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Abstract: Analytical solutions of the one-dimensional (1D) advection–dispersion equations, describing
the substance transport in streams, are often used because of their simplicity and computational speed.
Practical computations, however, clearly show the limits and the inaccuracies of this approach. These
are especially visible in cases where the streams deform concentration distribution of the transported
substance due to hydraulic and morphological conditions, e.g., by transient storage zones (dead
zones), vegetation, and irregularities in the stream hydromorphology. In this paper, a new approach
to the simulation of 1D substance transport is presented, adapted, and tested on tracer experiments
available in the published research, and carried out in three small streams in Slovakia with dead zones.
Evaluation of the proposed methods, based on different probability distributions, confirmed that they
approximate the measured concentrations significantly better than those based upon the commonly
used Gaussian distribution. Finally, an example of the application of the proposed methods to an
iterative (inverse) task is presented.

Keywords: environmental hydraulics; river pollution; longitudinal dispersion; analytical solutions;
approximation methods; probability distributions

1. Introduction

Solute transport in streams and rivers is strongly related to river characteristics, such as mean
flow velocity, velocity distribution, secondary currents, and turbulence features. These parameters are
mainly determined by the river morphology and the discharge conditions. Most natural channels are
characterized by the relevant diversity of morphological conditions. In natural channels, changing
river width, curvature, bed form, bed material, and vegetation are the reason for this diversity. In rivers,
which are regulated by man-made constructions such as spur dikes, groins, stabilized bed, and so on,
the morphological diversity is often less pronounced, and thus, flow velocities are more homogeneous.

In natural channels, some of these morphological irregularities, such as small cavities existing in
sand or gravel beds, side arms and embayments, bigger obstacles, bank vegetation, and uprooted trees,
can produce recirculating flows, which occur on different scales on the riverbanks and the riverbed.
These irregularities act as dead zones for the current flowing in the main stream direction. In regulated
rivers, groyne fields are the most important sort of dead zones. Groyne fields can cover large parts
of the river, significantly affecting its flow field. Dead-water zones or dead zones can be defined as
geometrical irregularities existing at the river periphery, within which the mean flow velocity in the
main stream direction is approximately equal to zero (or even negative) [1,2].
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Dead zones significantly modify velocity profiles in the main channel and also affect dispersive
mass transport within the river by collecting and separating part of the solute from the main current [3,4].
Subsequently, the solute is slowly released and incorporated back into the main current in the stream.
In addition, hyporheic exchanges between the surface waters and the adjacent/underlying groundwater
may affect the transport of solutes resulting in long-time tailing behavior in the time–concentration
curves [5]. As the classical advection–diffusion equation (ADE) does not consider explicitly the effect
of dead zones, the concept of transient storage was introduced [6], coupling the ADE to a second
equation describing the exchange between the main stream and the dead zones (see Theory).

Alternatively, the aggregated dead zones (ADZ) model was proposed [7], in which the cumulative
effects of all the physical dispersive mechanisms taking place in a river stretch are related to the
residence time of a single, idealized transient storage zone, the ADZ. The ADZ model is, hence, a
conceptually simple, but less well-physically based approach, which was found to be robust.

Mathematical solutions for the dispersion in streams with dead zones following the transient
storage approach have been extensively described [8–12], as well as the effects of the vegetation in
streams [13–15]. However, the majority of these solutions are complicated due to the mathematical
apparatus and their numerical applications [9,10,16,17]. Code programming could be difficult,
especially in cases where the computational effort is intensive (e.g., inverse tasks). On the other hand,
based on the nature of analytical solutions, the superposition principle can be applied, so the analytical
solutions are widely used in engineering practice because of their ability to simulate various types of
solute inputs (continuous, discontinuous, steady, unsteady, etc.).

The main objective of this paper was to provide a simple mathematical method that would
allow a quick and easy one-dimensional modelling of the dispersion process in streams with the
influence of dead zones. This method is based on use of various probability distributions in order to
achieve better approximation of the measured concentration from field experiments. Four distributions,
namely the Gaussian distribution, the Gumbel distribution, the log-normal distribution and the
generalized extreme value (GEV) distribution, were considered to approximate the dispersion process
from an instantaneous injection. The Gaussian distribution was considered because it is regarded as a
“standard” solution, used in many scientific studies, while the Gumbel distribution was considered for
its simplicity and literature references [18]. Both Gaussian and Gumbel distributions are two-parameter
distributions. Assuming higher precision using the third additional parameter, we evaluated the
log-normal and GEV distributions.

The results from these distributions were compared with the experimental data available in the
literature, and with those collected in three streams in southern Slovakia, where a significant presence
of dead zones was found (Malá Nitra, Šúrsky, and Malina streams). An application of these methods
to an inverse task is finally presented.

2. Theory

The general form of the one-dimensional advection–dispersion equation, which is valid once
cross-sectional mixing has been achieved, can be found in the literature, e.g., [19] in the form

∂C
∂t

+ vx
∂C
∂x

= Dx

(
∂2C
∂x2

)
+ Ms (1)

where t is the time (s), C is the concentration of a substance (kg.m−3), Dx is the dispersion coefficient in
the longitudinal direction (m2 s−1), vx is water velocity in the longitudinal direction (m.s−1), Ms is a
function representing the sources of solute (kg.m−3 s−1), x is the spatial coordinate distance (m).

