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Abstract: Hydrological nonstationarity has brought great challenges to the reliable application of
conceptual hydrological models with time-invariant parameters. To cope with this, approaches
have been proposed to consider time-varying model parameters, which can evolve in accordance
with climate and watershed conditions. However, the temporal transferability of the time-varying
parameter was rarely investigated. This paper aims to investigate the predictive ability and robustness
of a hydrological model with time-varying parameter under changing environments. The conceptual
hydrological model GR4J (Génie Rural à 4 paramètres Journalier) with only four parameters was
chosen and the sensitive parameters were treated as functions of several external covariates that
represent the variation of climate and watershed conditions. The investigation was carried out in Weihe
Basin and Tuojiang Basin of Western China in the period from 1981 to 2010. Several sub-periods with
different climate and watershed conditions were set up to test the temporal parameter transferability
of the original GR4J model and the GR4J model with time-varying parameters. The results showed
that the performance of streamflow simulation was improved when applying the time-varying
parameters. Furthermore, in a series of split-sample tests, the GR4J model with time-varying
parameters outperformed the original GR4J model by improving the model robustness. Further
studies focus on more diversified model structures and watersheds conditions are necessary to verify
the superiority of applying time-varying parameters.

Keywords: time-varying parameter; GR4J model; changing environments; temporal transferability;
western China

1. Introduction

The conceptual hydrological models are simplified representations of the complex rainfall-runoff

processes in the real world. Hence, great emphases are placed on the calibration of parameters to
improve the performance of hydrological models. The optimal constant parameter set for a catchment
can be inferred using various approaches [1,2] under the assumption that both the climate and the
catchment characteristics are stationary. However, the ability to produce reliable predictions with the
constant parameter set has been challenged under changing climate and watershed conditions [3–8].

The transferability of the model parameters between periods with different climate and watershed
conditions is essential for reliable application of the hydrological models. Plenty of previous studies
have revealed the fact that model parameters are strongly dependent on the data period with which
the hydrological models are calibrated [9–11]. In general, loss of robustness and variation in model
performance can be witnessed when the model parameters are inappropriately transferred [12].
For example, a model calibrated under wet conditions is usually unlikely to perform well under dry
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conditions and vice versa. In addition, the optimal parameter set may become no longer suitable once
the watershed conditions change significantly as a result of human activities (e.g., the construction of
dams, afforestation and deforestation). The impact of such changes on hydrologic processes such as
streamflow has been well documented [13,14]. In such cases, hydrological models with time-invariant
parameters may show a poor predictive performance due to their inability to explicitly represent the
changes within the catchment.

One approach to make the model perform robustly under changing environments is to identify
the optimal parameter set with time consistent performance [15–22]. Such approach is based on a
series of calibration procedures on different sub-periods, and careful identification of the parameter
sets with consistent performance for all these sub-periods. All parameter sets are independently
evaluated in every sub-period, and only the parameter set that performs well in all cases are finally
selected. Nevertheless, this is achieved at the cost of a possible decline in model performance for some
individual sub-periods.

Another approach to improve the predictive performance of hydrological models under changing
environments is to allow model parameters to evolve over time [23–33]. For example, Wallner
and Haberlandt [25] linked the time-varying model parameters of a modified version of the HBV
(Hydrologiska Byråns Vattenbalansavdelning) model with the climate indices. The results showed a
significant improvement in model performance for streamflow simulation when using the time-varying
parameters, especially for low flows. Pathiraja et al. [26] demonstrated the potential for the data
assimilation method to detect the temporal variation in all parameters of the Probability Distributed
Model and to improve model performance for streamflow simulation. Westra et al. [27] reported a
significantly improved streamflow simulation performance of the GR4J model when the parameter
represents the production storage capacity was made dependent on covariates describing seasonality,
annual variability, and longer-term trends. Deng et al. [28] assumed the parameters of the two-parameter
monthly water balance model to be time-varying as functions of catchment properties. Their case
study in southern China suggests that the incorporation of time-varying parameters can enhance
the capability of hydrological models to produce reliable predictions under changing environments.
These studies suggest that the time-varying parameter may serve as an effective compensation for the
possible deficiency of model structure, which failed to represent changes in hydrological dynamics
within the watershed.

However, few recent studies focus on the temporal transferability of the time-varying parameters
(i.e., robustness under extrapolation). Some previous studies [25,27,28] have tested the temporal
transferability of the time-varying parameter from only one calibration period to only one validation
period. They reported that the streamflow simulation using a model with the time-varying parameter
is better than the original model during the validation procedure. However, these studies failed to fully
account for the cases where time-varying parameter is transferred between periods with contrasting
climate and watershed conditions (e.g., from driest period to wettest period), which remains an
interesting topic that deserves further researches.

This study aims to investigate whether a hydrological model with time-varying parameter would
achieve a better streamflow simulation performance and parameter transferability under changing
environments than its original form. The GR4J model was chosen for its simplicity in model structure
and parsimony in model parameters [34]. The relatively sensitive parameters of the GR4J model
were treated as time-varying and assumed to be a function of several external covariates. Several
sub-periods with different climate and watershed conditions were set up for a series of split-sample
test for the GR4J model with constant parameter and time-varying parameter. The investigation was
carried out for Weihe Basin and Tuojiang Basin in western China.
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2. Methodology

2.1. The Original GR4J Model and GR4J Model with Time-Varying Parameter

The original GR4J model has four parameters, namely the production storage capacity x1, the
groundwater exchange coefficient x2, the one day ahead maximum capacity of the routing storage x3

and the time base of unit hydrograph x4, as presented in Table 1. More details about the GR4J model
can be found in the work of Perrin et al. [34].

Table 1. Description of the GR4J model parameters.

Parameter Description Unit
Feasible Range

Lower Bound Upper Bound

x1 production storage capacity mm 20 1200
x2 groundwater exchange coefficient mm −5 3

x3
one day ahead maximum capacity

of the routing store mm 20 500

x4 time base of unit hydrograph days 1 5

A comprehensive sensitivity analysis of all four parameters is needed to determinate which
parameter is relatively more sensitive and should be treated as time-varying. To this end, the Sobol’
sensitivity analysis method [35] was applied in this study. Considering that this study focuses on
changing environments where stationary rainfall-runoff relationship is usually absent, the Sobol’
sensitivity indices were computed at the monthly timescale. This temporally discretized sensitivity
analysis was expected to provide significant information about model behavior and capture the
diversity of parameter sensitivity during different periods [36].

