance. For the summer period, p values increased with
distance. For winter, p values seemed not to change for distances below 2 km, increased to 0.124 at
3 km, and then dropped consistently until a distance of 15 km. For 20 and 56 km, there was a notable
loss of statistical significance.

4. Discussion

Before analyzing the results, some expectations regarding the effect of the variables are outlined.
It was expected that all pressures had a negative impact on ecological integrity, while “Forest” was
expected to have a positive effect. This was expected because in catchments with a high presence of
forested areas, good water quality can be found [84]. It was also thought that the measured variables
that belonged to the latent variable “Contaminant Emissions” would have a higher effect than “Land
Use”. This was because the discharges of COD from point sources and nitrogen from livestock,
agriculture, and forestry represented the mass flow of contaminants that were transported to surface
water, while land use metrics were only indicators of possible pollution. In terms of season and scale,
no expectations were anticipated because authors already recognized in different studies that different
conclusions can be achieved [34].

The positive effect of “Artificial” for distances below 10 km is hard to explain. By studying the
impact of land uses on biological integrity, a positive response was found in urbanized areas [31] by
accessing a riparian scale. Another author [85] compared the effects of land uses in the same Index, of
Biotic Integrity (IBI) and noted that, in a riparian range, the impacts of urban activity were positively
correlated to this index, but for the watershed scale, the outcome was negative, which is in concordance
with the present study. This might happen because, at a short range, the impacts of urban presence
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may be hard to capture, compared to an extended scale. Possibly, urbanized areas only affect water
quality when their predominance occurs over a long range.

The agricultural land uses are revealed as a threat to Ave River Basin. For distances larger than
200 m, the effect was negative and increased in scale for both winter and summer seasons. This can
reflect that agriculture only affects water quality when the predominance is on a long scale, as there is
a high accumulation of contaminants. Likewise, other studies revealed a negative impact over a long
scale [24,34,39,86].

The edge density of forested areas “Forest” was the variable that had an expected impact on winter
and summer (except at the distances of 56 km and 500 m, where the effects were null and negative,
respectively). Many authors have concluded that the effect of forestry improves water quality. Positive
impacts are found with biotic indexes [31,32], and negative correlations or effects with contaminant
concentrations are found [23–25,28,39,86,87] independently of scale, season, and study area, or even
accessed metric.

In light of the previously mentioned reasons, it was not expected that the effect of “Land use”
would be greater than “Contaminant Emissions”. It was noticed that in the winter period, the measured
variables that belonged to “Land Use” were the ones with stronger effects (except in the model of the
scale 500 m, where livestock had the strongest impact). But, in the summer period, the contaminant
emissions from “Forest and Agriculture” and “Livestock” were the variables with the highest pcw.
Only at a scale higher than 7 km did the effect of agricultural land use overlap contaminant emissions.

When it comes to significance, the path coefficient of “Land Use” achieved statistical significance in
both seasons at a long scale, while “Contaminant emissions” did not. This leads to the conclusion that,
in concordance with other authors, the effect of land use should be accessed on a long scale, also called
a complete watershed. Both diffuse and point-source discharges have temporal changes [7,88–90]. To
access the seasonal effects of contaminant emissions, it is important to trace the temporal changes in
the contaminant flow, just like it was done in other studies [91]. In the present study, the point source
flow of COD and diffuse discharge resulting from livestock production, forested, and agricultural
activities was in the form of annual flow. In fact, it is quite hard to access the released contamination
on shorter temporal scales for a whole river basin. But, if the data of point and diffuse sources from
APA were monthly, or even seasonal, it is believed that the significance of “Contaminant Emissions”
would be higher in the model and could possibly reveal higher effects than landscape metrics. In
previous studies where the Ave River Basin water quality was assessed, it was noted that point-source
pressures [51] and livestock production [52] were major threats to water quality. But, in those studies,
landscape metrics were not used in such a detailed form, only the percentage of catchments occupied
by agricultural and artificial areas were used. During summer, the contribution of underground water
to river discharge increased due to the lack of rainfall [92]. In the presented models this is shown
because contaminant emissions from agriculture, forest, and livestock effects were indeed larger in
summer periods than in winter. During winter, the runoff effect was higher due to strong rainfalls,
which explains why variables related to land use metrics had a stronger impact in winter rather than
in summer.

