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Abstract: Critical depth is an essential parameter for the design, operation, and maintenance of
conduits. Circular, arched, and egg-shaped sections are often used in non-pressure conduits in
hydraulic engineering, irrigation, and sewerage works. However, equations governing the critical
depth in various sections are complicated implicit transcendental equations. The function model is
established for the geometric features of multiple sections using the mathematical transform method
and while considering non-dimensional parameters. Then, revised PSO algorithms are implemented
in MATLAB, and the right solution’s formula for the critical depths in various non-pressure conduit
sections is established through optimization. The error analysis results show that the established
formula has broad applicability. The maximum relative errors of the formula for critical depths are
less than 0.182%, 0.0629%, and 0.170% in circular, arched, and egg-shaped sections, respectively,
which are more accurate than those of existing formulas; the form of the formula proposed in this
work is also more compact than that of the existing formulas. The results of this research may be
useful in design, operation, and maintenance in conduit engineering.

Keywords: circular sections; arched sections; egg-shaped sections; critical depth; PSO algorithms;
computing model

1. Introduction

Circular, arched, and egg-shaped sections are often used in non-pressure conduits in hydraulic
engineering, agricultural irrigation, and sewerage works. Because conduits with circular and arched
cross-sections have excellent hydraulic properties and convenient construction, circular and arched
sections are widely used for free-surface water diversion conduits in hydraulic engineering and
agricultural irrigation [1]. Because conduits with egg-shaped sections have functional discharge
capacity and compression capability, they are often used in sewerage works in municipal engineering.
Conduits carrying sediment and locations where the rock is sheet joint, weak, and very carefully
laminated are usually constructed in the form of egg-shaped channels [2].

Critical depths play a significant role in the analysis, design, operation, and maintenance of
conduits. Particularly in the varied flow computations, one is required to determine critical depths.
Articles related to the definition and computational methods of critical depths for various sections of
conduits are extensively available in previous research [3–7].

For conduits with circular sections, the governing equations for critical depth are implicit, and no
analytical solutions exist. The critical depth is presently obtained by trial procedures and numerical
and graphical methods [8,9]. Vatankhah et al. [10] established an exponential function approximate
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formula based on regression equations, thus increasing their accuracy but also their complexity.
Vatankhah et al. [11] obtained a direct solution, but the obtained formula was too complicated to solve.

For conduits with arched sections, Liu and Wang [12] developed explicit equations for the normal
and critical depths for different portions of the arched sections based on the principle of continuous
optimization fitting. The obtained equation exhibited suitable accuracy, with a maximum relative error
of less than 1%. However, from a hydraulic engineering viewpoint, it would be preferable to have an
explicit equation with high accuracy and simple form (single equation) for directly computing the
critical depths over the entire practical range of flow depth. Wang et al. [1] and Zhao et al. [13], using
the curve fitting technique, developed explicit equations with low accuracy for the critical depth of
an arched cross-section with maximum relative errors of approximately 5.1% and 6.4%, respectively.
Liu et al. [14] developed an explicit critical depth equation just for the upper portion, so the scope of
its applicability is narrow.

For conduits with egg-shaped sections, the geometry of the egg-shaped cross-section is very
complicated. The egg-shaped cross-section consists of four arc segments. Specific solutions are
available for critical depth [2,9]. Raikar et al. [2] used the mathematical model of regression analysis
to calculate the normal and critical water depths of an egg-shaped section. Based on power function
regression model fitting, Bijankhan and Kouchakzadeh [15] obtained a complicated formula for the
normal and critical water depths of an egg-shaped section. The Indian standard code of practice for the
design of conduits conveying water [16] provides a formula for a typical egg-shaped section; however,
it still requires a more accurate formula for calculating the critical depth.

Swamee and Rathie [17] presented the exact analytical solution for the computation of critical
depth in conduit sections in the form of a converging series. Shirley [18] provided the procedure to
compute critical depth in compound conduit sections. Recently, Patil et al. [19] developed a generalized
subroutine to compute the normal and critical depths for all types of conduit shapes using the gradually
varied flow computation theory developed by Patil et al. [20] and Chow [21]. However, all of these
studies have focused mainly on regular channel sections.

According to the studies above, the computation of critical depth is an essential link in hydraulic
computation. The various computations for critical depths, which often comprise the use of iterations,
trials, and graphs, are traditionally long, error-prone, and narrowly applied. Moreover, the governing
equations used in the existing method for computing the critical depth in different sections are
complicated implicit transcendental equations.

In this article, a function model for the geometric feature of different sections is established using
the mathematical transform method while considering non-dimensional parameters. Then, revised
PSO algorithms are implemented in MATLAB, and the right solution’s formula for the critical depths
in various non-pressure conduit sections is established via optimization. The results of this research
formula have simple form, broad applicability, and high precision. This formula for critical depth in
different sections of conduits may be useful as a reference for design, operation, and maintenance in
conduit engineering.