It is well known that downstream of the release of a tracer into a turbulent flow, two zones are
established: the advective zone and the Gaussian (or equilibrium) zone [20]. The former is defined
as the distance it takes a tracer particle to sample the entire flow field, and it is characterized by a
skewed concentration profile due to the velocity profile in the channel. After a sufficient time, defined
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by a Lagrangian timescale [21], the differential longitudinal advection and the cross sectional mixing
attain a balance and the skewness decays until the concentration profile is Gaussian and the variance
of the tracer could increase linearly with the time [20]. However, in some cases advection dominates
dispersion and the concept of frozen cloud is used by assuming that no longitudinal dispersion occurs
during the time taken for the tracer to pass a sample site [20,22].

For contaminant transport in streams with transient storage, a term expressing the exchange
between the transient storage (dead zones) and the main stream is usually added in (1). Furthermore,
an equation for the transport inside the dead zone is needed. If we can assume the water flow and
transport parameters as constant, the resulting equations can be written in the form [9,23,24]:

∂C
∂t

= Dx

(
∂2C
∂x2

)
− vx

∂C
∂x
−m(C−Cs) + Ms (2)

n
∂Cs

∂t
= m(C−Cs) (3)

where Cs is the concentration of the substance in the storage zone (kg.m−3), m is the mass exchange
coefficient between the main stream and the storage zone (s−1), and n is the ratio between the storage
zone and the main stream cross-sectional area (–). If m or n becomes zero, the (2) reduces to (1).

A general form of solution for diffusion Equation (1) by [19], and eventually by [25,26] could be
written as

C =
M

A
√

Dxt
f
(

x
√

Dxt

)
(4)

where A is the cross-sectional area of the stream (m2) and f is the unknown function (“similarity
solution “) [19]. The unknown function f can be determined in two different ways:

1. Based on experiment derive a curve fit to real data.
2. By analytically solving the (4).

2.1. Analytical Solution

Using the second method, we get the one-dimensional analytical solution of the
advection–dispersion equation for simplified conditions and immediate solute input in the form [26]

C(x, t) =
M

2A
√
πDxt

exp

− (x− vt)2

4 Dx t

 (5)

where v is the average flow velocity in the stream. The simplified conditions comprise a prismatic
streambed, steady and uniform flow, and conservative substance, as well as assumption of lateral and
vertical homogeneous concentration of the flow (1D), so theoretically, this equation can be applied
after achieving cross-sectional mixing in the river. Initial and boundary conditions are typically zero
concentration for the solute in stream and no lateral inflows, but using the superposition principle
and dividing the stream to sections, different (nonzero) initial and boundary conditions could also
be imposed.

By comparing (4) with (5), the analytical solution of the function f could be interpreted as having a
form of Gaussian normal distribution with parameters of normal distribution (e.g., standard deviation
σ, etc.). In fact, this curve does not have the exact shape of a Gaussian normal distribution, rather it has
an asymmetric form, caused by substitution of the standard deviation σ (which is constant in Gaussian
distribution) by the time-dependent term

√
2Dxt.

Analytical solution of advection–dispersion equation (5) is currently considered as the standard
analytical solution, but in our opinion the applicability of this solution is limited to flow without
barriers, with the assumption of a symmetrical spreading of particles in a longitudinal direction. In
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real streams, however, this assumption is not always right; movement of particles is slowed down
(delayed) by the accumulation of particles in dead zones of the streams.

For this reason, in the case of flow in real conditions with occurrence of dead zones in the stream,
it is not appropriate to use the Gaussian normal distribution to approximate the function f from (4).
Instead a different statistical distribution with asymmetric shape should be used.

After reviewing the literature, we selected four statistical distributions for the present study.
Our selection was based mainly on the criterion of simplicity, easy mathematical formulation, and
the number of distribution parameters. The first distribution is the “classical” Gaussian distribution
(GaussD), according to (5). As mentioned earlier, this is considered the “standard solution”. Inspired
by the work of [18] we selected two other distribution types—the Gumbel distribution (GumbelD) and
the log-normal distribution (LogNormD)—modified for three parameters. The log-normal distribution
was also used in previous studies and it was stated that instream advection and dispersion processes
can produce only log-normal concentration distributions [12]. Finally, the generalized extreme values
distribution (GEVD) was considered. Notably, the first two distributions (GaussD, GumbelD) are
two-parametric, whereas the last two (LogNormD and GEVD) are three-parametric distributions. It
should also be mentioned that the Gumbel distribution is a special case of the GEV distribution.

Other potential distributions (models) were the TOSS model [27] and, finally, the generalized
inverse Gaussian distribution [28]. However, these are too complicated with many embedded functions
(e.g., modified Bessel functions of the second kind, etc.) and complex expressions for the distribution
of specific parameters and mean, median, or mode determination. Another possible distribution
was the inverse Gaussian distribution [29], but this has two parameters only, so the accuracy would
presumably be similar to the GumbelD approximation method. Finally, another potential approach
found in the literature is that based on signal deconvolution to obtain the residence time distribution
in a stream [30].

2.2. The GumbelD Approximation Method

As an appropriate approximation of the function f from the Equation (4), the formula of the
Gumbel distribution is proposed. The general equation of the Gumbel distribution is [31]

p =
1
σ

e−(z+e−z) (6)

z =
x− µ
σ

(7)

where p is the distribution probability (density), µ is the location parameter, and σ is the scale parameter.
The parameters from Equation (6), (considering Equation (4)) can be defined as follows:

σ =
√

Dx,Gt (8)

z =
v.t− x√

Dx,Gt
(9)

where Dx,G is the dispersion coefficient in the longitudinal direction (m2 s−1) used in the proposed
model. To be dimensionally consistent, z is a dimensionless parameter and σ has the dimension of
length (m). To get the results in concentration units (kg m−3) the term M/A must be included into (6).
Substituting parameters from (8) and (9) into (6), the one-dimensional analytical solution has the form:

c(x, t) =
M

A
√

Dx,Gt
exp

 x− v.t√
Dx,Gt

− exp

 x− v.t√
Dx,Gt

 (10)
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2.3. Three-Parametric LogNormD Approximation Method

We consider, as an appropriate approximation of the function f from the (4), the expression of the
three-parametric log-normal distribution. The general equation of this distribution is [32]

p = 1
σ(x−θ)

√
2π

e−[
[ln (x−θ)−µ]2

2σ2 ] , f or x > θ

p = 0 , f or x ≤ θ
(11)

where p is the distribution probability (density), µ is the location parameter (peak location), σ is the
variance (scale) parameter, and θ is the shift (lower boundary) parameter.