The GR4J model with time-varying parameters is referred to as GR4J-T model hereafter.
The selected time-varying parameters are treated as functions of several external covariates related to
the alternation of climate or watershed conditions. The potential covariates for time-varying parameters
are denoted as V j( j = 1, 2, . . . , M) and their long-term mean values as V j( j = 1, 2, . . . , M), where M is
the total number of the external covariates. When the parameter xi(i = 1, 2, 3, 4) of the GR4J model is
considered to be time-varying, it is denoted as xi,t, where t indicates the time. The general relationship
of xi,t with the corresponding external covariates is assumed to be,

xi,t − xi,c

xi,c
=

M∑
j=1

βi, j f j

V j,t −V j

V j

 (1)

which can be rewritten as,

xi,t = xi,c +
M∑

j=1

λi, j f j

V j,t

V j
− 1

 (2)

where xi,c stands for the constant value of parameter xi over the calibration period, while βi, j and
λi, j (λi, j = βi, j · xi,c), j = 1, . . . , M, are the corresponding regression parameters. The f j(·) is the link
function between the time-varying parameter xi,t and the external covariate V j, which can take multiple
forms such as f (z) = z (linear), f (z) = ez (exponential), or f (z) = ln(z + 1) (logarithmic), so as to
account for possible linear or non-linear relationship of the time-varying parameter with the external
covariates.

Choosing suitable external covariates is a critical issue for the utilization of Equation (1) and (2),
but it is usually limited by the availability of dataset. Considering that in practice the daily changes in
any external covariates could only cause negligible changes in the time-varying parameters, so only
impacts of the monthly changes in any physical covariates on the parameter were investigated in
this study, i.e., the time-varying parameters were updated monthly in every simulation run. Inspired
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by recent work [27,28], 8 external covariates related to variation of climate or watershed underlying
conditions, including 1-month, 2-month and 3-month antecedent monthly precipitation and potential
evapotranspiration (P1, P2, P3, PET1, PET2 and PET3) and NDVI (Normalized Difference Vegetation
Index) of current month (NDVI0), one-month shifted NDVI (NDVI1) (as shown in Table 2), were
considered as candidate covariates for the time-varying parameter.

Table 2. Description of external covariates for time-varying parameters.

Covariates Unit Description

P1 mm One-month antecedent monthly total precipitation
P2 mm Two-month antecedent monthly total precipitation
P3 mm Three-month antecedent monthly total precipitation

PET1 mm One-month antecedent monthly total potential evapotranspiration
PET2 mm Two-month antecedent monthly total potential evapotranspiration
PET3 mm Three-month antecedent monthly total potential evapotranspiration

NDVI0 - NDVI value for the current month
NDVI1 - NDVI value for the previous month

2.2. Model Calibration and Evaluation

The differential split-sample test (DSST) is a common way to evaluate hydrological models
between sub-periods with contrasting climate and watershed underlying conditions [37,38]. In practice,
usually only two or three contrasting sub-periods can be identified due to the availability of the
hydro-meteorological data. This may limit the potential of DSST for accessing the transferability of
model parameters and drawing general conclusions. To overcome this limitation, the generalized
split-sample test (GSST) proposed by Coron et al. [39,40] was chosen to test the temporal transferability
of parameter for the GR4J and GR4J-T model in this study. The main objective of GSST procedure is
to evaluate the model performance under as many and as varied climatic and watershed conditions
as possible. To this end, a sliding window with a specific length (e.g., five years) is applied to define
the sub-periods (as illustrated in Figure 1). In Figure 1, the blue bars indicate the sub-periods while
the grey bars represent the remaining part of the time series. Between two adjacent sub-periods, the
sliding window is moved by one year.
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Figure 1. Illustration of the generalized split-sample test (GSST) procedure (example with 15 years
available and 5-year subperiods). (Adapted from the work of Coron et al. [40]).

When the sub-periods creation completed, both the GR4J and GR4J-T model were calibrated in
each sub-period. Then the parameter sets obtained was used to perform validation test on independent
sub-periods, i.e., the sub-periods that do not overlap with the calibration sub-period. For example, the
parameter calibrated during SP1 won’t be validated in SP2, SP3, SP4 and SP5, as illustrated in Figure 1.
For more detail about GSST, the readers can refer to the work of Coron et al. [39,40].

The original GR4J model and the GR4J-T model have different numbers of calibrated parameters.
For the original GR4J model, the number of calibrated parameters is 4, i.e., θ = {x1, x2, x3, x4}. In the
case of the GR4J-T model, when the parameter xi(i = 1, 2, 3, 4) is treated to be time-varying, its
constant value xi,c and the corresponding regression parameters λi, j( j = 1, . . . , M) are calibrated
together with other time-invariant parameters. For example, when only the parameter x1 is regarded as
the time-varying parameter, parameters that require calibration are θ =

{
x1,c,λ1,1, . . . ,λ1,M, x2, x3, x4

}
.

Similarly, when multiple parameters are assumed to be time-varying, e.g., x1 and x2, the calibrated
parameters become θ =

{
x1,c,λ1,1, . . . ,λ1,M, x2,c,λ2,1, . . . ,λ2,M, x3, x4

}
.

The widely used Kling-Gupta Efficiency (KGE) [41] was applied to assess the overall performance
of the GR4J and GR4J-T model. The KGE is calculated as follows,

KGE = 1−

√
(r(Qact, Qsim) − 1)2 +

(
µ(Qact)

µ(Qsim)
− 1

)2

+

(
σ(Qact)

σ(Qsim)
− 1

)2

(3)

where Qact and Qsim are the observed and model-simulated streamflow series, respectively, r(Qact, Qsim)

is the Pearson’s correlation coefficient between the observed and simulated streamflow series, µ(Qact)
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and µ(Qsim) are the mean values of the observed and simulated streamflow series, respectively, σ(Qact)

and σ(Qsim) are the standard deviation of the observed and simulated streamflow series, respectively.
KGE value ranges from −∞ to 1, with a value closer to 1 indicating a better simulation performance.