2. Establish the Formulas

2.1. Basic Hydraulic Parameters and Formulas

The water depth corresponding to the minimum unit energy of the section is called the critical
depth, and the critical depth formula is Equation (1):

αQ2

g
=

A3

T
(1)

where Q is the flow discharge (m3/s), A is the discharge section area (m2) corresponding to the critical
depth, T is the water width (m) corresponding to the critical depth, g is the acceleration due to gravity
(9.8 m/s2), and α is the velocity distribution coefficient (generally 1.0).
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Geometric properties in different sections are as follows:

2.1.1. Circular Sections

The cross-section of a circular channel is shown in Figure 1.

Discharge section area A = 1
8 D2(γ− sinγ) (2)

water depth y = 1
2 D

(
1− cos γ2

)
(3)

water width T = D sin γ
2 (4)

where γ is the central angle of the wet perimeter (rad) and D is the channel diameter (m).
Substitute Equations (2)–(4) into Equation (1) to yield the critical flow governing equation of

circular sections:
αQ2

gD5 =
(γ− sinγ)3

83 sin(γ/2)
(5)
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Figure 1. Cross-section of a circular conduit.

2.1.2. Arched Sections

An arched conduit consists of two partitions: The top-arch and the wall on the bottom.
The cross-section of an arched conduit is shown in Figure 2.
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Figure 2. Cross-section of an arched conduit ((a) 0 ≤ y ≤ r, (b) r ≤ y ≤ 2r)).

Geometric properties of the arched section are:
If 0 ≤ y ≤ r, {

A = 2ry
T = 2r

(6)
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If r ≤ y ≤ 2r, 
A = r2(π/2 + 2− θ+ 0.5 sin 2θ)
T = 2r sinθ
y = r(1 + cosθ)

(7)

where θ is half of the central angle, which corresponds to the wet perimeter (rad); r is the radius of the
arch (m); and y is the water depth (m).

Substitute Equations (5)–(7) into Equation (1), yielding the critical flow governing equation of
arched sections: 

(
αQ2

4gr5

)1/3
= y/r 0 ≤ y ≤ r(

αQ2

4gr5

)1/3
= π/2+2−θ+0.5 sin 2θ

2(sinθ)1/3 r ≤ y ≤ 2r
(8)

2.1.3. Egg-Shaped Sections

Egg-shaped sections are composed of four arcs, and the radius of each arc is 0.5r, r, and 3r (r is
the arch radius, the value of which is obtained from the actual project). Owing to the influence of the
process of water delivery and other factors, the height of the water surface may be at the arc with a
radius of 0.5r, 3r, or r. The cross-section of an egg-shaped channel is as shown in Figure 3.
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The hydraulic parameters of the three types of egg-shaped cross-sections are as follows:
If 0 ≤ y ≤ r/5, {

A = 0.125r2(θ1 − sinθ1)

y = r[0.5− 0.5 cos(θ1/2)]
(9)

If r/5 ≤ y ≤ 2r, {
A = r2(3.023333− 9θ2 + 12 sinθ2 − 4.5 sin 2θ2)

y = r(2− 3 sinθ2)
(10)

If 2r ≤ y ≤ 3r, {
A = r2(4.594130− 0.5θ3 + 0. 5 sinθ3)

y = r[2 + cos(0.5θ3)]
(11)
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where θi (i = 1, 2, 3) is the central angle of the corresponding various water depths in rad and y is the
water depth in m. On substituting Equations (9)–(11) into Equation (1), the governing equations for
the critical depths of egg-shaped sections are obtained:

(
αQ2

gr5

)1/3
=

0.125(θ1−sinθ1)

sin1/3(θ1/2)
0 ≤ y ≤ r/5(

αQ2

gr5

)1/3
= 3.023333−9θ2+12 sinθ2−4.5 sin 2θ2

(6 cosθ2−4)1/3 r/5 ≤ y ≤ 2r(
αQ2

gr5

)1/3
=

4.594130−0.5(θ3−sinθ3)

21/3 sin1/3(θ3/2)
2r ≤ y ≤ 3r

(12)

2.2. Functional Model Construction

According to Equations (4), (8), and (12), because the critical flow equation includes a high-order
implicit function, the specific parameters of the discharge section ε and dimensionless relative critical
depth η are introduced to simplify the calculation process.

2.2.1. Circular Sections

Introduce the specific parameters of the cross-section:

ε =
αQ2

gD5 (13)

Dimensionless relative critical depth:

ηc =
yc

D
(14)

where yc is the critical depth in a circular section, m.

εc =
[2arccos(1− 2ηc) − sin(2arccos(1− 2ηc))]

3

83 sin(arccos(1− 2ηc))
(15)

In addition, γ = 2arccos(1 − 2ηc), so Equation (8) can be worked out as follow:
To find the inverse-function model of εc = f (ηc), consider the endpoints of the curve of εc = f (ηc).