The time tmax, in which the maximum (peak) concentration occurs is defined as

tmax = e(µ−σ
2) (12)

As the peak time tmax is known from field measurements, Equation (12) yields

µ = ln(tmax − t0) + σ2 (13)

It could be assumed that the parameter t0 (start time of nonzero concentrations) can be expressed
as a proportion of the peak (maximal concentration) time, i.e., t0 = k tmax, where 0 < k < 1.

c(x, t) =
M

A (t− t0)σ
√

2π
exp

− (ln(t− t0) − µ)
2

2σ2

 (14)

c(x, t) =
M

A (t− t0)Dx,LN
√

2π
exp

− (ln(t− t0) − µ)
2

2Dx2

 (15)

c(x, t) =
M

A (t− k.tmax)Dx,LN
√

2π
exp

− (ln(t− k.tmax) − µ)
2

2Dx2

 (16)

µ = ln(tmax − k.tmax) + σ2 = ln(tmax (1− k)) + σ2 (17)

2.4. Generalized Extreme Value Distribution (GEVD) Method

Another approximation of the function f from (4) is the generalized extreme value (GEV)
distribution. The general equation of the GEV distribution is [33]

p = 1
σz(x)ξ+1e−z(x) where

z(x) =


(
1 + ξ

( x−µ
σ

))− 1
ξ i f ξ , 0

e−
x−µ
σ i f ξ = 0

(18)

where p is the distribution probability (density), µ is the location parameter (peak location), σ is the
variance (scale) parameter, and ξ is the shape parameter.

The peak time tmax is defined as

tmax = µ+ σ
(1 + ξ)−ξ − 1

ξ
for ξ , 0. (19)

In practical computations, we can almost always assume the case ξ , 0, so then

µ = tmax − σ
(1 + ξ)−ξ − 1

ξ
. (20)
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The variance (scale) parameter σ can be defined similar to previous cases (see (8))

σ =
√

Dx,GEVt. (21)

Then
c(x, t) = M

A
√

Dx,GEVt
z(t)ξ+1 e−z(t)where

z =

(
1 + ξ

(
v.t−x√
Dx,GEVt

))− 1
ξ

.
(22)

3. Methods

3.1. Literature Data Use

The literature dataset from [34] was used to evaluate all approximation methods described above.
They presented measurements from 51 field tracer experiments performed between 1959 and 1973. In
the present study, we excluded the tracer experiments performed on short lengths i.e., with lengths less
than 10 kilometers. It can be assumed, that in such cases the results are distorted by the influence of
the initial transversal and vertical mixing. We also omitted all the experiments with noncentral tracer
inputs (i.e., tracer input at the bank, input at multiple points, etc.) because of the lack of data for these
particular tracer experiments.

As a result, 29 tracer experiments with overall measurements in 141 profiles (there were up to 8
measuring profiles in each tracer experiment) were selected. Statistical evaluation was performed for
each profile using each of the applied approximation methods (GaussD, GumbelD, LogNormD, and
GEVD). This focused on finding the best fit between the measured values and the approximation with
the considered method, i.e., to find the optimal set of method parameters providing the best goodness
of fit based on the minimal root mean square error (RMSE) between the measured and approximated
values, i.e.,

RMSE =

√∑t=t2
t=t1

(cm,t − ca,t)
2

n
(23)

NRMSE =
RMSE

cmax − cmin
(24)

where RMSE is the root mean square error (kg.m−3), cm,t is the measured value (concentration) at the
time t (kg.m−3), ca,t is the approximated value in the time t (kg.m−3), t1 is the measurement start time
(sec) and t2 is the measurement end time (sec), NRMSE (Eq. 24) is the normalized root mean square
error (–), and cmax and cmin are the maximal and minimal concentration in each particular experiment
(kg.m−3).

The optimal set of parameters were analyzed and set up using the built–in Excel Solver function.
The target value was the RMSE and the variable parameters were the peak time (mode), the scale
parameter (to replace the term M/A in corresponding equations), and the corresponding method
parameters (dispersion coefficient variance, shape parameters). The target value was the main indicator
for the optimization process, looking for a minimum value for this indicator to achieve the maximum
conformity of the measured and modelled data for the evaluated parameters. Limits for the peak time
for the optimization process were typically set up from 0.8 up to 1.2 of the real (experimental) peak
time to give some variability for the optimization process. Theoretically, there should be no limits,
but by setting such limits, the convergence of the optimization procedure was secured. The scale
parameter limits were set up to have a maximal difference of 0.001 (1%�) difference between the sum of
the tracer in modelled and experimental values. There were just formal limits for other parameters,
e.g., the dispersion coefficient should a nonzero and positive value, the lower boundary coefficient k
(see (17) should be positive and less than 1 (0 < k < 1).
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The considered rivers exhibited a large variability of hydraulic conditions. The length of the
experiments was in the range from 2.5 up to 294 km (1.6–183 miles), while the range of discharges and
velocity was from 0.48 up to 6824 m3.s−1 (17–241000 cfs—cubic feet per second) and from 0.07 up to
1.86 m.s−-1, respectively. All the data are listed in Table 1.