The bias between the observed and simulated streamflow (BIAS) was also applied, which is
calculated as follows,

BIAS =

∑T
t=1 Qsim(t)∑T
t=1 Qact(t)

− 1 (4)

where Qact(t) and Qsim(t) are the observed and model-simulated streamflow at time t, respectively.
BIAS with a value of 0 indicates no bias, and a value above 0 means an overestimation of the total
streamflow volume.

Both the GR4J and GR4J-T models were calibrated using the SCEM (Shuffled Complex Evolution
Metropolis) optimization algorithm [2,42], which has been widely used for practical assessment of
parameter uncertainty in hydrological modeling. The SCEM algorithm, partially inspired by the
SCE-UA (Shuffled Complex Evolution - University of Arizona) algorithm [1], merges the strengths of
Metropolis-Hastings sampling [43,44], controlled random search, competitive evolution and complex
shuffling to evolve a population of sampled points to an approximation of the posterior distribution of
the parameters. Besides, the SCEM method can identify the most likely parameter set and meanwhile
its underlying posterior probability distribution in every single run [45]. The likelihood of a parameter
set was calculated as the corresponding KGE value. Considering that the likelihood value must be
nonnegative and monotonically increasing with improved performance, the parameter set that leads to
a KGE value below 0 was rejected during the evolution procedure within SCEM. The convergence of the
algorithm was determined using the Gelman-Rubin statistic [46], which is calculated on the posterior
densities to check whether convergence to a stationary target distribution has been reached. For more
detail about the SCEM optimization algorithm, the reader can refer to the work of Vrugt et al. [2].

After the convergence of the SCEM optimization algorithm, the final posterior distribution of
parameter can be obtained. In total 5000 parameter sets were sampled from the posterior distribution
to account for parameter uncertainty in this study. It should be noted that the 5000 parameter sets
can lead to very similar streamflow simulation performance in terms of the KGE criteria, and the one
corresponding to the highest KGE value (i.e., the KGE-best) was chosen to represent the estimate of the
global optimum and used for the model evaluation and selection.

2.3. Temporal Transferability Test of Model Parameters

When a parameter setθ that calibrated from the sub-period D (denoted as “donor period” hereafter)
is transferred to the sub-period R (i.e., validation, denoted as “receiver period”), the Kling-Gupta
Efficiency (KGE) can be rewritten as,

KGED→R = 1−

√
(r(Qact,R, Qsim,R[θD]) − 1)2 +

(
µ(Qact,R)

µ(Qsim,R[θD])
− 1

)2

+

(
σ(Qact,R)

σ(Qsim,R[θD])
− 1

)2

(5)

where Qact,R is the simulated streamflow series of sub-period R, Qsim,R[θD] is the simulated streamflow
series of sub-period R using parameter set obtained from sub-period D. In addition, KGER→R is defined
to access the streamflow simulation performance during sub-period R using parameter sets obtained
from sub-period R.

Note that the temporal transferability test on one single parameter set could be less persuasive.
To fully evaluate the temporal parameter transferability of both the GR4J and GR4J-T model, the 5000
parameter sets from each sub-period were then validated at other independent sub-periods, and the
average performance of both models were compared. To this end, a parameter transferability criteria
(PTC) is defined as:

PTC =

∑N
n=1 KGEt

D→R(n) −
∑N

n=1 KGEc
D→R(n)

N
(6)
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where KGEc
D→R(n) and KGEt

D→R(n) represent the KGED→R value in the case of the GR4J and the
GR4J-T model using the nth parameter set, respectively. Here, N takes the value of 5000. Note that PTC
with a value above 0 indicates a better parameter transferability for the GR4J-T model over the original
GR4J model when transferred from sub-period D to sub-period R.

3. Study Data and Area

Weihe Basin and Tuojiang Basin in Western China were chosen as the study areas. Weihe Basin
is located between the coordinates 33◦40′–37◦26′ N and 103◦57′–110◦27′ E, with a drainage area of
148,000 km2 above Huaxian hydrological station, as shown in Figure 2. The elevation within Weihe
Basin ranges from 3671 m in the western upstream region to 318 m in the eastern downstream region.
Dominated by the semi-arid continental monsoon climate, most precipitation and flood events in Weihe
Basin occur in late summer and early autumn. For Weihe Basin, climate variability is significant and
human activities have been proved to be the main cause of the alternation of flow regimes. Previous
studies have shown that the annual streamflow of the gauge Huaxian has been declining over the past
decades [47–49], mainly due to the increasing human activities including the agricultural irrigation,
the construction of large water control projects and the implementation of the water-soil conservation
projects [50,51]. In addition, the variations of the annual precipitation have also contributed to the
reduced annual streamflow in Weihe Basin [52].Water 2019, 11, x FOR PEER REVIEW 8 of 25 
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Tuojiang Basin (28◦88′–30◦29′ N, 105◦44′–108◦20′ E) is an upstream tributary of the Yangtze River,
with a total length of 712 km. Tuojiang Basin covers 19,613 km2 with Fushun hydrological station as
the catchment outlet. The elevation within Tuojiang Basin ranges from 264 to 4741 m and decreases
from northwest to southeast. Tuojiang Basin is dominated by the subtropical monsoon climate, with
most precipitation and flood events occurring in summer and early autumn. The annual streamflow of
Tuojiang Basin was also in a downtrend. However, few recent studies focus on Tuojiang Basin and the
reason for the declined annual streamflow remains unclear.

The input data for the GR4J model include precipitation (P) and potential evapotranspiration (PET).
The precipitation and air temperature data were provided by National Meteorological Information
Center of China [53] on a daily basis for the period from 1981 to 2010 and has been widely validated
for its quality in previous studies [47–49]. Limited by availability of the meteorological dataset, the
potential evapotranspiration (PET) was calculated using the Blaney-Criddle method [54] from the
daily average air temperature and the daily sunshine duration. To calibrate and validate the GR4J
model, the observed streamflow (Q) series from the gauge Huaxian and Fushun were obtained for the
period 1981–2010. The NDVI dataset for the period from 1981–2010 was obtained from the GIMMS
(Global Inventory Modelling and Mapping Studies) NDVI–3g product [55], which has been widely
validated [55,56]. Since its temporal resolution is 15-day, the monthly NDVI is represented by the mean
value of the two NDVI values in each month.