Obtain the limit via Equation (16): 
lim
ηc→0

εc = 0

lim
ηc→1

εc = +∞
(16)

By the property of the inverse function:
lim
ε→0

ηc = 0

lim
ε→+∞

ηc = 1
(17)

Based on the shape of Figure 4, consider the two limit conditions of Equation (17) and establish
three function models as follows:

Model I : ηc = 1− aε (0 < a < 1)

Model II : ηc =
(
1 + aε−b

)−c
(a , 0, b > 0, c > 0)

Model III : ηc =
(
1 + aε−b + cε−d

)−e
(a , 0, b > 0, c , 0, d > 0, e > 0)

(18)
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2.2.2. Arched Sections

Introduce the characteristic parameters of the discharge section:

εa =
3
√
αQ2/(4gr5) (19)

In addition, the dimensionless relative critical depth is:

ηa = ya/r (20)

where ya is the critical depth in an arched section, m.
Additionally, θ = arccos(ηa − 1), so Equation (8) can be written as:

εa = ηa 0 ≤ ηa ≤ 1

εa =
π/2+2−arccos(ηa−1)+0.5 sin[2arccos(ηa−1)]

2[sin(arccos(ηa−1))]1/3 1 ≤ ηa ≤ 2
(21)

To establish the critical depth function model, observe Figure 5. When the left endpoint ηa = 0,
εa = 0; at the same time, when εa = 0, the derivation of 1/f (ηa) is 1. For Equation (20), when the left
endpoint is ηa = 0, we get εa = 0; when the right endpoint is ηa = 2, the value of ηa is greater than
the critical point of the transient mixed free-surface-pressure flow in the process of water diversion,
so neglect ηa = 2. Meanwhile, when ηa = 0, the derivation of εa = f (ηa) is 1. According to the properties
of the inverse function, the following is obtained:

ηa
∣∣∣ε=0

= 0

ηa
∣∣∣ε=∞ = 2

η′a
∣∣∣ε=0

= 1/ f ′(ηc) = 1

(22)

Then, construct a math model:

ηa =
εa + aεa

b

1 + cεad
(23)
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2.2.3. Egg-Shaped Sections

Similarly, introduce the characteristic parameters of the discharge section:

εe = (αQ2/gr5)
1/3

(24)

Additionally, the dimensionless relative critical depth is:

ηe = ye/3r (25)

where ye is the significant depth in the egg-shaped section, m.
Moreover, based on the relation between θi (i = 1, 2, 3) and y, Equation (8) can be rewritten

as follows: 
εe =

0.125[2arccos(1−6ηc)−sin(2arccos(1−6ηc))]

sin1/3[arccos(1−6ηc)]
0 ≤ ηc ≤ 1/15

εe =
11.023333−9arcsin(2/3−ηc)−12ηc−4.5 sin(2arcsin(2/3−ηc))

[6 cos(arcsin(2/3−ηn))−4]1/3 1/15 ≤ ηc ≤ 2/3

εe =
4.594130−arccos(3ηc−2)+0.5 sin(2arccos(3ηc−2))

21/3 sin1/3[arccos(3ηn−2)]
2/3 ≤ ηc ≤ 1

(26)

The relation curve between the εe and ηe functions of an egg-shaped section is shown in Figure 6.
After multiple attempts, it is found that the fraction equation is the precise function model.

The function model of an egg-shaped section conduit is established as follows:

ηe =
aβc + cβd + eβ f

1 + gβh + iβ j (27)
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2.3. The Fitting Parameter to Establish the Formula

A revised particle swarm optimization (PSO) algorithm is adopted to resolve the high-order
piecewise implicit function (Equations (18), (23), and (27)). The PSO algorithm is an evolutionary
computing technology proposed by Eberhart and Kennedy in 1995. It is a type of intelligent model
inspired by the regularity of a bird group’s collective activities. In the PSO algorithm—which is
based on the study of the predatory behavior of a bird cluster—by using the information shared by
individuals in the group, the movement of the entire group evolves from that of disorder to order in
the problem-solving space, and the optimal solution is finally obtained.

The PSO algorithm, which is a type of iterative optimization algorithm, is similar to a genetic
algorithm. The system is initialized to several random solutions. The optimal solution is searched for
via iterations wherein the particles share information. Its core steps are as follows:

vk+1
id = w× vk

id + c1 × randk
1 × (Pbestk

id − xk
id) + c2 × randk

2 × (Gbestk
d − xk

id) (28)

xk+1
id = xk

id + vk+1
id (29)

where νk
id is the velocity of the d-th dimension of particle I in the k-th iteration; xk

id is the position of the
d-th dimension of a particle I in the k-th iteration; I = 1, 2, 3,..., M (population size); w is the inertial
weight; c1 and c2 are learning factors; rand1 and rand2 are random numbers between 0 and 1; Pbestk

id
is a position at which a particle I is located at the individual extremum point of the d-th dimension;
and Gbestk

d is the position of the global extremum of the entire population in the d-th dimension.
Wu [22] used the PSO algorithm with particle release to improve the efficiency of the PSO

algorithm. The specific method is as follows: When the population optimization of the detected
algorithm does not update within a certain number of steps, consider that the algorithm is stalled in
the search for the optimization, and the global searching ability of the optimal particle is the worst.
One should release it to the boundary of the search space, improve the searchability of the algorithm,
and exit the idle state to improve the searchability of the current optimal particle.{

xd = ud + vd vd ≤ 0
xd = ld + vd vd > 0

(30)
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where xd is the position of the d-th dimension of the optimal particle, vd is the velocity of the d-th
dimension of the optimal particle, ud is the upper limit of the d-th dimension space, and ld is the lower
limit of the d-th dimension space.