Table 1. Main characteristics of the considered rivers/streams [34].

Nr. Case Nr. * River/Stream Name Date

Min.
Distance

Max.
Distance

Min.
Discharge

Max.
Discharge

Min.
Velocity

Max.
Velocity

(km) (km) (m3.s−1) (m3.s−1) (m.s−1) (m.s−1)

1 1 Anteniam Creek 27 May 1969 2.57 29.61 1.16 1.78 0.12 0.22
2 2 Anteniam Creek 24 March 1970 2.57 66.69 5.10 12.18 0.35 0.51
3 7 Monocacy River 7 June 1968 10.30 34.27 15.15 18.55 0.37 0.38
4 9 Monocacy River 25 September 1968 7.48 33.79 3.06 3.20 0.08 0.11
5 10 Conococheague Creek 6 May 1969 4.42 19.87 6.82 6.94 0.35 0.41
6 12 Conococheague Creek 30 April 1970 4.42 33.87 29.45 30.58 0.62 0.87
7 13 Chattahoochee River 20 April 1971 16.01 76.59 107.60 179.53 0.73 0.97
8 14 Chattahoochee River 4 May 1971 10.49 104.60 140.17 140.17 0.75 1.09
9 15 Salt Creek River 6 September 1972 9.25 51.81 2.46 4.08 0.29 0.34

10 19 Bayou Anacoco River 15 June 1969 11.42 37.97 2.01 2.71 0.15 0.16
11 20 Comite River 4 November 1968 6.76 78.84 0.76 1.13 0.08 0.15
12 21 Bayou Bartholomew 25 June 1971 3.22 117.46 4.11 8.10 0.12 0.15
13 22 Amite River 21 October 1968 9.98 148.03 5.66 9.91 0.18 0.33
14 24 Tangipahoa River 24 April 1969 8.21 93.97 5.78 18.69 0.22 0.34
15 25 Tangipahoa River 15 September 1969 8.21 93.97 3.45 10.85 0.16 0.27
16 26 Red River 7 April 1971 5.74 193.08 230.22 249.47 0.57 0.63
17 27 Red River 14 April 1971 8.05 159.29 139.60 184.91 0.46 0.64
18 28 Red River 13 March 1972 8.05 159.29 187.46 251.74 0.43 0.52
19 29 Red River 12 June 1972 12.07 199.52 107.60 166.50 0.45 0.51
20 30 Sabine River 9 September 1969 7.88 79.81 110.72 130.26 0.40 0.80
21 31 Sabine River 4 February 1972 17.22 209.65 311.49 433.25 0.57 0.84
22 32 Sabine River 16 April 1972 22.20 85.92 0.48 1.33 0.09 0.10
23 33 Sabine River 16 April 1972 17.06 121.00 1.02 6.91 0.07 0.11
24 34 Sabine River 16 April 1972 21.08 113.43 6.17 7.08 0.12 0.15
25 35 Mississippi River 15 September 1965 35.40 204.34 3398.02 6796.04 0.62 0.81
26 36 Mississippi River 11 March 1968 54.71 294.45 2633.47 2973.27 0.95 1.10
27 37 Mississippi River 7 August 1968 54.71 294.45 6824.36 6824.36 1.36 1.48
28 38 Wind/Righorn River 21 March 1971 9.17 181.33 54.93 68.81 0.83 0.95
29 39 Wind/Righorn River 29 June 1971 9.17 181.33 215.21 254.85 1.51 1.86

Min. value 2.57 19.87 0.48 1.13 0.07 0.10
Max. value 54.71 294.45 6824.36 6824.36 1.51 1.86

* means the numbering according to [34]

Examples of the graphical evaluation of the considered distributions are shown in the Figures 1–3.
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Figure 1. Graphical evaluation of approximation methods—case 28, Red River, March 13, 1972, site 1,
distance 5 miles (8.045 km), see [34].
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Figure 2. Graphical evaluation of approximation methods—case 15, Salt Creek, September 6, 1972, site
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Figure 3. Graphical evaluation of approximation methods—case 20, Comite River, November 4, 1968,
site 5, distance 49 miles (78.8 km), see [34].

3.2. Field Experiments Data Use

The ability of the methods to approximate the 1D dispersion in extreme conditions of the channel
with submerged vegetation in a large portion of the cross-sectional area was also tested.

For these tests, experimental data from three tracer studies in Malá Nitra, Šúrsky, and Malina
streams conducted between 2012 and 2016 were used. These tracer experiments focused on the
determination of longitudinal and transversal dispersion coefficients and on pollutant spreading
within the primary mixing zone (prior to the transversal and vertical homogenization). In the first two
streams, kitchen salt was used as tracer and the water conductivity was measured. For the experiment
on the Malina stream we used a coloring agent (E133, brilliant blue) as a tracer, with subsequent
spectrophotometric detection of agent concentration. In all the cases evaluated in this paper, an
instantaneous input of the tracer was applied.
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The discharge in all experiments was determined using the cross-section velocity method. For
velocity determination the device SonTeK Flow 3D tracker was used. Water level slopes were
determined using the GPS precise levelling method (with ±10 mm accuracy), and based on the water
level slope, the roughness (Manning) coefficient was calculated using the Manning’s formula [35].

