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Abstract: Soil erosion is a serious problem affecting numerous countries, especially, gully erosion.
In the current research, GIS techniques and MARS (Multivariate Adaptive Regression Splines)
algorithm were considered to evaluate gully erosion susceptibility mapping among others. The study
was conducted in a specific section of the Gorganroud Watershed in Golestan Province (Northern
Iran), covering 2142.64 km? which is intensely influenced by gully erosion. First, Google Earth
images, field surveys, and national reports were used to provide a gully-hedcut evaluation map
consisting of 307 gully-hedcut points. Eighteen gully erosion conditioning factors including significant
geoenvironmental and morphometric variables were selected as predictors. To model sensitivity of
gully erosion, Multivariate Adaptive Regression Splines (MARS) was used while the Area Under
the Receiver Operating Characteristic (ROC) Curve (AUC), drawing ROC curves, efficiency percent,
Yuden index, and kappa were used to evaluate model efficiency. We used two different scenarios of
the combination of the number of replications, and sample size, including 90%/10% and 80%/20% with
10 replications, and 70%/30% with 5, 10, and 15 replications for preparing gully erosion susceptibility
mapping (GESM). Each one involves a various subset of both positive (presence), and negative
(absence) cases. Absences were extracted as randomly distributed individual cells. Therefore, the
predictive competency of the gully erosion susceptibility model and the robustness of the procedure
were evaluated through these datasets. Results did not show considerable variation in the accuracy
of the model, with altering the percentage of calibration to validation samples and number of
model replications. Given the accuracy, the MARS algorithm performed excellently in predictive
performance. The combination of 80%/20% using all statistical measures including SST (0.88), SPF
(0.83), E (0.79), Kappa (0.58), Robustness (0.01), and AUC (0.84) had the highest performance compared
to the other combinations. Consequently, it was found that the performance of MARS for modelling
gully erosion susceptibility is quite consistent while changes in the testing and validation specimens
are executed. The intense acceptable prediction capability of the MARS model verifies the reliability
of the method employed for use of this model elsewhere and gully erosion studies since they are
qualified to quickly generating precise and exact GESMs (gully erosion sensitivity maps) to make
decisions and management edaphic and hydrologic features.
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1. Introduction

Soil erosion through water is found to be a drastic soil destruction process, which accounts
for about one billion hectares worldwide [1], resulting in low plant development, filling reservoirs
and valleys, geo-environmental degradation, degradation of a large part of the soil, and siltation of
watercourses [2—4]. One of the soil degradation processes is gully erosion and serves as the most
intricate erosion phenomena [5], usually stimulated or exacerbated integrating extreme rainstorms
and unwise land exploitation [6]. Such erosion contains wide varieties of small processes, including
head-cut, fluting, piping, continuous cracking progress, and mass flow [7,8]. Generally, the increasing
attention towards analysis of gully erosion indicates the necessity to enhance our awareness regarding
its consequences and condition agents that change due to various factors [6]. Gullies involve complex
pathways adjusted through the variability of correlated variables including soil texture, lithology, land
use and plant canopy, climate, and topography [9]. As gully erosion is a threshold phenomenon [8],
various studies have emphasized characterizing the topographic as well as hydraulic conditions to
forecast and assess the starting gullies susceptibility mapping [10], to a threshold approach where
characterization and positions of erosion processes might as well as be anticipated by using bivariate to
multivariate methods. Such techniques provide scholars the ability to describe soil erosion processes,
through evaluating space distribution of the gully erosion forms (the consequences) compared to
some predictors (geological and environmental factors). As for geomorphology, actuarial methods are
enormously used to evaluate landslide susceptibility mapping [11-17].

The large number of studies have at the same time used the probabilistic method to map erosion
sensitivity and other hazards. As well as bivariate methods [18-20], various multivariate actuarial
approaches were considered to satisfy this end including logistic regression [21,22], classification and
regression trees [23,24], and multivariate adaptive regression splines [25-28]. Gutiérrez et al. [27]
used the Multivariate Adaptive Regression Splines (MARS) model to predict gully creation locations.
The results showed that this model has good performance in geomorphic research.