After the optimal particle is released, if there is no change in the population optimization within a
certain number of steps, the algorithm rereleases the current optimal particle to increase the diversity of
the population. To some extent, release of the optimal particle improves the problem, as the population
cannot escape after falling into the local optimum in the iterative process, which reduces the number of
invalid iterations. If the PSO algorithm is applied to establish the direct solution of the circular, arched
crossing, and egg-shaped sections, the efficiency and optimization ability can be improved.

The process of the fitting formula for each section is as follows:

2.3.1. Circular Sections

First, determine the fitting range of the dimensionless relative critical water depth ηc and
characteristic parameter εc of the overwater section of the circular section. The minimum value of
ηc is 0 in theory, but when the water depth is 0, the calculation of the critical depth is meaningless.
Thus, the dimensionless relative critical depth ηc is limited to 0.005 to facilitate the application of the
formula to small flow calculations. Based on the research of Swamee [3], a maximum value of ηc of 1.0
is adopted. On substituting ηc into Equation (16), obtain the range of εc as 0–+∞.

Then, implement the revised PSO algorithms in MATLAB. Optimize the value of parameters
ηc and εc in the set range. Repeatedly implement Equations (28) and (29), and when the algorithm
stagnates to the optimization range, the particles are released using Equation (30). Test and compare
the three constructed functional models of circular section in Equation (18). The absolute value of
the maximum relative error obtained using models I and II is more than 1%, which does not meet
the functional requirements of the project. The maximum error of the optimal solution obtained
using model III is only 0.182%, and the parameters are a = 1.6692, b = 0.7690, c = 0.6602, d = 0.8990,
and e = 1.0000. So we select model III as the final formula form of circular section.

The formula can be expressed as follows:

ηc = (1 + 3.83εc
−2.1454

− 3.2εc
−2.1)

−0.115
(31)

2.3.2. Arched Sections

First, the dimensionless relative critical depth ηa and the characteristic parameters of the
cross-section of conduit εa are scoped. The minimum value of ηa is 0 in theory, but the calculation of
the critical depth is meaningless when the water depth is 0. In this article, let the lowest limit of ηa

be 0.01. In theory, the maximum value of ηa is 2. However, to prevent the occurrence of transient
mixed free-surface-pressure flow in the process of water diversion, it is necessary that the clearance
area above the free surface of the conduit be greater than 15% of the total cross-section area. Take
the starting point ηa of the transient mixed free-surface-pressure flow as 1.64 in the arched section,
and thus set the fitting upper limit of ηa as 1.64. Therefore, the range of the dimensionless water depth
ηa is 0.01–1.64. On substituting ηa into Equation (21), obtain the range of εa as 0.01–1.64.

As in the process of fitting the model parameters for a circular section, implement the revised
PSO algorithms in MATLAB for an arched section. Repeatedly implement Equations (28) and (29),
and when the algorithm stagnates to the optimization range, the particles are released using Equation
(30). Finally, the optimal solution combination of the model parameters is found to be a = 0.0602,
b = 6.5426, c = 0.0605, and d = 5.7161, and the maximum relative error value is 0.06%. The formula can
be expressed as follows:

ηa =
εa + 0.0602εa

6.5426

1 + 0.0605εa5.7161
(32)
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2.3.3. Egg-Shaped Sections

First, determine the fitting range of the dimensionless relative critical water depth ηe and
characteristic parameter εe of the overwater section. In theory, the maximum value of ηe is 1. However,
to avoid a transient mixed free-surface-pressure flow in the process of the water diversion, it is
necessary that the clearance area above the free surface of the conduit be greater than 15% of the
total cross-section area. Therefore, set the fitting upper limit of ηe as 0.82. The minimum ηe is 0 in
theory, but the calculation of a critical depth is meaningless when the water depth is 0. In this article,
the lowest limit of ηe is determined to be 0.05. Therefore, the range of dimensionless water depth ηe is
0.05–0.82. On substituting ηe into Equation (26), we obtain the range of εe as 0.02–3.03.

As in the process of fitting model parameters for the previous sections, implement the revised
PSO algorithms in MATLAB. Determine the values in the range of ηe and εe. Repeatedly implement
Equations (28) and (29), and when the algorithm stagnates to the optimization range, the particles are
released using Equation (30). Finally, the optimal solution combination of the model parameters is as
follows: a = 0.324, b = 0.755, c = 0.22, d = 3.241, e = −0.02, f = 1.162, g = −0.262, h = 1.152, I = 0.788,
and j = 2.144. The formula can be expressed as:

ηe =
0.324εe

0.755 + 0.22εe
3.241
− 0.02εe

4.162

1− 0.262εe1.152 + 0.788εe2.144
(33)

3. Results

This paper focuses on the study of the mathematical characteristics of critical depth control
equations in circular sections, arched crossing, and egg-shaped sections; constructing the fitting
function model with the constraint conditions of the endpoints and derivatives of the equation curve,
a general calculation form is obtained, and interpartition calculation can be avoided. Implement the
revised PSO algorithms in MATLAB and obtain the right formula for the critical depths in different
types of sections of conduits; see Table 1.

