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Abstract: The construction and operation of water storage and hydropower projects affects the structure
of water ecosystems of downstream rivers, and the establishment of ecological flow in rivers below
the water storage and hydropower projects has significant impacts on maintaining the stability of river
ecosystems. A database was established based on 2000–2017 environmental impact assessment (EIA)
reports on water storage and hydropower projects in China and ecological flow (e-flow) methods,
and the three widely used e-flow methods for water storage and hydropower projects in China were
identified on the database. Furthermore, an ecological flow satisfaction degree model was used to
evaluate the methods using long series of historical hydrological data from the hydrological stations in
the Yellow River basin, the Yangtze River basin, and the Liao River basin. The results showed that
hydrological methods are the type most often used for water storage and hydropower projects in China,
including the Tennant method, the minimum monthly average flow with 90% guarantee rate method
(Mm9M method), and the measured historical minimum daily average flow rate method (MDM
method). However, the ecological flow methods selected are not significantly different among different
basins, indicating that the selection of ecological flow methods is rather arbitrary, and adaptability
analysis is not available. The results of the ecological flow satisfaction model showed that the Tennant
method is not suitable for large river basins. The results of this study can provide technical support for
establishment and management decisions surrounding ecological flow.

Keywords: ecological flow method; water storage and hydropower project; adaptability assessment

1. Introduction

A river ecosystem is the unity of material circulation and energy circulation between organisms
and their environments and is a continuous system that relies on the hydrological regime [1,2].
The socio-economic development of human beings is closely related to rivers. To make more efficient use
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of water resources, humans have built a large number of reservoirs, dams, and water diversion projects
on rivers. The World Wildlife Fund (WWF) has surveyed 12 million kilometers of rivers worldwide and
assessed their mobility, and their results show that approximately two-thirds of the surveyed rivers
have no free flow. In the United States, Europe, and other developed countries, long, free-flowing rivers
do not exist; in addition, the rate of decline in the number of freshwater animals and plants is twice the
rate of decline in the number of species on land and at sea [3]. According to the latest statistics from the
World Commission on Dams, there are a total of 58,400 dams with a height of over 15 m globally. There
are still more than 3700 dams under construction, and the future of free-flowing rivers appears to be
bleak [4]. These projects, while meeting economic development needs, including water supply, power
generation, shipping, and irrigation, apply great pressure on river ecosystems [5–7].

To evaluate the impacts of water storage and hydropower projects on rivers, researchers analyzed
the hydrological changes in 186 dam-building rivers in the United States and found that dams may
homogenize the hydrologic variability of rivers [8]. In addition, using the deviation or the variation
coefficient and the concentration rate, the degree of hydrological variation in rivers caused by water
storage and hydropower projects has been quantitatively analyzed [9]. The reservoir-induced variations
in the major hydrological factors and their influence on fish population structure have also been
extensively studied in recent years [10–13]. It is generally believed that the construction of reservoir
dams has an essential impact on the hydrological situation, which affects the aquatic biological structures
after the dam [14–16].

To alleviate the impacts of dam construction and operation on river ecosystems, it is urgently
necessary to find a balance between the development and utilization of water resources and ecological
protection of rivers. Specifically, human and river ecosystems share the water resources of rivers, which
generates the concept of ecological flow (e-flow). The purpose of ecological flow is to consider the
requirements for river ecosystems health that would allow human demand to be met [17].

The estimation of ecological water demand in rivers started in the late 1940s in the western United
States. After more than 70 years of development, there have been more than 200 ecological flow methods
proposed globally, which can be divided into four categories according to their design philosophy:
Hydrological methods, hydraulic methods, habitat methods, and holistic analysis methods [18].
Overall, the e-flow methods are relatively mature, and the classification of flow grading for different
purposes is relatively precise in developed countries. Moreover, they focus on the minimum flow of
rivers, as well as the need to gradually expand from the minimum flow to the level of current needs
to maintain the institutional functions of river ecosystems, with particular attention paid to the flow
required for spawning migration of in-channel organisms [19,20].