Gully erosions have the highest sediment production potential. In recent decades, gully erosion
has developed in most watersheds of Iran. Gullies are an important sediment source and often cause
environmental problems [29]. Due to their damages, such as loss of productive capacity and significant
land degradation, high sediment discharge and sediment yields, which can transport both pollutants
and nutrients, reducing the water capacity of the reservoirs and damage to the infrastructure and
transport routes, prediction of susceptible areas is, therefore, considered essential in management of
watersheds [30]. The result of gully erosion study demonstrates the susceptibility to erosion over a
country, providing beneficial information for remediation strategies and establishing land use plans [29].

In ongoing research, we adopted the multivariate adaptive regression splines [31] as a multivariate
actuarial method for analyzing, assessing, and forecasting the local incidence of gully erosion pathways.
The MARS model serves as the most common actuarial method that previously proved to offer credible
patterns of gully sensitivity. The reason behinds choosing MARS models for the forecasting gully
erosion are as follows: (1) possibility for modeling curvilinear association among the conditioning
factors and gully incidence; (2) it allows working with various outcome variables and may manipulate
data from different measures; (3) according to previous studies in this area, that any studies have
applied this model for evaluating its ability and robustness for gully susceptibility.

This area in Gorganrood has witnessed gully erosion that caused many issues in this area and led
organizations to reassess the Weirdness of adopted constant genesis strategies (CONRWMGP 2009).
Astonishingly, the major initial place for the erosion phenomenon is cutting down trees positioned at
the upper part of Gorganrood watershed and land-use changes (CONRWMGP 2009). From 1990 to
2005 due to the presence of loess soils in the northern of Golestan Province, 430,000 ha of these areas
were affected by erosion. Soil erosion in this province is 5-6 tons/ha/year in forest areas (Department of
Golestan Natural Resources and Watershed management). Gully erosion in Maravetape and Kalale
counties leads to the loss of soil, the imposition of large costs, reduced agricultural potential, and has
caused the migration of people in the villages of this region and exacerbated soil erosion pathways
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influence farming system efficiency. Consequently, to describe a robust model to evaluate the sensitivity
of the territory to the development of gully pathways is necessary and Gorganrood watershed as the
susceptible area will be the focus of the present study.

The difference between this study and previous studies who used the MARS model is applying
two scenarios of the combination of number of replications and sample size, including 90%/10% and
80%/20% with 10 replications, and 70%/30% with 5, 10, and 15 replications for preparing gully erosion
susceptibility mapping (GESM) and assessing their performance by MARS algorithm. Each one
involves a various subset of both positive and negative cases. Absences are extracted as randomly
distributed individual cells. Therefore the predictive competency of the gully erosion susceptibility
model and the robustness of the procedure were evaluated through these datasets.

Therefore, the main scope of the current study is gully erosion modeling based on the MARS
technique and explores the ability and robustness of the MARS model to forecast the incidence of gully
erosion by various data sets and assessment measures. This study enriches the systematic assessment
of the MARS model to map gully erosion susceptibility among others. This study tried to investigate
gully erosion susceptibility through the MARS model and analyzed the performance and accuracy of
this technique for zoning gully erosion.

The result of this study demonstrates ways of offering beneficial insight for remediation strategies
and founding land exploitation projects by erosion susceptibility.

2. Materials and Methods

2.1. Study Area

The area under research belongs to Gorganrood basin, related to Golestan Province located in
north-eastern Iran. This area accounts for 2142.64 km? and is intensely influenced by gully erosion.
Its coordinates span over 37°18’-37°52" N and 55°18’-56°10" E (Figure 1). Topographically, this region
is considered as plain. The mean height ranges between 56 and 2165 m. Its prevalent soil textures are
Silty-loamy (approximately 53.7%) and Silty-clay-loamy (nearly 45.3%) soils. The major land uses in this
region include pasturelands (40.1%), agriculture (farming) (29.4%), and forest (18.4%). The mean annual
rainfall is approximately between 460 and 603 mm. The average minimum and maximum temperatures
are 11 and 18.5 °C, respectively [32]. In the last decade, this area has been challenged with natural
hazards and has faced intensive gully erosion. Therefore, this study area was selected as a potential gully
erosion-prone area. Figure 2 presents some Google Earth images of gully erosion in the research field.
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Figure 1. Study area and topographical characteristics. (a) Iran, (b) Gorganrood Watershed, (c) Study area.
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Figure 2. Some photographs of the gully erosion zoned on study area.