4. Results and Discussion

4.1. Diagnostics of Hydrological Nonstationarity

Considering the available hydro-meteorological dataset for Weihe Basin and Tuojiang Basin are
for the period 1981–2010, in total 26 sub-periods of 5-year in length are set up following the method
described in Figure 1. The reasons for the selection of 5-year as the sub-period length are: (1) 5-year is
sufficient for continuous hydrological simulation, (2) a large number of sub-periods (26 in this study)
can be set up given that only 30-year records were available. To identify the long-term variation of the
hydro-meteorological data series of both basins, the non-parametric Mann-Kendall method [57,58]
was applied to examine the trends in the annual P, PET, Q and annual runoff ratios (RR) series of the
period 1981–2010, and the result is shown in Table 3. The results show a significant downtrend for
the annual Q and RR series, a slight downtrend for annual P series and uptrend for the PET series
in Weihe Basin. In the case of Tuojiang Basin, a slight downtrend for annual P series and significant
downtrend for annual PET, Q, and RR series are presented. It can be found that both basins witnessed
a clear nonstationary in rainfall-runoff relationship. In terms of the annual NDVI series, Weihe Basin
shows a clear uptrend while Tuojiang Basin shows no clear changes. This may be attributed to the fact
that Weihe Basin has experienced an incessant construction of water-soil conservation projects (e.g.,
afforestation) since the early 1980s [49].

Variability is also apparent between longer periods, as shown in Figure 3, where the relative
mean P, PET, Q, and RR values for all sub-periods (5-year sliding window) are plotted for both basins.
Figure 3a–d show how the 5-year hydro-meteorological conditions differ from those of the whole
period (1981–2010). For each basin, a line corresponds to the series of the mean values over a 5-year
sliding window (sub-period). Each value is expressed relative to the mean value of the whole period
(1981–2010) and plotted in the middle year of the corresponding sub-period. The result is in line with
the results of the MK-test. For both Weihe Basin and Tuojiang Basin, a significant downtrend of 5-year
total streamflow volume and a decreased runoff-ratios are presented. This may question the parameter
transferability of the GR4J model, which is detailed in following sections.
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Table 3. Mann-Kendal (MK) test results of the annual hydro-meteorological data series, the annual
runoff ratios and the annual NDVI data series for Weihe Basin and Tuojiang Basin. The critical value of
the MK statistic is Z1−α/2 = 1.960 with α = 0.05.

Basin Data Z statistic Trend

Weihe Basin

Annual P −1.22 ↓

Annual PET 1.56 ↑

Annual Q −2.61 ↓**
Annual RR −2.56 ↓**

Annual NDVI 3.96 ↑**

Tuojiang Basin

Annual P −1.32 ↓

Annual PET −3.51 ↓**
Annual Q −2.75 ↓**

Annual RR −2.78 ↓**
Annual NDVI 0.46 ↑

Notes: The symbol “**” indicates a significant uptrend or downtrend.
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Figure 3. Relative long-term hydro-meteorological variability of (a) precipitation (P), (b) potential
evapotranspiration (PET), (c) runoff (Q), and (d) runoff ratio (RR) over Weihe Basin and Tuojiang Basin.

4.2. Parameter Estimation for the GR4J and GR4J-T Model

To incorporate time-varying sensitivity analysis, the Sobol’ sensitivity analysis was repeated at a
monthly temporal resolution rather than over the whole period (1981–2010). The monthly sensitivity
indices (including the first-order and total-order) of each parameter were therefore obtained with KGE
as the metric. More detail about the time-varying sensitivity analysis can be found in the work of
Herman et al. [36]. Figure 4 provides a simple and direct interpretation of the relationships between the
sensitivity of the GR4J’s parameters and changing precipitation and streamflow conditions, which was
achieved by sorting the monthly sensitivity indices (only the total-order were presented for brevity)
for both basins along ascending gradients of monthly precipitation and streamflow.
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For Weihe Basin, the parameter x1, which controls the production storage capacity, shows a strong
sensitivity during both high-flow and low-flow months. In contrast, the parameter x2, x3 and x4

are less sensitive. In the case of Tuojiang Basin, the parameter x1 and x3 dominate the months with
low-flow and less-precipitation, while the parameter x2 and x4 show relatively weaker sensitivity.
Thus, the parameter x1 is assumed to be time-varying for Weihe Basin, and the parameter x1 and x3 for
Tuojiang Basin.

The correlation between monthly runoff-ratios and monthly external covariate is summarized
in Figure 5 in term of Spearman’s rank correlation coefficient. Note that the monthly runoff-ratios
were calculated as the ratios of monthly runoff depth (mm) and the monthly total precipitation (mm).
It can be found that the monthly runoff-ratios has a strong correlation with PET1 and NDVI0 for Weihe
Basin. In the case of Tuojiang Basin, the covariates with high correlation coefficient are P2 and NDVI0.
This correlation analysis was done to justify the reasonability of incorporating the abovementioned
external covariates into the time-varying parameters. It may be arbitrary to assert that an external
covariate with a weak correlation coefficient is inappropriate and useless. In this study, all 8 external
covariates were applied to construct the time-varying parameters for both Weihe Basin and Tuojiang
Basin, which is detailed in the following section.
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Figure 5. Spearman rank correlation coefficient between monthly covariates and monthly runoff ratio
(RR) for Weihe Basin and Tuojiang Basin for the whole period (1981–2010).

To reduce the influence of the initial state, a spin-up period of 1-year was used at the parameter
calibration procedure for each sub-period, and the simulated streamflow within the spin-up period
was excluded in the model assessment procedure. To fully explore the potential for the GR4J-T model
in streamflow simulation, all combination of the eight external covariates were investigated and their
corresponding performances were compared in terms of the KGE and BIAS criteria. Considering a
large number of model assessment procedure (e.g., 255 covariate combinations for each sub-period in
Weihe Basin,C1

8 +C2
8 +C3

8 +C4
8 +C5

8 +C6
8 +C7

8 +C8
8 = 255), only a small part of the results is presented

hereafter for the sake of brevity. For each covariate combination, totally 5000 parameter sets were
obtained from the calibration procedure and only the KGE-best for each covariate combination is
shown here. For example, Table 4 presented the streamflow simulation performance for 8 different
cases (C0–C7) during the sub-period 1 (SP1) in Weihe Basin. The case C0 was designed to represent
the original GR4J model, where the value of parameter x1 is invariant over time. Under cases C1–C7,
the external covariate P1, PET1 and NDVI0 were incorporated into the time-varying parameter x1,t.
The corresponding equations for time-varying parameter x1,t are also presented in Table 4. It should be
noted that three forms of link functions including ‘linear’, ‘exponential’ and ‘logarithmic’ were used
to link the external covariates with the time-varying parameter. Three link functions lead to similar
model performance, while the ‘linear’ was always the best and simplest one. So only the ‘linear’ is
shown here.