The estimation of ecological flow started in China in the 1970s, and after more than 40 years of
development, a large number of research results have emerged. However, most of these results are based
on mature methods and only some improvements were made to consider the particularities of rivers in
China. For example, by modifying the 7Q10 method (defined as seven consecutive days with low flow
based on a return period of 10 years), several ecological flow methods suitable for China are proposed:
The multi-year average of the mean monthly dry flow, the minimum monthly mean flow method, and
the minimum monthly average flow with a 90% guaranteed rate method [21]. Using a case study and
validating with the Tennant method (developed in Montana, is based on a percentage of the mean annual
flow (MAF), which takes 10% of the MAF as the minimum e-flow), several scholars proposed a monthly
(year) guarantee rate-setting method to calculate the water demand under different conditions, which is
more suitable for seasonal rivers, such as those that occur in the Huang-Huai-Hai Plain [22]. To address
the relatively current water pollution in China, researchers have proposed a variety of e-flow calculation
methods that target water quality, such as the environmental function setting method, which is based
on the river water quality protection standard and the pollutant discharge concentration and can be
used to calculate the amount of water needed to meet environmental functions (i.e., river dilution and
self-purification) [23,24]. The physical habitat simulation model that combines the Delft 3D hydraulics
model and habitat model also has been used to calculate the ecological water requirement in the Yangtze



Water 2019, 11, 2035 3 of 15

River basin [25,26]. In recent years, government management departments have grown increasingly
concerned about ecological water demand. The national scientific and technological research projects in
the Tenth Five Year Plan focused on the ecological restoration of the Liaohe River basin; based on the
present conditions of the Liaohe River basin, the second-level water ecological subregion of the Liaohe
River basin was constructed. In 2009, major national science and technology projects focused on the
ecological environment restoration of the Weihe River basin. The national scientific and technological
research projects in the Eleventh Five Year Plan completed and improved a number of different regions,
different types and different periods, and completed an ecological water demand study at the river
basin scale in China.

In general, recent studies have focused on constructing calculation methods for specific river
segments. However, the concept and connotations of ecological flow have not been unified, the focuses
of these calculation methods are not the same, and the scope of their application also varies. It is difficult
to form a set of highly adaptive calculation systems.

The development of ecological flow for water storage and hydropower projects in China has been
relatively slow. In the beginning, the definition of ecological flow was not unified, and there were
many related concepts, such as the minimum flow and the in-stream flow. In addition, there were
also no official recommended methods. Before 2000, environmental impact assessment (EIA) of water
storage and hydropower projects did not mention the demand for ecological flow. Until 2006, the
‘Technical Guide for Environmental Impact Assessment of River Ecological Flow, Cold Water, and Fish
Passage Facilities for Water Conservation Construction Projects (Trial) EIA Letter (2006) No.4’ was
issued by the State Environmental Protection Administration, which defined the concepts and methods
of ecological flow in EIA for the first time, recommending 10% of the average annual natural runoff as
the minimum flow. However, this “Guideline” does not explicitly propose the appropriate calculation
methods and the usage criteria for each method, and results from the adaptability assessment of the
relevant ecological flow calculation methods are few [27].

This paper attempts to address the aforementioned issues by examination of existing EIA reports
from 2000 to 2017 and determining the common methods used for ecological flow in China’s water
storage and hydropower projects. Moreover, we constructed a model to assess the degree of ecological
flow satisfaction to emphasize the applicability of commonly used ecological flow methods in a water
storage and hydropower projects in China. The research results can provide technical support for the
establishment of ecological flow and for management decision-making, which is of great significance
for protecting river ecosystem after damming.

2. Materials and Methods

2.1. Data

2.1.1. EIA 2000–2017 Database

We constructed a database to restore the 206 EIA reports of water storage and hydropower projects
during the period 2000–2017. The analyzed projects had passed the EIAs, which were downloaded
from the EIA Center website.