Table 1. The formulas of critical depths for three types of sections.

Type of Sections of
Conduits Formula Form Range (ηn) Maximum Error/%

Circular section ηc = (1 + 3.83εc
−2.1454

− 3.2εc
−2.1)

−0.115 0.005–1 0.182

Arch section ηa =
εa+0.0602εa

6.5426

1+0.0605εa5.7161 0.01–1.64 0.06

Egg-shaped section ηe =
0.324εe

0.755+0.22εe
3.241
−0.02εe

4.162

1−0.262εe1.152+0.788εe2.144 0.05–0.82 0.17

4. Discussion

Circular, arched, and egg-shaped sections are often used in non-pressure conduits in hydraulic
engineering, agriculture irrigation, and sewerage works. To eliminate the shortcomings of the
computation, narrow scope of application, and low calculation accuracy in various sections, this article
establishes a function model based on the basic uniform flow formula.

4.1. Formula Evaluation

It is necessary to evaluate the accuracy of Equations (31)–(33) to verify the correctness of the
formulas and investigate the entire distribution of errors in the range of application.

4.1.1. Circular Sections

To verify the correctness of Equation (18) and examine the error distribution throughout the
application range, consider a series of values in the range of ηc and then substitute these values into
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Equation (15). To calculate the value of εc, substitute εc into Equation (18). To obtain the approximate
calculation value of ηc, set the exact value of the relative water depth ηc as η∗c and the relative error
∆ = (ηc − η∗c)/η∗c × 100%. Figure 3 shows the entire distribution of the errors of Equation (31) in the
range of application. According to the error analysis, the relative error absolute value of Equation (31)
in the commonly used engineering range is less than 0.182%, and the accuracy of the formula fully
meets the actual engineering requirements.

Figure 7 shows that, when Equation (31) is used in the practical scope, the value of the relative error
is usually within a scope that oscillates near zero; it also illustrates that each parameter combination in
Equation (31) is the optimal solution and that the maximum relative error is less than 0.182%, which
indicates that the accuracy can meet the demands of practical engineering.
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In Table 2, the three formulas for calculating the critical depth of the circular section can be applied
to the commonly used range of engineering, and the upper limit can meet the water depth limit of the
circular section. Vatankhah’s formula is complicated and is not convenient to calculate. The maximum
relative error within the applicable range of the formula is higher than that of the formula in this paper.
The formula presented by Swamee is the power exponent function form formula, which simplifies
the calculation form compared with Vatankhah’s formula, but the maximum relative error of the
calculation formula is exceptional. Based on previous studies, the formula in this paper is more concise
and dramatically improves the calculation accuracy. The maximum relative error of the formula within
the scope commonly used in engineering is only 0.179%. The formula in this paper is superior to those
in other calculation schemes.

Table 2. The comparison of different formulas for the critical depth of a circular section.

Formula Formula Form Range (ηn) Maximum Relative
Error/%

Vatankhah and Easa
(2011) ηc = (1 + 0.77ε−3)

−0.085 [0.02,1.0] 1.464

Vatankhah (2012) ηc =
0.9584ε0.25

(1+0.0106ε0.26−0.0132ε1.863)−10.022 [0,0.92] 0.249

Proposed ηc = (1 + 3.83ε−2.1454
− 3.2ε−2.1)

−0.115 [0.005,1] 0.182

Note: ηc = yc/D, R is the radius of the conduit ε = αQ2/(gD5).
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4.1.2. Arched Sections

First, extract a series of numerical values in the range of ηa, and then substitute these numerical
values into Equation (21) to calculate the value of εa. Then, substitute εa into Equation (32) to obtain
the approximate value of ηa. Set the exact value of the relative water depth ηc as η∗a and the relative
error ∆ = (ηa − η∗a)/η∗a × 100%. Figure 8 shows the entire distribution of the errors of Equation (32) in
the range of application. According to the error analysis, the relative error absolute value of Equation
(32) in the commonly used engineering range (the ratio of the critical depth to the radius of the crown is
between 0.01 and 1.64) is less than 0.06%, the accuracy of the formula fully meets the actual engineering
requirements, and the upper limit of the application of the formula can be extended to 0.85 when the
maximum error remains unchanged.
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Contrast the formulas from previous research in Table 3. Wang’s formula’s form is simple.
However, it has a range of application only within the partition of the arch, and the error is significant.
Although Vatankhah’s formula avoids piecewise calculation, it is easy to make a calculation error
because of its complex form. The formula in this paper is a fraction, and its form is simple. Under
the condition of the engineering range, the formula has a direct calculation, and the accuracy of
its calculation is the highest. From the full consideration of the formula’s form, application scope,
and calculation accuracy, Equation (32) in this paper is considered as the optimal formula for calculating
the critical water depth of critical urban portal sections at present.

Table 3. The comparison of different formulas for the critical depth of standard arched sections.