2.2. Methodology

Figure 3 indicates a flow-diagram for the method applied for the application of multivariate
adaptive regression splines model for gully erosion sensitivity zoning developed for this specific
research in the north of Iran. As shown, the flowchart consists of five steps: (1) preparing thematic layers
or 18 effective conditioning factors; (2) selection of factors using a multi collinearity test; (3) applying
two scenarios of the combination of the number of replications, and sample size, including 90%/10%
and 80%j/20% with 10 replications, and 70%/30% with 5, 10, and 15 replications; (4) gully erosion
susceptibility modeling using the MARS technique; (5) validation of the susceptibility maps using the
ROC-AUC (Area Under the Receiver Operating Characteristic) curve, efficiency percent, Yuden index,
and kappa.

2.2.1. Gully Erosion Inventory Mapping

An essential stage to zoning is to create a hazard evaluation for hazard zones [22]. The gully
erosion inventory for the present section of Gorganrood Watershed was provided by Google Earth
images, field surveys, and national and regional reports from different organizations. The present
map constitutes a set of incidences (307 hedcut points). While designing statistical plans, the training
set must differ from sets applied in the validation part [33]. To distinguish training points from the
validation points a random dividing algorithm [29,34] was used. In this research, two scenarios were
used: these scenarios were selected after altering different sample sizes and the number of replications,
including 90%/10% and 80%/20% with 10 replications. To assess the robustness of the model’s data
sensitivity [8,22,35], 5, 10, and 15 sample data sets, (replicates) for 70%/30% sample size, were prepared
through randomly multi-extracting of various data sets in the calibration and validation subsets [36].
Every set was adjusted through addition to positives (i.e., pixels having hedcut points) an equal number
of randomly selected negative points, corresponding to pixels without hedcut [37].
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Figure 3. Flow diagram for the research method.

2.2.2. Gully Erosion Predictor Variables (GEPV)

It is essential to determine the effective factors on natural hazards and man-made fatalities in
order to performing gully erosion susceptibility maps have great importance [38]. Good knowledge of
the main gully erosion-related factors is required to recognize the susceptible areas. Such contributors
always apply in studies analyzing gully erosion. Therefore, such factors were chosen from past
studies [34,39]. In this study, to generate and exhibit such data grid, ArcGIS 10.5 and a system for
automated geoscientific analyses (SAGA) software were used. For the application of the MARS model,
all agents were transformed into a raster network with 30 x 30 m grid pixel. All conditioning factors
were primarily continuous, and some of them (litologhy, soil, and land use) were classified within
different categories based on expert knowledge and literature review [40-42].

The predicting factors used in this work are (a) digital elevation model (m), (b) aspect map,
(c) slope percent, (d) curvature of profile, (e) curvature of plan, (f) land use (LU), (g) soil texture,
(h) Topographic wetness index (TWI), (i) distance to streams (m), (j) distance to roads (m), (k) drainage
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density, (1) annual rainfall (mm), (m) stream power index, (n) relative slope position, (o) lithological
formation, (p) K factor, (q) Melton ruggedness number, (r) topographic position index.