The EIA is an administrative support procedure used by authorities to identify, describe, and
assess the environmental impacts of a project. The results reflect the general opinions of the government,
experts, and scholars. From the EIA, we can obtain the current status of ecological flow methods used
in China’s water storage and hydropower projects.

Ecological flow is not only a scientific issue but also a management issue. China’s regulations
did not mandate the rule of ecological flow from water storage and hydropower projects until 2006.
Therefore, the analysis in this paper emphasized that 2006 was an important time node.
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2.1.2. Hydrological Data

The Chinese Hydrological yearbook (The Red Book) is compiled by the hydrology department based
on actual monitoring data. The data have passed through reliability, consistency, and representativeness
tests, which were analyzed by hydrographic officers.

Considering the impact of water storage and hydropower projects and human activities on the
current environment, the Red Book of each hydrological yearbook form 1950 to 1986 were extracted to
analyze the adaptability of the ecological flow calculation method.

2.2. Assessment Model

There are more than 200 types of methods for ecological flow worldwide, and it is evidenced that
results from different e-flow methods are different. Thus, it is important to choose an appropriate
ecological flow method for determining the ecological flow of rivers. This paper uses the ecological
flow satisfaction index to construct an evaluation model to initially evaluate the adaptation of the
widely used ecological flow methods in China.

The ecological flow satisfaction degree is a commonly used method to assess the ecological water
demand, which is usually the ratio of the series length of the actual runoff of the river course that is
greater than the ecological water demand threshold to the total series length [28]. The assessment of
the e-flow satisfaction degree usually uses the monthly average flow ecological water conservation rate
to reflect the current river ecosystem water shortages; the assessment results can result in ecosystem
water shortages [29,30].

Pi =
Di
12 =

∑12
1 Sgn(Qi j−Ei j)

12 × 100%,

where Sgn
(
Qi j − Ei j

)
=

{
1, Qi j − Ei j ≥ 0
0, Qi j − Ei j < 0

,
(1)

where Pi is the satisfaction degree of the ecological water requirement in the ith year, Di is the number
of months that the ecological water requirement was met in the ith year, Qi j is the average flow at the
jth month in the ith year, and Ei j is the e-flow of the jth month in the ith year.

From Equation (1), it can reflect the degree of the actual runoff meets the e-flow demand. However,
Equation (1) cannot reflect a certain satisfaction degree of e-flow, especially in EIAs of water storage
and hydropower projects in China. For example, if the e-flow is smaller than the measured minimum
flow in the river, the result of Equation (1) is 100%, and this result is unreasonable. Moreover, if the
e-flow is smaller than the minimum e-flow requirement from the “Guideline”, which means Ei j is less
than 10% of the multiple average annual flow (MAF), the results of Equation (1) still do not reflect
this phenomenon.

Therefore, we add the above restrictions on the basis of Equation (1), and an e-flow satisfactoriness
model is proposed for the preliminary evaluation of the adaptability of e-flow methods for water
storage and hydropower projects in China.

Pi =
Di
12 =

∑12
1 Sgn(Qi j−Ei j)

12 × 100%,

where Sgn
(
Qi j − Ei j

)
=


1, Qi j − Ei j ≥ 0 and Qmin − Ei j ≥ 0
0, Qi j − Ei j < 0 and Qmin − Ei j ≥ 0
0, Qmin − Ei j < 0 or Ei j ≥ 0.1×Qavg

,
(2)

where Pi is the satisfaction degree of ecological water requirement in the ith year, Di is the number
of months that the ecological water requirement met in the ith year, Qi j is the average flow at the jth
month in the ith year, Ei j is the e-flow of the jth month in the ith year, Qmin is the smallest monthly
mean flow measured in the ith year, and Qavg is the annual average flow for 36 years from 1950 to 1986.
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2.3. Study Area

China has a vast territory and a relatively large geographical span. There is typically greater
precipitation in southern China than in northern China, and the ecosystem structure of different regions
is quite different, showing prominent seasonal and regional characteristics [30]. The choice of an
appropriate calculation method for determining the different annual and seasonal e-flows in different
regions of China is important for determining the spatial distribution of e-flow in China.