The Malá Nitra stream is located within the village of Vel’ký Kýr (N48.181799◦, E18.155373). The
experiments were performed in two reaches with lengths of 785 and 1340 meters. The first reach of the
stream was straight and the second was slightly curved in both directions (left and right bend). The
channel at the bed was about 4 m wide with a bank height of 2.5 m and a bank slope of approximately
1:2. The discharge in selected experiments used for the method tests ranged from 0.230 up to 0.235
m3.s−1. The hydraulic roughness was n = 0.035 (Manning coefficient) and the water level slope was
found to be approximately 1.5%�. The stream in the considered reach is prismatic with a width of 5.5 m
and a water depth in the range from 0.4 to 0.6 m. The range of the determined longitudinal dispersion
coefficient was from 0.5 to 2.5 m2.s−1. The experiments were performed in high summer (July 2012),
when submerged vegetation was present to a large extent.

The second tracer study was carried out on a straight reach of the Šúrsky stream, located close to
the village of Svätý Jur (Slovakia, N48.232957◦, E17.202934◦). The field measurements were made in a
300 m to 500 m long straight reach with a relatively prismatic cross-section profile. The discharge, the
channel width, the maximum depth, and the average velocity were in the range 0.38 to 0.43 m3.s−1, 4
to 5.5 m, 0.4 to 0.8 m, and 0.245 to 0.282 m.s−1, respectively. The range of the determined longitudinal
dispersion coefficient was from 0.63 to 0.98 m2.s−1. Field experiments were performed in spring (March
2014) when the presence of submerged vegetation was very low.

The last field tracer experiment was performed at the Malina stream in West Slovakia in 2016.
Originally, the constructed cross-section profile was significantly influenced by vegetation. The
measured discharge during the experiments was 0.408 m3s−1. The water level slope, specified by
levelling measurements, was about 0.45%�. The stream shape in the examined stream section can be
considered prismatic, the width was around 5 m, the average depth was 0.88 m with a maximum
value of about 1 m. The dispersion coefficient was 0.95 m2.s−1. The experiment was performed in high
summer (August 2016), with up to approximately one meter of emerged vegetation on the banks, as
well as submerged vegetation in the central part of the channel. This vegetation on the stream banks
and bed created dead zones for the flow. A picture of the vegetation and hydraulic conditions in this
stream is shown on Figure 4.

The main characteristics of all three streams used for tracer experiments in Slovakia are listed in
Table 2.

Table 2. Main characteristics of the streams used for tracer experiments in Slovakia.

Nr. Stream/Channel Name Date

Min.
Distance

Max.
Distance

Min.
Discharge

Max.
Discharge

Min.
Velocity

Max.
Velocity

(km) (km) (m3.s−1) (m3.s−1) (m.s−1) (m.s−1)

1 Malá Nitra 3–4 July 2012 0.785 1.340 0.230 0.235 0.131 0.163
2 Šúrsky stream 19–20 March 2014 0.397 0.506 0.380 0.430 0.245 0.282
3 Malina 3 August 2016 1.435 1.435 0.408 0.408 0.076 0.076

In all the three rivers used for field experiment data, the length was smaller than the length
of rivers from the literature data. Therefore, the question of the 1D well-mixed assumption should
be questioned.

Vertical mixing in a river needs, typically, a length of Lmix-vert = 100*h [20], where h is the water
depth. In the three Slovakian rivers, water depth h was always < 1 m (on average, 0.5, 0.6, and 0.88 m).
So, Lmix-vert < 100 (from 50 to 88 m). This means in the field measurement the assumption of vertical
mixing holds.

The estimation of the length for transversal mixing Lmix-transv is more difficult because no
established theory exists to predict transverse mixing rate [36]. This rate is related to several boundary
conditions of the mixing process (riverbank/riverbed irregularities, vegetation, meandering, bends,
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islands, confluences). The vegetation is expected to affect Manning coefficient [37], which is related to
the friction factor, the shear velocity, and, ultimately, to the transverse mixing rate.
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Figure 4. Emerged and submerged vegetation in the Malina stream, West Slovakia, near the village of
Zohor (GPS 48.334830, 16.967463).

For scaling analysis, again, the length for transverse mixing is Lmix-transv = c1*(W2/*h), where W is
channel width and c1 is a numerical constant related to the rate of the process of transversal mixing [38].
In the three Slovakian rivers, c1 could be in the order of 20–40, so the Lmix-transv should be in the order
of 150–200 m, which is quite a lot shorter than the minimum distance of the field experiments (Table 2).
Hence, the assumption of complete mixing in the cross-section should be valid.

4. Results

4.1. Literature Data

The evaluation of the results from the approximation methods is based on comparison of
the normalized root mean square error (NRMSE), which is the standard root mean square error
(RMSE) divided by the maximal difference of measured values (cmax − cmin) [39]. Since the minimal
concentration in all experiments was set up to be zero, the NRMSE = RMSE/cmax. For all experiments,
the NRMSE was determined to evaluate the fit between the measured and approximated values.
Results are listed in Table 3.
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Table 3. Comparison of approximation methods’ accuracy.

Statistical Parameter
GaussD GumbelD LogNormD GEVD

% % % %

NRMSE—Average 6.40 3.40 2.60 2.44
NRMSE—Min 1.62 0.71 0.69 0.70
NRMSE—Max 15.55 11.00 6.80 6.42

Std. dev. 2.49 1.78 1.28 1.15

If the NRMSE for the GaussD method will be regarded as 100%, values less than 100% demonstrate
that the approximation method was more accurate than the GaussD method, whereas values over 100%
demonstrate that the GaussD method was more accurate. Such relative results are shown in Table 4.

Table 4. Relative comparison of approximation methods’ accuracy (relative to Gaussian distribution
(GaussD) = 100%).