It can be found that the streamflow simulation performance significantly improves when parameter
x1 was allowed to change over time. For example, the KGE value is 0.752 when only the covariate
P1 was considered when compared to 0.727 for the original GR4J model. The difference in BIAS
criteria (from −16.1% to −6.3%) also indicates a better water balance simulation of the GR4J model with
time-varying parameter. Furthermore, the highest KGE value (0.761) was achieved when P1, PET1 and
NDVI0 were incorporated into the time-varying parameter.
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Table 4. Comparison of streamflow simulation performance of the GR4J model (C0) and the GR4J-T
model (C1–C7) in Weihe Basin during the sub-period 1 (SP1, from 1981 to 1985).

Case
Covariate Equation for Time−Varying Parameter x1,t

KGE
(-)

BIAS
(%)P1 PET1 NDVI0

C0 x1,t = 320.1 0.727 −16.1

C1 3 x1,t = 290.3 + 0.28P1,t 0.752 −6.3

C2 3 x1,t = 306.5 + 0.54PET1,t 0.749 −8.1

C3 3 x1,t = 296.8 + 99.8NDVI0,t 0.751 −11.2

C4 3 3 x1,t = 271.8 + 0.19P1,t + 0.27PET1,t 0.755 −6.2

C5 3 3 x1,t = 312.5 + 0.17PET1,t + 60.6NDVI1,t 0.759 −6.4

C6 3 3 x1,t = 298.4 + 0.25P1,t + 41.8NDVI0,t 0.751 −9.3

C7 3 3 3 x1,t = 303.4 + 0.18P1,t + 0.28PET1,t + 32.6NDVI0,t 0.761 −6.1

4.3. Streamflow Simulation Performance of the GR4J and GR4J-T Model

Similarly, the model assessment procedure was repeated for the rest sub-periods (SP2-SP26).
Table 5 presents the streamflow simulation performance of the GR4J model and the GR4J-T model for
all 26 sub-periods in Weihe Basin. Note that the equations for time-varying parameter x1,t corresponds
to the covariate combination case with the best streamflow simulation performance in terms of the KGE
criteria during the corresponding sub-period, i.e., the KGE-best one. The GR4J-T model significantly
outperforms the original GR4J model in terms of the KGE criteria and achieve a better water balance
simulation in most cases. This is not unexcepted as previous studies have proven the advantage of
applying time-varying parameter in streamflow simulation [27,28].

Table 5. Comparison of streamflow simulation performance of the GR4J model and the GR4J-T model
in Weihe Basin for all sub-periods (SP1–SP26).

Sub-
Period

GR4J Model GR4J-T Model

Value of x1
KGE

(-)
BIAS
(%) Equation for Time−Varying Parameter x1,t

KGE
(-)

BIAS
(%)

SP1 320.1 0.727 −16.1 x1,t = 303.4 + 0.18P1,t + 0.28PET1,t + 32.6NDVI0,t 0.761 −6.1

SP2 443.2 0.617 −17.3 x1,t = 278.6 + 0.16P1,t + 0.17PET1,t + 57.7NDVI0,t 0.631 −14.5

SP3 324.1 0.571 −19.1 x1,t = 309.2 + 0.25P1,t − 0.14PET1,t − 28.6NDVI0,t 0.572 −11.6

SP4 263.5 0.509 −26.2 x1,t = 251.5 + 0.35P1,t − 0.19PET1,t + 38.6NDVI0,t 0.591 −20.2

SP5 447.3 0.611 −16.2 x1,t = 399.5 + 0.27P1,t − 0.15PET1,t − 4.3NDVI0,t 0.635 −13.2

SP6 375.5 0.389 −22.2 x1,t = 259.1 + 0.38P1,t − 0.21PET1,t + 44.6NDVI0,t 0.481 −20.3

SP7 367.4 0.392 −22.9 x1,t = 292.7 + 0.29P1,t − 0.19PET1,t + 44.2NDVI0,t 0.514 −27.9

SP8 300.9 0.442 −25.7 x1,t = 251.5 + 0.35P1,t + 0.15PET1,t + 21.7NDVI0,t 0.575 −26.4

SP9 256.3 0.341 −23.3 x1,t = 205.6 + 0.45P1,t − 0.37PET1,t + 61.9NDVI0,t 0.504 −19.6

SP10 414.5 0.403 −18.1 x1,t = 283.5 + 0.48P1,t − 0.12PET1,t + 17.1NDVI0,t 0.442 −15.2

SP11 417.6 0.392 −26.4 x1,t = 233.5 + 0.17P1,t − 0.09PET1,t − 7.6NDVI0,t 0.438 −26.6

SP12 244.1 0.483 −25.2 x1,t = 241.5 + 0.37P1,t − 0.49PET1,t + 48.2NDVI0,t 0.536 −19.7

SP13 182.4 0.230 −42.9 x1,t = 194.1 + 0.67P1,t + 0.34PET1,t − 27.9NDVI0,t 0.432 −40.3

SP14 340.4 0.499 −23.6 x1,t = 305.8 + 0.47P1,t − 0.15PET1,t − 34.8NDVI0,t 0.535 −17.9

SP15 424.1 0.659 −13.7 x1,t = 341.5 + 0.53P1,t − 0.09PET1,t − 13.6NDVI0,t 0.713 −7.8

SP16 208.1 0.601 −28.2 x1,t = 221.6 + 0.19P1,t + 0.09PET1,t − 6.3NDVI0,t 0.622 −26.4

SP17 295.5 0.582 −18.4 x1,t = 329.4 + 0.54P1,t − 0.03PET1,t − 28.1NDVI0,t 0.639 −10.1

SP18 315.3 0.489 −24.5 x1,t = 300.7 + 0.52P1,t − 0.35PET1,t − 12.2NDVI0,t 0.543 −17.5
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Table 5. Cont.