In this paper, we chose the 6 representative hydrological stations in the first level or second level
basins in China to assess the widely used e-flow methods (Figure 1), which are the Han River basin
(Ankang Station, AK), Yangtze River basin (Pingshan Station, PS; Xiaodeshi Station, XDS; Kangding
Station, KD), Yellow River basin (Anningdu Station, AND), Songhua River basin (Songhuajiang
Station, SHJ).
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Figure 1. Distribution of water storage and hydropower projects, and hydrological stations of this
study in China.

In addition, the differences in the calculation methods among different river sections in the same
basin were also analyzed. We selected four hydrological stations in different parts of the Han River
basin to analyze the adaptability of the calculation method of e-flow in different parts of the Han River
basin. Such as the Wuhou town (WHZ) station upstream of the mainstream, the Huangjiagang station
(HJG) and Hongjiadu (HJD) station in the middle stream, and the Xincheng (XC) station downstream
of the mainstream, as well as 5 stations in the tributaries, including the Zijingguan (ZJG) station at the
Danjiang River, the Nanguangping (NKP) Station in the Jiahe River, the Tanghe (TH) Station in the
Tang River, the Kaifengyu (KFY) Station in the Nanhe River, and the Chaiping (CP) Station in Xunhe
River (Figure 2).
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3. Results

3.1. Practice of Ecological Flow Methods

3.1.1. Construction of Water Storage and Hydropower Projects

Among the 206 water storage and hydropower projects, 75 were constructed before 2006 (37 water
storage projects and 38 hydropower projects), and 131 were built after 2006, of which 75 were water
storage projects, whereas 56 were hydropower projects.

A total of 133 projects calculated the e-flow (59 were water storage projects and 74 were hydropower
projects), and 73 projects did not calculate the e-flow (53 water storage projects and 20 hydropower
projects) (Table 1).

Table 1. Characteristic parameters of the water storage and hydropower projects.

Project Water Storage Project Hydropower Project Total

Constructed before 2006 37 38 75
Constructed after 2006 75 56 131

Total 112 94 206

E-flow not calculated 53 20 73
E-flow calculated 59 74 133

Total 112 94 206

Constructed before 2006
with e-flow calculated 3 27 30

Constructed after 2006
with e-flow calculated 56 47 103

Total 59 74 133



Water 2019, 11, 2035 7 of 15

Among the 133 projects, 30 were constructed before 2006 (3 water storage projects and
27 hydropower projects), and 103 were built after 2006, of which 56 were water storage projects
and 47 hydropower projects.

3.1.2. Use of Ecological Flow Methodology

Among the 133 water storage and hydropower projects discussed above, the hydrological method
is the most widely used method, accounting for 171 uses. The hydraulic method and habitat simulation
methods were both used approximately 20 times. The comprehensive analysis method was rarely used
in China, and only one case was found in this study. Several water storage and hydropower projects
consider the landscape water requirements, which occurred a total of 25 times (Figure 3a).
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(b) application of e-flow methods in different basins for water storage and hydropower projects.

We also analyzed the conditions of e-flow methods in different watersheds. Hydrological methods
were not used in the Hai River basin but were used in other basins. The hydraulic method was rarely
used in China. It was used primarily in the south-eastern rivers (three times), the Yangtze River basin
(nine times), the Songhua River, and the Pearl River basin (two times) and was not used in other basins.
The use of the habitat simulation method is mainly in the Yangtze River basin (10 times), and the
comprehensive analysis method was only used once in a river basin in north-western China and not in
any other basins (Figure 3b).