Formula Formula Form Range (ηc) Maximum Relative
Error/%

Wang (1998) ηc1 = 0.580ε1
0.4
− ε1/54− 0.935 1.10–1.80 0.50

Vatankhah (2012) ηc = 0.63ε1
((0.3333+0.0046ε1

1.607)/(1+0.013ε1
1.656)) 0.01–1.64 0.07

Proposed ηa =
εa+0.0602εa

6.5426

1+0.0605εa5.7161 0.01–1.64 0.06

Note: ηc1 = ηc − 1, ηc = yc/r, ε1 = αQ2/(gr5), ε = 3
√
αQ2/(4gr5).

4.1.3. Egg-Shaped Sections

To verify the correctness of Equation (26) and examine the error distribution throughout the
application range, consider a series of values in the range of εe and then take substitute these values
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into Equation (33). To obtain the approximately calculated value of ηe, set the exact value of the
relative water depth ηe as η∗e and the relative error ∆ = (ηe − η∗e)/η∗e × 100%. Figure 9 shows the entire
distribution of the errors of Equation (33) in the application range.
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Figure 9 shows that, when Equation (33) is applied in the practical scope (filling degree between
0.05 and 0.82), the value of the relative error is usually within a scope that oscillates near zero; it also
illustrates that, in Equation (33), each parameter combination provides an optimal solution, and the
absolute value of the maximum relative error is less than 0.17%, which can guarantee the accuracy
of the critical depth of the egg-shaped section. The calculation error of the critical water depth is
miniscule, and the calculation is convenient for engineering use. The egg-shaped critical depth formula
in this paper can be used as a reference for four-arc egg-shaped conduit design.

In Table 4, the three formulas for calculating the critical depth of an egg-shaped section can
be applied to the commonly used range of engineering, and the upper limit can meet the water
depth limit of an egg-shaped section. Wu’s formula is complicated and is not convenient to calculate.
The maximum relative error within the applicable range of the formula is higher than that of the
formula in this paper. Teng’s formula is the power exponent function form formula, which simplifies
the calculation form compared with Wu’s formula, but the maximum relative error of the calculation
formula is exceptional. Based on previous studies, the formula in this paper is more concise and
dramatically improves the calculation accuracy. The maximum relative error of the formula within the
scope commonly used in engineering is only 0.17%. The formula in this paper is superior to those in
other calculation schemes.

Table 4. The comparison of different formulas for the critical depth of an egg-shaped section.

Formula Formula Form Range (ηn) Maximum Error/%

Wu

 ηc = 0.1682ε0.2562
1 (0.0667 ≤ ηc ≤ 0.6667)

ηc = 0.1944ε0.2289
1 (0.6667 ≤ ηc ≤ 0.8500)

0.0667–0.85 0.91

Teng ηc = 1.497 sin0.775(0.15ε) 0.05–0.80 0.649

Proposed ηe =
0.324εe

0.755+0.22εe
3.241
−0.02εe

4.162

1−0.262εe1.152+0.788εe2.144 0.05–0.82 0.17
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4.2. Engineering Verification

The following illustrates the application of the new equations proposed in this paper.

4.2.1. Circular Sections

A diversion conduit is constructed in the hydroelectric project in China, which adopts circular
sections. The diameter D = 10 m. In this case, when the discharge Q1 = 0.08 m3/s and Q2 = 200 m3/s,
the critical depth can be calculated using the following procedures.

When Q1 = 0.08 m3/s, substitute the factors into Equation (13), which yields:

εc =
αQ2

gD5 = 6.5306× 10−9

On substituting this into Equation (31), one obtains:

ηc = (1 + 3.83εc
−2.1454

− 3.2εc
−2.1)

−0.115
= 0.0086

Therefore, the critical depth is yc = ηc × D = 0.0862 m.
The exact solution is yc = 0.0862 m, and the relative error ∆ = −0.0573%.
When Q2 = 200 m3/s, similarly,

εc =
αQ2

gD5 = 0.0408

On substituting this into Equation (31), we obtain: ηc = 0.4510. Therefore, through multiple
iterations, we obtain the critical depth as yc = ηc × D = 4.5101 m.

The exact solution is 4.5097 m, and the relative error ∆ = 0.0076%.

4.2.2. Arched Sections

A diversion conduit is used in an agricultural irrigation project, which adopts an arched section.
The radius of the crown channel is 2.0 m when discharge Q1 = 8 m3/s and Q2 = 50 m3/s; the critical
depth can be calculated using the following procedures.

With the given factor Q1 = 8 m3/s, substituting the factors into Equation (19) yields:

εa =
3
√
αQ2/(4gr5) = 0.3709

On substituting ε into Equation (32), the following is obtained:

ηa =
εa + 0.0602εa

65426

1 + 0.0605εa5.7161
= 0.3709

Therefore, through multiple iterations, we obtain that the critical depth is ya = ηa × r = 0.7418 m,
the exact solution yc is 0.7418 m, and the relative error is 0%.

With the given factor Q2 = 50 m3/s, one can obtain that:

εa =
3
√
αQ2/(4gr5) = 1.2584

On substituting Equation (32), ηa = 1.2483 is obtained. Thus, through multiple iterations, we obtain
the critical depth as ya = ηa × r = 2.4965 m, the exact solution ya as 2.4956 m, and the relative error
as 0.0382%.