Another important aspect is that when formative PLS-PM models are adopted, the number of
explaining variables cannot be large because of the shortcomings of variance inflation. One technique
to reduce variance inflation is by restraining the number of variables [93]. For this reason, the effects of
other land use metrics were not accessed in this study, only the edge density of forested areas, Shannon’s
diversity index, and connectance metrics of agricultural and artificial surfaces. However, this study
succeeded in demonstrating the seasonal and scale effects in the interaction between various pollution
sources and ecological integrity. The low sample size (n = 12) was a limitation. As a consequence,
the weights were not significant. Despite this, it was still possible to achieve significance for the path
coefficient “Land Use” latent variable. So, it is recommended to use larger sample sizes in similar
and future studies. Since the weights were not significant, the tested models may not be suited for
prediction purposes. At any rate, the presented study indicates that, in terms of prediction in the Ave
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River Basin, longer scales should be adopted, considering the consistent high R-squared values and
significance of land use variables observed at these scales.

For proper river basin management, landscape metric variables should always be assessed, as
it is quite easy to calculate them using computer packages such as FRAGSTATS [94] or the ArcGIS
toolbox [76]. In terms of landscape management, when the consequences of anthropogenic pressures
for water quality are to be assessed, the exercise should always be applied to various scales. This is
recommended because this study concluded that the sense (positive or negative) of an impact can
change with scale.

The most limiting factor in this study was probably the small number of sampling points used to
assess the IPtIN, just 12. However, these few samples allowed us to provisionally expose the significant
role (p < 0.05) of land use metrics for a satisfactory (R2

≈ 0.85) explanation of water quality (IPtIN) in
the long range (>4 km from the contaminant sources). This result is noteworthy. It can be (and was)
argued that more samples would render the possibility to reveal the influence of other anthropogenic
pressures, eventually hidden in this study by the sample’s coarse resolution. Nevertheless, it would not
be a surprise if the results obtained in this study were replicated with a finer resolution, as contaminant
emissions are subject to larger inter annual variations than are land uses, and, hence, they could
eventually be inefficient in the studied period. A larger sample would probably capture fine-resolution
effects, for example, related to point-source contaminant emissions, but is not certain that would
change the general outcomes and conclusions taken from this study. The main goals were achieved,
which were to explore the influence of anthropogenic pressures on water quality as function of scale
and season using a novel statistical method. The 26 PLS-PM models implemented in a predefined
sequence were capable of identifying the most important variables and distances from contaminant
sources that controlled water quality in the Ave River Basin in the studied period. The model results
may not be directly used in management initiatives without prior verification using a larger sample,
but they suggested how scale and season can affect the conclusions about cause–effect relationships
involving anthropogenic pressures and water quality. In that context, the outcomes from this study
provided interesting clues for managers of water quality at catchment scale, which are inherently an
important scientific result.

5. Conclusions

This study has shown to be effective in demonstrating seasonal and scale impacts in the interplay
between the effect of landscape metrics and contamination sources on water quality. This analysis plays
an important role for decision makers to take into account that territory planning is intrinsically linked
to water quality. As it was found in this study, the effect of metrics can be greater than contamination
sources. From a statistical point of view, this study showed that the use of a long scale is preferable,
since it obtained higher coefficients of determination in both winter and summer, but also high statistical
significance for the latent variable “Land Use”. Even so, it is advised that when water quality studies
are carried out, effects should always be analyzed not at a long scale but also at a short scale. This is
because each river basin is unique and reveals natural and anthropogenic interactions that are different
in each river basin. So, in other locations, stronger effects can be found at shorter scales. In terms of
water quality improvement, besides the constant monitoring and reduction of pollution sources, it is
pointed out that the presence of forested areas improves the ecological integrity, not in total area but
in terms of edge density. As far as agricultural areas are concerned for ecological integrity, strategic
relocations can also be a key strategy in order to decrease connectance. While in urban areas, these
hardly can be changed, given the enormous costs that such processes can entail.
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The supplementary materials comprise an Excel file with base data and results of PLS-PM models.
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