Among the ecological methods, we summarized the three most widely used e-flow methods,
which are all hydrological methods, including the Tennant method, the minimum monthly average
flow with a 90% guarantee rate method (Mm9M), and the minimum daily average flow method (MDM)
(Table 2).

The Tennant method is the most commonly used in case studies (84 times). The Tennant method
was first reported by Tennant in 1976, who established the relationship among aquatic organisms, the
river landscape, recreation and river discharge by analysing cross-sectional data of 11 rivers in the
United States, suggesting that 10% of the MAF is the minimum e-flow. At present, the Tennant method
is the most widespread hydrological method used worldwide and is the second most widely applied
e-flow method in North America. It is also one of the recommended methods of the “Guideline”.

The 7Q10 method is a hydrological method defined as low flow based on a return period of
10 years spanning seven consecutive days. The 7Q10 method uses hydrological parameters and water
quality factors (river self-purification capacity) to calculate ecological water demand.

The Mm9M method is the second most frequently used method, which is improved from the
7Q10 method and has been used 40 times in different projects and selected basins. Due to the high
requirements of the 7Q10 method for pollutant discharge, the “Technical Principles and Methods
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for Establishing Local Water Pollution Discharge Standards” (GB3839-1983) ruled that the minimum
monthly average flow with a 90% guarantee rate should be used as the minimum e-flow [31].

The MDM method is the third most widely used method in EIAs of water storage and hydropower
projects and was used 19 times in our case study. The MDM method is a hydrological method applied
to watersheds in China, which is based on the Tennant method. It usually takes the minimum daily
average flow measured over many years as the minimum e-flow.

Table 2. Application of e-flow methods for water storage and hydropower projects since 2000.

Calculation Method Amount

Hydrological methods 171

Flow duration curve method 8
Tennant 84

5% average annual flow 8
Minimum monthly average flow method 9

Minimum daily average flow method (MDM ) 19
Minimum monthly average flow with 90% guarantee rate method (Mm9M) 40

Others 3

Hydraulic methods 16

R2CROSS 9
Wetted Perimeter 7

Habitat methods 23

Biological simulation 8
Eco-hydraulic method 15

Comprehensive analysis 1

Others 25

E.g., shipping, landscape water usage 24
Stable water quality method 1

Note: Considering the difference between e-flow methods, multiple e-flow methods were occasionally used in a
single project to determine the e-flow during the process of environmental impact assessment (EIA), which is the
main reason that the number of e-flow methods exceeds the number of projects.

3.2. Ecological Flow Satisfaction Degree

We calculated the e-flow satisfaction degree of each method by the assessment model, which are
the Tennant method, the MDM method, and the Mm9M method.

We first calculated the e-flow satisfaction degree of different methods at the control stations of
each major basins. The results indicated the Tennant method was widely used to calculate the e-flow
of water storage and hydropower projects in various basins, its ecological satisfaction degree at all of
the stations were zero. In contrast, the MDM method performed well in all control stations and all of
its e-flow satisfaction degrees were 100%. In contrast, the results of the Mm9M method varied, and the
results at the six stations were only approximately 50% (Figure 4).

The adaptability of the ecological methods in different parts of one basin also varies. Based on the
results from the nine control stations in Han River basin (Figure 5), the results showed that the e-flow
satisfaction degrees calculated from the Mm9M method in Han River basin were generally not high,
resulting in e-flow satisfaction degrees of 20–100% (Figure 6).

The Tennant method performed differently between the mainstream river and the tributaries.
The e-flow satisfaction degrees at the HJG, XC, and AK stations were zero, which are on the main
channel of Han River basin. The results at the upstream stream control station WHZ was approximately
80%, and the tributary stations (ZJG, NKP, and TH) exhibited a value of 100%, although the ecological
satisfaction degrees at the other tributary stations (KFY and CP) were zero.