According to the results above, under the design conditions of 8 m3/s and 50 m3/s, the critical
depth is, respectively, located in the wall and crown of the conduit; this demonstrates that the critical
depth in Equation (32) is common to the wall and crown of the conduit in arched sections and has
high accuracy.
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4.2.3. Egg-Shaped Sections

A diversion conduit is constructed in the hydroelectric project, which adopts an egg-shaped
section. The arch radius r = 10 m. In this case, when the discharge Q1 = 0.5 m3/s, Q2 = 10 m3/s,
and Q3 = 100 m3/s, the critical depth can be calculated using the following procedures.

When Q1 = 0.5 m3/s, substitute the factors into Equation (24), which yields:

ε =
3
√
αQ/(gr5) = 0.0927

Introduce εe into Equation (33):

ηe =
0.324εe

0.755 + 0.22εe
3.241
− 0.02εe

4.162

1− 0.262εe1.152 + 0.788εe2.144
= 0.0546

Obtain the critical depth ye = ηe × 3r = 0.3273 m, and through multiple iterations, obtain that
ye = 0.3275 m and that the relative error ∆ = −0.0449%.

When Q2 = 10 m3/s, substitute the factors into Equation (24), which yields:

εe =
3
√
αQ/(gr5) = 0.6832

Introduce εe into Equation (33); similarly, obtain that ηe = 0.2569 and the critical depth
ye = ηe × 3r = 1.5412 m, and through multiple iterations, obtain that yn = 1.5424 m and the relative
error ∆ = −0.0783%.

When Q3 = 100 m3/s, substitute the factors into Equation (16), which yields:

εe =
3
√
αQ/(gr5) = 3.1711

Introduce εe into Equation (33); similarly, obtain that the value of ηe is 0.8115, so the critical depth
ye = ηe × 3r = 4.8691 m, and through multiple iterations, obtain that ye = 4.8644 m and the relative error
∆ = 0.8107%.

According to the results above, under the design conditions of 0.5 m3/s, 10 m3/s, and 100 m3/s,
the critical depth is, respectively, located in the three partitions of the conduit; this demonstrates that
the critical depth in Equation (33) is familiar to all partitions of the conduit in egg-shaped sections and
has high accuracy.

5. Conclusions

This paper presents three explicit solutions for critical depth in closed conduits flowing partly
full, they are suitable for circular, arched, and egg-shaped sections, respectively. The formulas have
been improved in all aspects. The calculation precision is improved; the maximum relative error of the
formulas of circular, arched, and egg-shaped sections are only 0.182%, 0.06%, and 0.17%, respectively.
The formula form is simple, the physical concept is clear, and the computation is quick and convenient.
After engineering verification, all the formulas in this paper can meet the practical needs of engineering.

Moreover, a revised PSO is applied to optimize the model parameters in a hydraulic computation.
The presented example proves that the PSO with particle release can be used to search for the optimal
solution with high speed and accuracy, and it can act as a useful reference for hydraulic calculations of
complex section conduits. Thus, the explicit solution for critical depth in closed conduits flowing partly
prove the rationality of the model and provide a new idea for the hydraulic calculation in engineering.
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Abbreviations

The following symbols are used in this paper.

A discharge section area;
a model parameter;
b model parameter;
c model parameter;
D channel diameter;
d model parameter;
e model parameter;
f model parameter;
g acceleration due to gravity (9.8 m/s2);
j model parameter;
Q flow discharge;
r radius of crown;
T water width (m);
y water depth in conduit;
yc critical depth in circular sections;
ya critical depth in arched crossing-sections;
ye critical depth in egg-shaped sections;
α velocity distribution coefficient
εc characteristic parameter of overwater section in circular sections;
εa characteristic parameter of overwater section in arched crossing sections;
εe characteristic parameter of overwater section in egg-shaped sections;
γ central angle of the wet perimeter;
θ half central angle of the wet perimeter in circular sections;
θi central angle of different water depths corresponding to egg-shaped sections;
ηc dimensionless relative water depth in circular sections;
ηa dimensionless relative water depth in arched crossing sections;
ηe dimensionless relative water depth in egg-shaped sections.

References

1. Wang, Z.Z.; Chen, T.; Zhang, X.M.; Zhang, X.D. Approximate solution for the critical depth of an arched
tunnel. J. Tisnghua Univ. (Sci. Technol.) 2004, 44, 812–814.

2. Raikar, R.V.; Reddy, M.S.S.; Vishwanadh, G.K. Normal and critical depth computations for egg-shaped
conduit sections. Flow Meas. Instrum. 2010, 21, 367–372. [CrossRef]

3. Swamee, P.K. Critical depth equations for irrigation canals. J. Irrig. Drain. Eng. 1993, 119, 400–409. [CrossRef]
4. Swamee, P.K. Critical depth equations for irrigation canals. J. Irrig. Drain. Eng. 1994, 120. [CrossRef]
5. Terzidis, G. Explicit method for calculating critical depth of trapezoidal openchannel flow. Hydrotechika J.