Sub-
Period

GR4J Model GR4J-T Model

Value of x1
KGE

(-)
BIAS
(%) Equation for Time−Varying Parameter x1,t

KGE
(-)

BIAS
(%)

SP19 378.7 0.734 −23.3 x1,t = 308.3− 0.13P1,t + 0.52PET1,t − 23.6NDVI0,t 0.763 −16

SP20 429.1 0.779 −21.5 x1,t = 229.8 + 0.57PET1,t − 29.2NDVI0,t 0.801 −17.4

SP21 339.5 0.732 −4.6 x1,t = 325.1− 0.51P1,t + 0.27PET1,t + 29.1NDVI0,t 0.771 −1.5

SP22 460.1 0.746 −4.7 x1,t = 334.5− 0.13P1,t + 0.25PET1,t − 12.1NDVI0,t 0.765 −3.2

SP23 382.8 0.729 −15.3 x1,t = 281.9− 0.17P1,t − 0.09PET1,t + 22.4NDVI0,t 0.772 −13.8

SP24 334.5 0.563 −24.6 x1,t = 336.7 + 0.34P1,t − 0.13PET1,t + 15.2NDVI0,t 0.654 −10.6

SP25 223.1 0.522 −37.5 x1,t = 284.1 + 17.5P1,t + 0.09PET1,t + 11.5NDVI0,t 0.583 −22.3

SP26 426.5 0.586 −18.7 x1,t = 316.2 + 0.51P1,t − 0.28PET1,t + 33.8NDVI0,t 0.691 −13.8

The case of Tuojiang is more complicated since two parameters (x1 and x3) are assumed to be
time-varying. Therefore, four scenarios were considered for each sub-period, including: (1) both
parameters are constant, (2) x1 is constant and x3 is time-varying, (3) x1 is time-varying and x3 is
constant, (4) both parameters are time-varying. However, only the results of the first and fourth
scenario are presented here in Table 6, because: (1) the calibration procedure is not the main purpose of
this study, (2) the second and third scenario show less significant improvement in term of KGE when
compared to the fourth scenario. For Tuojiang Basin, it is clear that the GR4J-T outperforms the original
GR4J model, though the improvement in terms of KGE is not as significant as the case of Weihe Basin.
This may partly be attributed to the fact that the original GR4J can achieve a satisfying performance in
most sub-periods for Tuojiang Basin.

Table 6. Comparison of streamflow simulation performance of the GR4J model and the GR4J-Model in
Tuojiang Basin for all sub-periods (SP1–SP26).

Sub-
Period

GR4J Model GR4J-T Model

Values of x1
and x3

KGE
(-)

BIAS
(%) Equations for x1,t and x3,t

KGE
(-)

BIAS
(%)

SP1 x1 = 153.5
x3 = 129.3 0.706 −4.7 x1,t = 179.9 + 0.23PET1,t − 52.3NDVI0,t

x3,t = 125.9 + 0.28PET1,t − 50.1NDVI0,t
0.729 −3.8

SP2 x1 = 210.1
x3 = 225.3 0.619 −5.2 x1,t = 221.5 + 0.14P2,t + 0.18PET1,t − 50.1NDVI0,t

x3,t = 185.2 + 0.34PET1,t − 41.5NDVI0,t
0.654 −3.2

SP3 x1 = 119.1
x3 = 180.2 0.677 −4.4 x1,t = 287.7− 0.23PET1,t − 66.3NDVI0,t

x3,t = 156.9 + 0.18PET1,t − 31.7NDVI0,t
0.701 −4.2

SP4 x1 = 191.5
x3 = 255.9 0.725 −4.5 x1,t = 233.8 + 0.37PET1,t + 7.2NDVI0,t

x3,t = 289.1 + 0.12PET1,t − 33.2NDVI0,t
0.738 −1.9

SP5 x1 = 183.2
x3 = 293.9 0.696 −4.9 x1,t = 253.2− 0.14PET1,t − 38.7NDVI0,t

x3,t = 217.9− 0.41PET1,t − 48.3NDVI0,t
0.702 −6.3

SP6 x1 = 230.7
x3 = 110.1 0.738 −5.2 x1,t = 286.8− 0.56PET1,t + 19.6NDVI0,t

x3,t = 131.2− 39.1NDVI0,t
0.754 −4.1

SP7 x1 = 239.2
x3 = 124.6 0.724 −2.2 x1,t = 263.1− 0.27PET1,t − 35.1NDVI0,t

x3,t = 217.9− 0.24PET1,t − 18.5NDVI0,t
0.743 −0.7

SP8 x1 = 201.3
x3 = 281.2 0.725 −2.5 x1,t = 267.8 + 0.18PET1,t − 36.5NDVI0,t

x3,t = 237.5 + 0.24P2,t − 0.31PET1,t − 18.9NDVI0,t
0.752 −4.4

SP9 x1 = 259.7
x3 = 115.8 0.771 −3.5 x1,t = 161.5 + 0.32PET1,t + 56.6NDVI0,t

x3,t = 237.9 + 0.14P2,t − 0.28PET1,t − 45.7NDVI0,t
0.792 −0.1

SP10 x1 = 234.6
x3 = 122.7 0.756 −5.1 x1,t = 191.3 + 0.64PET1,t − 18.9NDVI0,t

x3,t = 187.2 + 0.19P2,t − 72.1NDVI0,t
0.776 −4.8

SP11 x1 = 217.4
x3 = 220.8 0.759 −2.3 x1,t = 285.1 − 0.22P2,t − 24.3NDVI0,t

x3,t = 188.2 + 0.12P2,t + 0.28PET1,t − 35.1NDVI0,t
0.771 −7.7
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Table 6. Cont.