Although the MDM method performed well, the results were also zero at ZJG, WHZ, and TH and
100% at the other stations.
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4. Discussion

Determining the e-flow for water storage and hydropower projects is significant for river ecosystem.
Therefore, the Ministry of Environmental Protection issued a “Guideline” in 2006, which clear stated
the minimum standards for e-flows from water conservancy and hydropower projects. After more
than ten years of development, we found that the “Guideline” played an essential role in promoting
the discharge of e-flow, and the percentage of projects that disseminated e-flow increased from 30/75
to 103/131. However, there are still several problems in management, such as the lack of theoretical
basis for choosing the calculation methods of e-flow, and lack of a rationality analysis used for
e-flow methods.

4.1. Practice of Ecological Flow Methods

Ecosystems have well-defined regional characteristics [32], and several scholars have proposed
dividing China into five major regions based on the present regional conditions [33,34].

Different ecological flow methodologies should be and are used in different areas and for different
purposes, which range from global water resources planning to detailed planning for managed dam
releases. The results of this paper show that the selection of methods within the study area does not
differ much within China; e-flow in major river basins has been mainly calculated using hydrological
methods, including the Tennant method, the Mm9M method, and the MDM method. Other methods,
such as habitat simulation, hydraulics, and comprehensive analyses have been infrequently used; these
results are similar to those of other papers [35,36]. This shows that the choice of e-flow methods in
China is somewhat random. By comprehensively analyzing the aforementioned results, we believe
that the main reasons for the current situation are as follows:

1. China did not explicitly clarify the demand for e-flow in the EIA of water storage and hydropower
projects before 2006, and the regulations did not expressly clarify the calculation method
guidelines; therefore, the selection of the e-flow calculation methods in the EIA of water storage
and hydropower projects relied on the subjective judgment by designers [37];
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2. The hydrological method is the most widely used in the world because of its simple use and low
threshold. Furthermore, China’s water storage and hydropower projects are mostly located in
remote mountainous areas in the southwestern region [35,36,38] and the data in this area are
mostly concentrated in river flow monitoring, while other basic data monitoring systems are
lacking, which limits the application and popularization of different methods.

The hydraulic and habitat simulation methods have been commonly used in the Yangtze River
basin and the Pearl River basin, where many water storage and hydropower projects have occurred.
However, economic capacity is positively correlated with the abundance of primary hydrological data,
and those basins represented one of the most developed regions in China, which can support the data
demand of the various methods [39].

Relative to the hydraulic method, the habitat simulation method, which considers the biological and
ecological water requirements, is relatively mature and has a solid theoretical basis. It is more suitable
for the analysis of e-flow on the river scale, and it is currently thought to be able to quantify e-flow
and consider ecological factors, making it a relatively credible assessment method [40,41]. However,
this method has particular data requirements. The status quo of the current hydraulic fundamental
data in China limits the extensive use of this method; in the future, China should vigorously strengthen
hydraulic data to meet the data demand of various methods [42].

The comprehensive analysis method rarely appeared in our statistical results. This method studies
the relationship among flow, sediment transport, riverbed shape, and riparian community based
on expert advice from the entire ecosystem so that the recommended river flow can simultaneously
satisfy multiple functions such as biological protection, habitat maintenance, sediment deposition,
pollution control, and landscape maintenance. This method has a relatively high demand for data
and emphasizes the river’s natural properties. However, it is difficult to restore waterways to pristine
conditions under the impact of a dam; thus, the adaptability of this method in the ecological restoration
of post-dammed rivers is low [43].

3. More studies on the resilience of e-flow methods for local areas are needed. There are few studies
on the advantages and disadvantages of hydrological methods for small watersheds, which
results in a lack of theoretical basis for the application of calculation methods;

4. There is a lack of new methods or techniques for determining e-flow for different conditions. We
believe that there should be specific methods for assessing e-flow problems, which distinguish
spatial and temporal ecological problems or the planning purposes;

5. E-flow conflicts with power generation efficiency; therefore, water storage and hydropower
project managers usually chose the minimum standard specified in the “Guideline” to pass the
environmental impact assessment. That is, the minimum value in the Tennant method and the
rationality of the established results have not been deeply analyzed.

