

1	Article						
2	Supplementary Materials						
3	Figures						
4	Mapping Dynamics of Bacterial Communities in a						
5	Full-Scale Drinking Water Distribution System using						
6	Flow Cytometry						
7 8	Caroline Schleich ¹ , Sandy Chan ^{2,3,4} , Kristjan Pullerits ^{2,3,4} , Michael D. Besmer ⁵ , Catherine J. Paul ^{2,6} , Peter Rådström ² and Alexander Keucken ^{1,6,*}						
9 10 11 12 13 14 15 16 17 18	 Vatten & Miljö i Väst AB, SE-311 22, Falkenberg, Sweden; Caroline.Schleich@vivab.info Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden; Sandy.Chan@sydvatten.se (S.C.); kristjan.pullerits@tmb.lth.se (K.P.); catherine.paul@tvrl.lth.se (C.J.P.); peter.radstrom@tmb.lth.se (P.R.) Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, SE-223 70, Lund, Sweden Sydvatten AB, Hyllie Stationstorg 21, SE-215 32, Malmö, Sweden onCyt Microbiology AG, CH-8038, Zürich, Switzerland; michael.besmer@oncyt.com Water Resources Engineering, Department of Building and Environmental Engineering, Faculty of Engineering, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden Correspondence: alexander.keucken@vivab.info 						
19	Received: 9 September 2019; Accepted: 11 October 2019; Published: 15 October 2019						
20 21 22	Table of Content						
23 24	Supplementary Figure S1 - Old and new treatment process at Kvarnagården DWTP in Varberg, Sweden						
25 26 27	Supplementary Figure S2 - Water sampling points in the DWDS in Varberg, Sweden Supplementary Figure S3 - Schematic description of TCC in the DWDS, and increase of TCC and water temperature from spring to summer						
28 29	Supplementary Figure S4 - Intact cell count in connection with residues of chloramine in the DWDS in mg/L ⁻						
30 31 32 33 34 35	Supplementary Figure S5 - Changes in TCC, ICC and water temperature at sampling point Hunst Supplementary Figure S6 - Changes in TCC, ICC and water temperature at sampling point TrPS5 Supplementary Figure S7 - Increase in TCC at sampling point TrPS5 in late June 2019 Supplementary Figure S8 - TOCeq measured in the permeate of the UF membrane from April 2018 to April 2019						

36

Supplementary Figure S1. Treatment process at Kvarnagården DWTP in Varberg, Sweden before
 (old) and after (new) implementation of a hybrid membrane process (coagulation combined with UF membrane filtration).

41 Supplementary Figure S2. Schematic illustration of the DWDS and FCM sampling points in Varberg,
 42 Sweden.

 Supplementary Figure S3. Schematic illustration of the DWDS and results for A: The total cell concentrations in April 2018 plotted on their sampling points in the DWDS. The samples close to the WTP show a low total cell concentration whereas sampling points at the end of the DWDS show elevated concentrations. B: Increase of TCC (squares) and water temperature (circles) at all sampling points from April 2018 until September 2018.

Supplementary Figure S4. Intact cell count in connection with residues of chloramine in the DWDS in mg/L. Sampling points are arranged according to the total chlorine concentration (from highest to lowest).

Supplementary Figure S5. Changes in TCC (red line, circles), ICC (green line, triangles) and water temperature (blue line; squares) at sampling point Hunst.

57 Supplementary Figure S6. Changes in TCC (red line, circles), ICC (green line, triangles) and water 58 temperature (blue line; squares) at sampling point TrPS5.

Supplementary Figure S7. Increase in TCC (blue bars) at sampling point TrPS5 in late June 2019 due to a closed valve. The green doted line indicates the warning limit for TCC (9000 cells/mL) and the red line indicates the alarm limit for TCC (15,000 cells/mL).

Supplementary Figure S8. TOCeq measured in the permeate of the UF membrane from April 2018 to April 2019.

67	Tables
68	Table of content
69 70 71	Supplementary Table S1 - Flow cytometry results and environmental parameters for different sampling points

72 73

Supplementary Table S1. Flow cytometry results and environmental parameters for different sampling points (three datasets each).

Sampling point	Retention time [h]	TCC [cells/mL]	nН	HNA [%]	ICC	Contact area with biofilm
Sumpling point	Retention time [h]		P		[%]	[cm ² /mL]
Bj_Va 1	168	141 980	7.84	40	71	0.34
Bj_Va 2	168	126 880	8.04	45	70	0.34
Bj_Va 3	168	129 640	7.95	44	72	0.34
BlaSc 1	15	3 580	8.06	83	47	0.03
BlaSc 2	15	1 740	8.25	67	46	0.03
BlaSc 3	15	2 907	8.08	61	34	0.03
Derom 1	20.7	7 320	8.04	71	40	0.2
Derom 2	20.7	6 140	8.31	70	48	0.2
Derom 3	20.7	12 480	8.11	62	38	0.2
DWKva 1	1	324	8.08	74	28	0.01
DWKva 2	1	308	8.11	78	47	0.01
DWKva 3	1	308	8	77	48	0.01
Godst 1	32.1	27 980	8.1	74	64	0.13
Godst 2	32.1	25 300	8.25	75	61	0.13
Godst 3	32.1	26 540	8.13	76	61	0.13
GV TU1	12.3	876	8.06	84	43	0.05
GV TU 2	12.3	1 860	8.34	71	31	0.05
GV TU 3	12.3	2 308	8.12	54	18	0.05
Himle 1	163.6	71 900	7.95	59	60	0.36
Himle 2	163.6	59 160	8.06	57	53	0.36
Himle 3	163.6	48 880	7.95	59	62	0.36
Hoega 1	21.9	3 810	8.04	81	51	0.11
Hoega 2	21.9	3 670	8.39	77	43	0.11
Hoega 3	21.9	8 270	82	70	35	0.11
Hunst 1	33.7	32 840	8.03	73	71	0.16
Hunst 2	33.7	33 240	8.18	73	69	0.16
Hunst 3	33.7	35 280	8.08	72	72	0.16
Lofta 1	79.5	51 360	8.05	55	70	0.28
Lofta 2	79.5	47 500	8 14	57	70	0.28
Lofta 3	79.5	38 160	8.03	65	73	0.28
Masar 1	16.6	12 100	8 11	88	70	0.22
Masar 2	16.6	11 140	8 59	84	87	0.22
Masar 3	16.6	15 140	82	87	66	0.22
Roto1 1	63.2	40 520	8 11	65	77	0.13
Roto1 2	63.2	56 520	8.22	62	72	0.13
Roto1 2 Roto1 3	63.2	32 800	8 14	67	72	0.13
Tofta 1	15.9	12 440	8 19	76	83	0.16
Tofta 2	15.9	11 420	8.63	70	73	0.16
Tofta 3	15.9	14 760	8 33	82	57	0.16
Trong 1	15.9	14700	0.55 Q 14	82 77	27	0.04
Tronn 2	15.7	1700	0.14 0.25	70	41	0.04
Trong 2	15.7	2 047	0.55	79 94	41	0.04
	15.7	3007	0.10	04 75	41 50	0.04
1 IF 35 1 T-DCF 2	17.1	1 020	0.00	75	59 74	0.00
	1/.1	1 / 24	ð.23	/6	74 25	0.06
Trr 1 1	1/.1	3 000	7.98	63	25 (1)	0.06
	37.9	9 820	ð.UI	8U 80	68 70	0.21
Ivaak 2	37.9	6720	8.13	80	70	0.21
I vaak 3	37.9	8 420	8.08	80	66	0.21

Water 2019, 11, 2137