Statistical Parameter
GaussD GumbelD LogNormD GEVD

% % % %

Relative
NRMSE—Average 100 53.1 40.6 38.2

Relative NRMSE—Min 100 40.6 42.5 42.8
Relative NRMSE—Max 100 70.7 43.7 41.3

Std. Dev. 100 67.6 51.3 46.2

The number of values exceeding the assigned accuracy limit are listed in Table 5. An accuracy
limit, e.g., 40%, means that the NRMSE of the particular method was less than 40% of the NRMSE of
the GaussD method (=100%). So, for example, for the 40% accuracy limit, the GEVD method was more
precise than the GaussD method in 76 of total 141 experiments (53.9%). Accuracy limit of 100% means
the same precision as the GaussD method.

Table 5. Exceeding values.

Limit
GumbelD LogNormD GEVD GumbelD LogNormD GEVD

- - - % % %

0% 0 0 0 0% 0% 0%
10% 0 1 0 0.0% 0.7% 0.0%
20% 2 15 13 1.4% 10.6% 9.2%
40% 38 63 76 27.0% 44.7% 53.9%
50% 70 97 109 49.6% 68.8% 77.3%
60% 98 123 125 69.5% 87.2% 88.7%
80% 120 137 137 85.1% 97.2% 97.2%
100% 126 140 138 89.4% 99.3% 97.9%

Further evaluation focused on the relationship (correlation) between the Gaussian (GaussD
method) dispersion coefficient and the dispersion coefficient for examined approximation methods.
The results are listed in Table 6.

Table 6. Correlation between the dispersion coefficients.

Method GaussD GumbelD LogNormD GEVD

GaussD - 0.9988 0.2131 0.9983
GumbelD 0.9988 - 0.1897 0.9967

LogNormD 0.2131 0.1897 - 0.2225
GEVD 0.9983 0.9967 0.2225 -
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Another subject of this study was the question of whether any dependency between each method
performance and stream conditions (distance, hydraulic parameters, etc.) exists. Results of such
statistical evaluation are listed in Table 7. Similarly, the correlation between the stream conditions and
the values of parameters used in each approximation method were determined (Table 8).

Table 7. Correlation (rxy) between the NRMSE and hydraulic parameters of examined streams.

NRMSE
of Method Q–Discharge X–Distance V–Velocity W–River

Width
D–Mean

Depth S0–Slope U*–Shear
Velocity

A–Unitless
Disp. Coef.

GaussD 0.277 0.173 0.088 0.212 0.049 –0.280 –0.158 0.401
GumbelD 0.232 0.144 –0.065 0.126 0.038 –0.201 –0.230 0.378

LogNormD 0.248 0.272 –0.028 0.182 0.096 –0.202 –0.154 0.271
GEVD 0.250 0.309 –0.023 0.241 0.136 –0.228 –0.166 0.285

Note: the unitless dispersion coefficient was defined as a = Dx
d.u∗ (s−1)

Table 8. Correlation (rxy) between the approximation method parameters and hydraulic parameters of
examined streams.

Parameter Equation Q—Discharge X—Discharge V—Velocity W—River
Width

D—Mean
Depth S0—Slope U*—Shear

Velocity
A—Unitless
Disp. Coef.

Dx (5) 0.248 0.416 0.600 0.593 0.357 –0.121 0.224 0.269
Dx,G (10) 0.231 0.416 0.604 0.609 0.368 –0.109 0.240 0.239

Dx.LN (16) 0.227 –0.096 0.061 0.065 –0.047 –0.189 –0.105 0.348
k=t0/ttmax (17) 0.118 0.215 –0.016 0.060 –0.057 –0.382 –0.342 0.166

Dx,GEV (22) 0.232 0.409 0.594 0.568 0.341 –0.121 0.212 0.305
ξ (22) 0.261 –0.019 0.077 0.083 –0.030 –0.214 –0.146 0.371

The ranges of dispersion parameters for each approximation method are presented in Table 9.

Table 9. Ranges of dispersion parameters for each approximation method.

Dispersion Parameter Equation Average Min. Value Max. Value Std. Deviation

Dx (5) 92.27 0.97 3353.66 299.88
Dx,G (10) 151.66 1.65 5733.00 507.40

Dx.LN (16) 0.413 0.100 1.140 0.181
k = t0/ttmax (17) 0.835 0.134 0.975 0.102

Dx,GEV (22) 163.48 1.68 6314.14 560.83
ξ (22) 0.030 –0.354 0.860 0.182

4.2. Field Experiments

Tables 10–13 list the results of the proposed analysis for the field experiments. The comparison
was that which was already used in the previous section.

Table 10. Comparison of approximation methods’ accuracy.

Statistical Parameter
GaussD GumbelD LogNormD GEVD

% % % %

NRMSE—Average 9.68 4.81 3.52 3.01
NRMSE—Min 5.32 1.72 1.39 1.08
NRMSE—Max 15.70 11.59 10.74 11.00

Std. Dev. 3.19 2.69 2.50 2.68
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Table 11. Relative comparison of approximation methods’ accuracy (relative to Gauss = 100%).

Statistical Parameter
GaussD GumbelD LogNormD GEVD

% % % %

Relative
NRMSE—Average 100 49.7 36.4 31.1

Relative NRMSE—Min 100 32.2 26.2 20.3
Relative NRMSE—Max 100 73.8 68.4 70.1

Std. Dev. 100 84.5 78.4 83.9

Table 12. Exceeding values.