In the statistical process, we found that the French Rural method (defined as 5% of the AMF) was
used eight times; this result surprised us because this contradicts the lower limit of the e-flow specified
in the guidelines, which has no reference significance in the calculation of the e-flow of water storage
and hydropower projects in China. However, this result indicates several problems in the computation
and supervision of current e-flow calculations.

4.2. Assessment of Ecological Flow Methods

Hydrological methods are widely applied in China, yet the spatial and temporal variability of the
e-flow criteria have been frequently questioned because these method usually have an absolute value
for a certain year [44]. Using the normal fish spawning period (April to September) as an example,
the hydrological regime of rivers below a dam calculated by these methods does not change, even
during the period of fish spawning, resulting in a single hydrological regime and a single biological
environment in the channel. This also explains the gradual shrinking of the population of Chinese
sturgeon in the Yangtze River basin [45].



Water 2019, 11, 2035 12 of 15

The Tennant method’s e-flow satisfaction degree results are usually 0 in most main streams of
rivers, which demonstrates that the calculated results are lower than the historical measured minimum
flow and indicates that the Tennant method may not be suitable for water storage and hydropower
projects in large river basins. This conclusion is inconsistent with the general belief that the Tennant
method applies to rivers and perennial rivers [46,47]. The reason may be that the Tennant method is a
well-known method in the United States and the world, and it may be more suitable for the actual
situation of rivers in the United States and is not as adaptable to research in China. In addition, the
management of e-flow is different in rivers and damming rivers according to the policy [48]. Therefore,
an adaptation study of this method in downstream areas of China’s water storage and hydropower
projects should be carried out.

The MDM method is mainly based on the minimums of historical daily flow records, which are
improved from the Tennant method for water storage and hydropower projects in China; this method
performs well for large rivers but is not suitable for rivers with low flow, such as the tributary of the
Han River basin. Rivers exhibiting the “cut-off” phenomenon, with minimum hydrological flow of 0,
are most susceptible to errors when using this method. The Mm9M method’s results are generally
large, which indicate the ecological satisfaction rate is usually low in the mainstreams and tributary
channels of rivers and that e-flow will cause waste of water resources. Thus, adaptive analytical
research related to this method is sorely needed.

In this paper, we did not analyze the adaptability of various e-flow methods in different water
use periods (time), nor did we consider the e-flow requirements of different organisms in the river.
Therefore, the results in this study are only the initial screening of the adaptability of ecological flow
calculations in China. In the future, a calculation framework based on time and space needs to be
established to refine the calculation rules of e-flow and provide technical support for the ecological
protection of river segments.

5. Conclusions

The calculation and establishment of e-flow in rivers affected by water storage and hydropower
projects have significant impacts on maintaining the stability of river ecosystems. This paper collected 206
EIA reports for water storage and hydropower projects in China after the year 2000 and summarized the
practice characteristics and application of e-flow methods in China and in first-level basin. Furthermore,
the applicability of commonly used calculation methods in China was also discussed. The results of
this study can provide technical support for establishment and management decisions surrounding
ecological effects.

In summary, after implementing e-flow management, a variety of e-flow calculation methods
are synthetically used, which greatly improve the application of e-flow measures in China. The most
commonly used methods of e-flow are hydrological methods, including the Tennant method, the
Mm9M method, and the MDM method.

Although e-flow management has played a positive role in the protection of river ecosystems,
a series of problems remain, such as the blind calculation of e-flow, un-regionalization selection of
e-flow methods, the unreasonable calculation of e-flow rates, and the lack of reasonable analysis of
e-flow method. Therefore, in the future, the framework of e-flow management should determine
the relationship regional ecological method model to optimize the e-flow method, and the ecological
adaptability of the regulatory system; these changes will provide basic research support for the
development of e-flow management policies.
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