Sub-
Period

GR4J Model GR4J-T Model

Values of x1
and x3

KGE
(-)

BIAS
(%) Equations for x1,t and x3,t

KGE
(-)

BIAS
(%)

SP12 x1 = 137.3
x3 = 199.3 0.764 −4.9 x1,t = 216.5 + 0.36PET1,t − 62.7NDVI0,t

x3,t = 244.7 + 0.34PET1,t − 46.8NDVI0,t
0.779 −8.6

SP13 x1 = 261.8
x3 = 161.6 0.726 −7.5 x1,t = 307.8 + 0.18P2,t − 0.42PET1,t − 42.9NDVI0,t

x3,t = 155.8 + 0.52PET1,t − 29.1NDVI0,t
0.739 −10.1

SP14 x1 = 240.4
x3 = 152.5 0.728 −2.1 x1,t = 271.9 − 0.19PET1,t − 56.3NDVI0,t

x3,t = 141.4 + 0.43PET1,t − 42.7NDVI0,t
0.736 −2.5

SP15 x1 = 240.1
x3 = 177.2 0.725 −6.7 x1,t = 234.7− 0.16PET1,t − 36.1NDVI0,t

x3,t = 185.5− 0.16PET1,t − 24.2NDVI0,t
0.728 −8.2

SP16 x1 = 265.3
x3 = 178.9 0.691 0.8 x1,t = 292.1− 0.42PET1,t − 40.9NDVI0,t

x3,t = 248.4− 61.6NDVI0,t
0.703 3.4

SP17 x1 = 239.6
x3 = 123.4 0.721 −3.7 x1,t = 209.8− 0.43PET1,t + 22.3NDVI0,t

x3,t = 144.3 + 0.21P2,t − 0.18PET1,t + 18.3NDVI0,t
0.727 −2.3

SP18 x1 = 236.7
x3 = 152.2 0.745 −3.9 x1,t = 267.4− 0.36PET1,t

x3,t = 195.9− 0.52PET1,t + 18.3NDVI0,t
0.751 −3.0

SP19 x1 = 210.5
x3 = 138.8 0.728 −9.1 x1,t = 188.3 + 0.13PET1,t − 51.1NDVI0,t

x3,t = 137.8 + 0.15P2,t − 0.28PET1,t + 15.4NDVI0,t
0.739 −9.9

SP20 x1 = 221.5
x3 = 138.4 0.717 −11.9 x1,t = 107.6 + 0.12P2,t + 97.3NDVI0,t

x3,t = 153.2− 0.16PET1,t − 42.4NDVI0,t
0.747 −7.4

SP21 x1 = 234.4
x3 = 162.3 0.795 −7.1 x1,t = 219.4− 0.28PET1,t + 75.1NDVI0,t

x3,t = 143.1− 0.31PET1,t − 42.4NDVI0,t
0.812 −5.2

SP22 x1 = 165.4
x3 = 211.6 0.714 −8.8 x1,t = 138.7 + 0.56PET1,t − 62.3NDVI0,t

x3,t = 200.6− 0.34PET1,t − 39.4NDVI0,t
0.745 −6.6

SP23 x1 = 303.5
x3 = 185.2 0.749 −6.6 x1,t = 339.1− 0.38PET1,t − 60.8NDVI0,t

x3,t = 139.9 + 0.35PET1,t − 62.4NDVI0,t
0.766 −7.1

SP24 x1 = 285.9
x3 = 112.5 0.688 −9.4 x1,t = 138.7 + 0.34PET1,t + 41.6NDVI0,t

x3,t = 225.9− 0.45PET1,t − 68.5NDVI0,t
0.716 −7.5

SP25 x1 = 224.5
x3 = 168.7 0.678 −9.4 x1,t = 136.8 + 0.18PET1,t + 57.9NDVI0,t

x3,t = 257.1− 0.42PET1,t − 61.3NDVI0,t
0.681 −6.9

SP26 x1 = 185.9
x3 = 129.7 0.687 −9.7 x1,t = 200.1− 0.58PET1,t + 72.6NDVI0,t

x3,t = 244.9 + 0.18P2,t − 0.48PET1,t − 71.2NDVI0,t
0.708 −7.4

The observed streamflow and the uncertainty bounds associated with model parameter for both
models during part of SP1 (1982–1983) are presented in Figure 6 (for Weihe Basin) and Figure 7 (for
Tuojiang Basin) for an illustration purpose. The uncertainty bounds associated with model parameter
were calculated as follows [59]. For both the GR4J and GR4J-T model, the streamflow simulation for a
certain sub-period was repeated using the 5000 parameter sets, and 5000 simulated hydrographs were
therefore obtained. Then the likelihood value of each parameter set was assigned to the respective
simulated hydrograph. At each time step of the simulation, the posterior distributions of simulated
streamflow can be calculated based on the 5000 simulated streamflow and the corresponding likelihood
values. The upper and lower uncertainty bounds are here defined as the 2.5% and 97.5% quantiles
of the posterior distribution, respectively. Then the 95% predictive uncertainty bounds associated
with model parameter for both models were obtained. More detail of the calculation of the predictive
uncertainty bounds can be found in the work of Blasone et al. [59]. The red and grey shaded areas
indicate the prediction uncertainty associated with the GR4J model and GR4J-T model, respectively.
It can be found that most parts of the observed streamflow series lie within the uncertainty bounds
for both models, indicating a good simulation performance. In addition, the original GR4J model
tends to underestimate the low flows in Weihe Basin, as presented in Figure 6b, where the simulated
streamflow series is constantly lower than the observed in November of 1983. However, the average
relative bandwidth of the uncertainty bounds associated with the GR4J-T model is wider, which
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indicates a higher parameter uncertainty. This agrees with the finding of Wallner and Haberlandt [25],
who showed that time-varying model parameters can improve the model performance at the cost of
possible growth in parameter uncertainty. The growth in parameter uncertainty may also relate to the
choice of the external time-varying covariates when applying time-varying parameter, which may be
an interesting topic that deserves further exploration.

Figure 6a presents the constant value of the parameter x1 and its temporal dynamic when treated
as time-varying for Weihe Basin during part of SP1 (1982–1983). The constant value was obtained from
the KGE-best parameter set of the GR4J model, while the temporal dynamic of x1,t is presented in
the form of boxplot using the 5000 resultant parameter sets of the GR4J-T model. It can be seen that
the time-varying parameter x1,t increases in the growing season and decreases as the dormant season
begins, with its values around the constant value of the parameter x1. The case is the same for the
parameter x1 and x3 in Tuojiang Basin, as shown in Figure 7a,b.
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Figure 7. Temporal comparison of the values of the parameter (a) x1 and (b) x3, and (c) the simulated
daily streamflow of the GR4J model and the GR4J-T model for Tuojiang Basin during SP1 (only the
period from 1 January 1982 to 31 December 1983 are presented here). The uncertainty bounds associated
with model parameter are derived from the streamflow simulation results using the corresponding
5000 parameter sets.