Limit
GumbelD LogNormD GEVD GumbelD LogNormD GEVD

- - - % % %

0% 16 16 16 100.0% 100.0% 100.0%
10% 14 10 5 87.5% 62.5% 31.3%
20% 9 1 1 56.3% 6.3% 6.3%
40% 3 1 1 18.8% 6.3% 6.3%
50% 2 0 0 12.5% 0.0% 0.0%
60% 0 0 0 0.0% 0.0% 0.0%
80% 0 0 0 0.0% 0.0% 0.0%

100% 0 0 0 0.0% 0.0% 0.0%

Table 13. Correlation between the dispersion coefficients.

Method GaussD GumbelD LogNormD GEVD

GaussD - 0.9965 0.2675 0.9993
GumbelD 0.9965 - 0.2288 0.9981

LogNormD 0.2675 0.2288 - 0.2687
GEVD 0.9993 0.9981 0.2687 -

The results of the approximation methods for the Malina stream, where a large portion of
submerged and emerged vegetation was observed, are shown in Figures 5 and 6. It is also noted that
the considered methods were able to simulate the 1D dispersion process in such conditions.
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Figure 5. Graphical evaluation of approximation methods—Malina Stream, August 3, 2016, site 6,
distance 1.435 km.
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Figure 6. Graphical evaluation of approximation methods—Šúrsky Stream, March 20, 2014, experiment
12-II, distance 0.406 km.

5. Discussion

5.1. Literature Data

As it can be seen from Table 3, the approximation accuracy of the examined approximation
methods was generally better than that of the GaussD method. An average value of NRMSE for each
approximation method from all experiments was determined. If we assume the average NRMSE of
the GaussD method to be 100%, the relative NRMSE average of the GumbelD method was 53.1%, the
LogNormD and GEVD methods were even better—40.6 and 38.2%, respectively (see Table 4). The
extreme (min, max.) values of the NRMSE were caused mainly by the extreme accuracy (or inaccuracy)
of the GaussD approximation method with the measured values, i.e., in cases where the NRMSE was
lower than 2% or larger than 10%.

The standard deviation (the 68.3 percentile) was also significantly better for the LogNormD and
GEVD methods—51.3 and, 46.2%, respectively vs. 67.6% for the GumbelD approximation method.

Table 3 shows that all the three approximation methods were better than the GaussD method, but,
in turn, the LogNormD and the GEVD were clearly better than the GumbelD approximation method.
The GEVD approximation method was better almost in the whole limit range (0%–100%) than the
LogNormD method. In particular, the LogNormD and GEVD methods were less accurate than the
GaussD method in only two cases (1.4%) and three cases (2.1%), respectively. This happened in cases,
when the time–concentration curve was perfectly symmetric (presumably a prismatic streambed with
no obstacles), so the GaussD method could be fully applied.

Further results were obtained in the correlation examination between the specific approximation
methods. Table 6 shows a very high correlation between the dispersion coefficients of GaussD,
GumbelD, and GEVD methods (r2 > 0.99), whereas all the correlations of the LogNormD method were
quite weak (r2 was about 0.2). This means that the dispersion coefficients for the GumbelD and GEVD
methods were very close to our understanding of the role of the dispersion coefficient, as identified
from the standard Gauss–based analytical solution of the ADE (Equation (5)). Even the values of the
dispersion coefficient between the GaussD and GEVD methods were quite similar, probably due to a
linear dependency between them.

The weak correlation between the LogNormD and the GaussD method should be considered a
major disadvantage of the LogNormD method, as it will create practical difficulties when using this
method. This is due to the dependence of the form of the approximation curve on the parameter t0
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(see (15), whereas the dispersion coefficient is very difficult to estimate due its relatively small range
(average 0.413, std. dev. 0.1). On the other hand, the parameter t0 can be very easily measured in tracer
experiments as it is the time of the first nonzero concentration measured in the stream.

It should be noted that the values of the dispersion coefficient for the GumbelD and the GEVD
methods were very similar. In fact, the Gumbel distribution, having the shape parameter ξ equal to
zero (see (18)), is a special case of the GEV distribution. The results showed that the nonzero value
of the shape parameter allows better fit of the approximation curve to the measured data, both for
standard and distorted hydraulic conditions in the stream (flood, dead zones, etc.).

As it can be seen in Table 7, there are no noticeable or significant dependencies between the
hydraulic parameters of examined streams and the particular method accuracy expressed by the
NRMSE parameter. On the other hand, some correlations can be observed between the longitudinal
dispersion coefficients Dx, Dx,G, and Dx,GEV (Gauss, Gumbel, and GEV methods) on stream distance
from injection point, stream velocity, and stream width (see Table 8). The parameter ξ, used in the GEV
method (see (22)) has only a weak correlation to the stream hydraulic parameters, but graph analysis
revealed that higher values of this parameter correspond with the long “tail” of the time-concentration
curve. Hence, it is possible to assume that this parameter characterizes the extent of dead zones in the
stream. Very weak (almost none) correlations were found between the dispersion parameters obtained
using the LogNorm approximation method, which can be regarded as a serious disadvantage of this
method (difficulty with parameters prediction).

5.2. Field Experiments

The results of the statistical test performed on field data are presented in Tables 10–13 The results
were generally very similar to those of the literature data and confirmed the above conclusions.

Higher accuracy of the LogNormD and GEVD approximation methods was observed, i.e., a better
fit of the modelled data to the experimental data. In addition, the average precision of all examined
methods increased almost by 100%. This statement also applies to the minimal and maximal values, as
well as for the standard deviation (see Tables 10 and 11).