Hell. Hydrotech. Assoc. 2003, 13, 105–112.
6. Terzidis, G. Explicit method for calculating uniform depth of trapezoidal openchannel flow. In Proceedings

of the 5th National Conference of Greek Association of Water Resources Management, Xanthi, Greece, 6–9
April 2005; pp. 239–245.

7. Wang, Z. Formula for calculating critical depth of trapezoidal open channel. J. Hydraul. Eng. 1998, 124, 90–91.
[CrossRef]

http://dx.doi.org/10.1016/j.flowmeasinst.2010.04.007
http://dx.doi.org/10.1061/(ASCE)0733-9437(1993)119:2(400)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1994)120:5(942)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:1(90)


Water 2019, 11, 2124 17 of 17

8. Manoj, K.C.; Devkota, J.; Fang, X. Comprehensive evaluation and new development of determination of
critical and normal depths for different types of open-channel cross-sections. In Proceedings of the World
Environmental and Water Resources Congress, Providence, RI, USA, 16–20 May 2010; pp. 2058–2068.

9. Vatankhah, A.R.; Bijankhan, M. Choke-free flow in circular and ovoidal channels. Water Manag. 2010,
163, 207–215. [CrossRef]

10. Vatankhah, A.R.; Easa, S.M. Explicit solutions for critical and normal depths in channels with different
shapes. Flow Meas. Instrum. 2011, 22, 43–49. [CrossRef]

11. Vatankhah, A.R. Direct solutions for normal and critical depths in standard city-gate sections.
Flow Meas. Instrum. 2012, 28, 16–21. [CrossRef]

12. Liu, J.L.; Wang, Z.Z. Explicit equations for normal and critical depths of standardcity-gate cross section
tunnels. Proc. Inst. Civ. Eng. Water Manag. 2019, 166, 199–206. [CrossRef]

13. Zhao, Y.; Song, S.; Meng, Q. Approximate method calculating critical water depth in common city-opening
shaped cross-section. Eng. J. Wuhan Univ. 2009, 25, 14–15.

14. Liu, J.L.; Wang, Z.Z.; Leng, C.J.; Zhao, Y.F. Explicit equations for critical depth in open channels with complex
compound cross sections. Flow Meas. Instrum. 2012, 24, 13–18. [CrossRef]

15. Bijankhan, M.; Kouchakzadeh, S. Egg-shaped cross section: Uniform flow direct solution and stability
identification. Flow Meas. Instrum. 2011, 22, 511–516. [CrossRef]

16. Bureau of Indian Standards. IS-4880: Indian Standard Code of Practice for Design of Tunnels Conveying Water
Part (II); Bureau of Indian Standards: New Delhi, India, 1976.

17. Swamee, P.K.; Rathie, P.N. Exact equations for critical depth in a trapezoidal canal. J. Irrig. Drain. Eng. 2005,
131, 474–476. [CrossRef]

18. Shirley, E.D. Critical-depth calculations in complex channel sections. J. Irrig. Drain. Eng. 1991, 117. [CrossRef]
19. Patil, G.P.; Murthy, J.S.; Ghosh, L.K. Uniform and critical flow computations. J. Irrig. Drain. Eng. 2005,

131, 375–378. [CrossRef]
20. Patil, G.P.; Vasant, N.D.; Rajnikant, M.K. Integrating equation of gradually varied flow. J. Hydraul. Eng. 2001,

127, 624–625. [CrossRef]
21. Chow, V.T. Integrating the equation of gradually varied flow. Proc Pap. Am. Soc. Civ. Eng. 1955, 81, 1–32.
22. Wu, Z.-K.; Yang, Q.-Z.; Shi, Y.-Q.; Li, Y.-F. Particle swarm optimization with particle release and speed limit.

Appl. Res. Comp. 2013, 30, 682–683.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1680/wama.2010.163.4.207
http://dx.doi.org/10.1016/j.flowmeasinst.2010.12.003
http://dx.doi.org/10.1016/j.flowmeasinst.2012.07.003
http://dx.doi.org/10.1680/wama.11.00051
http://dx.doi.org/10.1016/j.flowmeasinst.2011.12.005
http://dx.doi.org/10.1016/j.flowmeasinst.2011.09.002
http://dx.doi.org/10.1061/(ASCE)0733-9437(2005)131:5(474)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1991)117:2(220)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2005)131:4(375)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2001)127:7(624)
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Establish the Formulas 
	Basic Hydraulic Parameters and Formulas 
	Circular Sections 
	Arched Sections 
	Egg-Shaped Sections 

	Functional Model Construction 
	Circular Sections 
	Arched Sections 
	Egg-Shaped Sections 

	The Fitting Parameter to Establish the Formula 
	Circular Sections 
	Arched Sections 
	Egg-Shaped Sections 


	Results 
	Discussion 
	Formula Evaluation 
	Circular Sections 
	Arched Sections 
	Egg-Shaped Sections 

	Engineering Verification 
	Circular Sections 
	Arched Sections 
	Egg-Shaped Sections 


	Conclusions 
	References