The increased value of the parameter x1 during the growing season indicates larger catchment
storage (e.g., interception) and, therefore, a weaker response of the watershed to precipitation inputs.
As a result, the same hydrological inputs of precipitation may lead to less streamflow, therefore lower
runoff ratio when compared to the dormant season. Likewise, the relatively low value of the parameter
x1 during the dormant season may lead to a stronger response to the precipitation inputs and may
help to reduce the possibility to underestimate the low flow, as mentioned above. The parameter x3,
which controls the routing storage of GR4J model, shows a similar trend with x1 in the case of Tuojiang.
Similarly, the relatively low values of the parameter x3 during dormant season, could contribute to a
more rapid hydrological response and therefore a better representation of the low flow.

The improved streamflow simulation performance can be attributed to: (1) the dynamics in model
parameter, which may help to compensate the possible deficiency of model structure, (2) the increased
degree of freedom of model parameters. For the GR4J-T model applied in Weihe Basin, the number of
parameters that required calibration is 7. The trade-off between a simple model structure and good
model performance could be an interesting topic that deserves further researches, especially under
changing environments.
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4.4. Parameter Transferability of the GR4J and GR4J-T Model

To test the parameter transferability of the GR4J and GR4J-T Model, the abovementioned 5000
parameter sets obtained from each sub-period (donor period) were then validated at its independent
sub-periods (receiver periods). For example, Figure 8 compares the streamflow simulation performance
of the GR4J model and GR4J-T model under 10 different sub-periods using parameter sets obtained
from SP1 in Weihe Basin. The corresponding PTC criteria are also presented. As a reference, the
red solid line represents the highest value of KGE (KGEc

R→R) achieved by the original GR4J model
using parameter from each receiver period, while the blue solid line for the GR4J-T model (KGEt

R→R).
The blue boxes represent the KGE values (KGEc

D→R) achieved by the original GR4J model using the
5000 parameter sets obtained from SP1, and the green boxes represent those of the GR4J-T model
(KGEt

D→R). It is clear that when parameter sets were transferred from the donor period to the receiver
periods, the model performance significantly decreased for both the GR4J model and GR4J model.
However, the maximum value of the green boxes (KGEt

D→R) is constantly higher than those of the blue
boxes (KGEc

D→R), as shown in Figure 8. Besides, the PTC criteria, which is the difference between the
average value of KGE achieved using 5000 parameter sets by both models over each receiver period
(see Equation (6)), is above 0 in most cases, which indicates a better temporal transferability of the
GR4J-T model. The case is the same for Tuojiang Basin (see Figure 9), though the corresponding PTC
values are quite close to 0.Water 2019, 11, x FOR PEER REVIEW 19 of 25 
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Figure 8. Comparison of streamflow simulation performance in terms of KGE when parameter sets
calibrated during P1 are transferred to other sub-periods (SP6–SP26) for the GR4J model and the GR4J-T
model in Weihe Basin. The boxplots represent the KGE values using the 5000 parameter sets obtained
from SP1. The PTC values indicate the difference of the average simulation performance between the
GR4J model and the GR4J-T model during the validation procedure.
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Figure 9. Comparison of streamflow simulation performance in terms of KGE when parameter sets
calibrated during P1 are transferred to other sub-periods (SP6–SP26) for the GR4J model and the GR4J-T
model in Tuojiang Basin.

To comprehensively compare the temporal transferability of the constant parameter and the
time-varying parameter, the PTC criteria for every possible case is also presented in Figure 10.
The blank area indicates the cases where the transferability test is inapplicable (e.g., between adjacent
sub-periods or among sub-periods that overlap each other). The labels on the y-axis indicate the
26 donor periods while the labels on the x-axis indicate the receiver periods. Each cell in the figure
stands for a transferability test and its color represents the corresponding PTC value. The red cells,
indicating positive PTC values, stands for the cases where the GR4J-T model shows a better temporal
transferability over the GR4J model, while the blue cells are in the opposite cases. It is clear that the
PTC criteria have a positive value in most cases. This further demonstrates that the GR4J-T model has
advantage in term of temporal transferability over the original GR4J model.

Note that the loss in model performance when the model parameter was transferred among
sub-period with different climate and watershed conditions is inevitable even for the hydrological
model with time-varying parameter. Here, it was proven that a better transferability can be achieved
under changing environments when applying the time-varying parameter. Though in practice,
applying the time-varying parameter is not an easy job, as a more complicated calibration procedure
is necessary. However, it is still worth identifying the sensitive parameter and find out how it may
change over time, which may help to improve the model structure and to provide new sights for better
understanding the hydrological processes.
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5. Conclusions

This study investigated the parameter transferability under changing environments of the original
GR4J model and its modified version, in which the parameter was allowed to vary over time. To set up
the GR4J model with the time-varying parameter, a sensitivity analysis was applied to identify the
most sensitive parameter, which was then treated as time-varying and assumed to be a function of
several external covariates. Both models were calibrated and validated in a series of sub-periods with
different climatic and watershed conditions. The investigation was carried out for Weihe Basin and
Tuojiang Basin in western China. The main findings of this study are as follows:
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(1) A better streamflow simulation performance in terms of the KGE criteria was achieved by the
GR4J model with time-varying parameters (x1 for Weihe Basin, x1 and x3 for Tuojiang Basin) during most
calibration sub-periods for both basins, though at the cost of slight growth in parameter uncertainty,

(2) The GR4J model with time-varying parameter shows a better transferability among sub-periods
with different climate and watershed conditions when compared to the original GR4J model for
both basins.

Although the time-invariance of model parameters is one of the basic criteria of a high-quality
hydrologic model, very few (if any) models can achieve this due to their inherent limitations. Numerous
previous studies have proved that hydrological models with time-varying parameters can achieve
a better streamflow simulation performance during the calibration period. This study further
demonstrates the advantage of the GR4J model with time-varying parameter in terms of temporal
transferability among different sub-periods. This may provide new insights for improving the structure
of existing hydrological models and for building new models.

Considering the availability of the dataset for both basins, only six climate-related covariates (P1,
P2, P3, PET1, PET2, and PET3) and 2 watershed-related covariates (NDVI0 and NDVI1) were accounted
for to describe the dynamic variation of the selected parameter. More covariates should be investigated
in further researches. Besides, the key factor that leads to the alternation in flow regimes also differs
for different catchments. Thus, more emphases should be placed on the careful identification of proper
external covariates when applying time-varying parameter.
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