The exceeding values test also documents the higher precision of proposed approximation methods
using the field experiment data. Table 12 shows that no experiments were less precise than 60% and
50% of the GaussD method using the GumbelD, the LogNormD, and GEVD methods, respectively.
The correlation results between the dispersion coefficients were almost identical to the cases using
literature data (Table 13). The enhanced statistical analysis (similar as in Tables 7–9) was not possible
for the field experiments carried in Slovakia, due to the low variety of hydraulic parameters.

6. Application of the Proposed Approximation Method to Inverse Tasks

The initial idea to explore different approximation methods for use in solute transport tasks
originated within an ongoing research grant focused on localization of pollution sources on rivers
(VEGA 1/0805/16, see Funding), i.e., solving the inverse task. One of the methods examined for
solving such a task was the so-called “brute force method”, which is based on simulation of all
possible scenarios (contaminant distribution in time, distances, etc.) and comparison of the results
with measured data. The best fit between the simulated and measured data set up the position of the
pollution source. Such an approach requires a large number of simulations to be performed and the
results are highly dependent on the simulation precision and adaptation of local conditions.

Use of the GaussD method (5) led to unsatisfactory results (overall precision about 30–50%), so
the idea was to use much more precise simulation methods, which are fast and able to describe the
pollutant breakthrough curve more precisely, in conditions of real streams with transient (dead) zones.
The solute (tracer) source localization experiment was performed on real data from the Malina stream
experiment. Both numerical experiments were performed using our own simulation software LOPS
(LOcalisation of Pollution Sources) with the time step of 10 minutes and space (longitudinal) step of
50 m using two different simulation methods: GaussD and the GumbelD methods. The longitudinal
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dispersion coefficients were determined by the results of the tracer experiment and the measured
breakthrough curve was intentionally shifted in time by 3600 seconds. In the first case (GaussD
method, (5)), the best fit between the measured and modelled data was achieved at a distance of 1750
m, whereas the exact distance was 1,435 m. The inaccuracy was quite large (22%) and mainly due to
the inaccuracy of the model results (using GaussD method) compared with the field data.

The same conditions, but different approximation method—GumbelD (Equation (11)) were used
in the second case. The fit between the modelled and measured data was much better than in the
previous case—the difference sum was 0.229 in the first case, in the second case it was 0.024, i.e.,
approximately ten times less. Also, the solute source distance was determined almost exactly at 1450 m.

7. Conclusions

The application of alternative forms of the 1D analytical solution for the hydrodynamic dispersion
in rivers with dead zones was explored in this study. Besides the “classical” Gauss distribution,
Gumbel, log-normal, and generalized extreme value distributions were considered to evaluate their
ability to approximate the dispersion process from an instantaneous injection. For this evaluation, both
literature data and experimental data collected in three small streams in Slovakia were applied.

For both datasets, the results of this study show that all three approximation methods provided
a higher accuracy than the Gaussian–based method. The highest accuracy was obtained using the
LogNormD and the GEVD methods, having very similar precision. In particular, the LogNormD and
GEVD methods were less accurate than the GaussD approximation method in only 0.7% and 2.1% of
the considered cases, respectively. The GumbelD method was the least accurate when compared with
the LogNormD and GEVD methods, but still more accurate than the GaussD method by around 53%.

A partial comparison of the presented methods with the dead zone model was presented in [40],
where the GaussD and the GumbelD were compared with the aggregated dead zone (ADZ) model,
represented by the OTIS-P model [8]. As referred in this paper, the performance of both methods
(GumbelD and ADZ) was comparable, so it can be assumed that it will be similar also in the case of the
LogNormD and GEVD methods. In our view, the relative ease of use of the methods used is clearly in
favor of the proposed methods, for their use is sufficiently simple in a commonly available spreadsheet
editor, no specialized SW is needed.

All the three examined approximation methods are suitable, especially for streams with significant
influence of dead zones, which cause a strong asymmetry in the shape of the concentration distribution
curves over time. These approximation methods can be shortly characterized as follows:

• The Gumbel method is very easy to compute, but is less accurate because this method does not
allow justification of the time concentration curve shape expressing the extent of dead zones along
the examining stream reach;

• The LogNormD approximation method is more precise than Gumbel and Gauss methods,
but its parameters are not directly determinable and there is considerable uncertainty in their
determination (there is a simple estimation of the t0 parameter, but it has difficult predictable
dispersion and location parameters (µ, Dx,LN), which have no direct physical meaning);

• The GEVD approximation method is the most precise method, the dispersion coefficient (Dx,GEV)
has similar meaning and way of determination as the dispersion coefficients Dx and Dx,G. It also
has relatively predictable shape coefficient ξ (higher values correspond with longer “tails” of the
time concentration curves, i.e., it expresses the extent of the dead zones). The correlation between
the dispersion coefficient used in this method (Dx,GEV) and the dispersion coefficient Dx, used
in Equation (5) can be a subject of further research, with the aim of determination of the Dx,GEV

value, as well as the shape coefficient (ξ) value.

The application of the Gaussian distribution (GaussD method) in cases of streams with large a
extent of dead zones is problematic and its use leads to significant differences between measured and
simulated values. More detailed and precise methods for the dispersion simulation in streams with
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dead zones can be found in the literature [10], but these methods are quite difficult to apply as they are
based on a solution of partial differential equations and require a high number of parameters.

An added advantage of the novel approach herein proposed is its simplicity and low computational
effort. This allows its application for fast and simple simulations of contaminant dispersion in rivers
and streams using the discrete advection–diffusion equation (ADE) technique, as described by [41],
and applying the superposition principle, which is a common feature of all analytical solutions. These
features have been used successfully to solve inverse tasks, where a large number of simulations are
required. As documented in the discussion, such approach has significantly increased the accuracy of
the inverse task solution.
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