Digital contour data obtained from the Department of Natural Resources Management of Iran was
applied. A DEM (Digital Elevation Model) (Figure 4a) of the research field characterized with a 30 m
pixel was generated. Drawing upon DEM, physiographical and geomorphological grids such as aspect
(Figure 4b), slope percent (Figure 4c) as well as curvature layers were extracted using ArcGIS 10.5.
The slope percent includes a large section of the intrinsic views and is an important factor as it affects
drainage density, surface runoff, influences, vegetation structure the soil erosion, soil moisture, and
geomorphological processes [9,43—47]. Slope aspect is another important factor related to precipitation,
snow meltwater, land cover, soil moisture patterns, and physiographic trends [48-52]. The suitable
geomorphological data may be inferred via curvature assessment [53-55]. Three categories, convex,
concave, and flat, were used to develop the slope curvature map. Positive curvature exhibits convex
(>+0.1), negative curvature depicts concave (<—0.1), and zero curvature represents flat ((—0.1)—(+0.1)).
In addition, profile and plan curvatures (Figure 4d,e) include various negative as well as positive
quantities and indicate various description in every measure. Negative as well as positive ones in
profile curvature denote convexity (increasing flow velocity) and concavity (reducing flow velocity),
respectively. In contrast, negative and positive values in the plan curvature imply concavity (flow
convergence) as well as the convexity (flow divergence) [54,56]. Those near to zero denote neutral
curvature in both conditions.

LU has a substantial contribution in geomorphological and hydrological pathways through
direct or indirect influences on evapotranspiration, infiltration, run-off generation, and sediment
dynamics [52,57]. The other hand, agricultural activities have an important impact on gully erosion
development as well as genesis [58]. The land-use map in the region in 1:100,000 scale was prepared by
the Natural Resources department of Golestan Province and manipulated by Google Earth images. The
land-use of the region consists of residential areas (urban), range and farming, forestlands, rangelands,
farming, and lake (Figure 4f).

Soil texture (Figure 4g) usually is recognized as a substantial limiting factor in the process of
infiltration and overflow and it is effective on gully occurrence [59-61]. Through digitizing the soil
texture map of Golestan Province (1:100,000 scale) obtained from the Agriculture Department, Iran
the aforementioned layer was prepared. The soil texture in the study area consists of sandy-loam,
clay-loam, sandy-clay-loam, silty-clay, silty-clay-loam, as well as silty-loam.

Moore, Grayson, and Ladson [62] and Grabs et al. [63] mentioned that TWI (Topographic wetness
index) represents the spatial distribution of wetness conditions, and inclination of gravitation to
transport water to downstream. This factor was prepared using Equation (1):

TWI = ln(m), 1)

where o denotes the aggregated upstream area leaving a point (contour points length) and tan 3
is point angle. Here, GIS 10.5 software was used for TWI mapping and ranges from 1.20 to 22.92
(Figure 4h).

Distance to streams (Figure 4i) serves as a key determinant because of its important effect on flow
magnitude as well as gully erosion [29]. Based on field studies, gully erosions are diffused typically
close the linear aspects in particular roads. Undoubtedly, road making imposes an adverse effect on
hill sustainability at which flow may be appropriate for gullies [22,64].

Layers of the proximity were produced using the Euclidean metric function in ArcGIS 10.5 and
ranged from 0 to 11,720 m for roads (Figure 4j), and 0-15,080 m for streams. The national topographic
map at the scale of 1:50,000 was used to extract routes and streams.

The drainage density (Figure 4k) is found to be a great factor which plays an important role
in the incidence of many hazards [65]. Several factors such as the structure and nature of the soil
characteristics, geological beds, infiltration rate, plant cover condition, and slope degree [66] affect
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drainage networks. To turn the drainage network model to a reasonable value, the drainage density
was specified via an extension of “line density” in ArcGIS 10.5 software.
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Figure 4. Gully conditioning factor maps. (a) Digital Elevation Model (DEM) (m), (b) Aspect, (c) Slope
(%), (d) Profile curvature, (e) Plan curvature, (f) Land use, (g) Soil texture, (h) Topographic Wetness
Index, (i) Distance to stream (m), (j) Distance to roads (m), (k) Drainage density (1) Rainfall (mm),
(m) Stream Power Index, (n) Relative slope position (o) lithology, (p) K factor, (q) Melton ruggedness
number, (r) Topographic Position Index.

The yearly average precipitation map (Figure 4l1) of Gorganrood Basin was developed
according to precipitation data obtained from the Golestan province Regional Water Organization.
The above-mentioned map was developed using the 53 gauges and statistical period of 2009-2016
based on Inverse Distance Weight (IDW) interpolation method [67] (Equation (2)). This map ranges
from 460 to 603 mm/year. The rainfall map was developed in 30 x 30 m in ArcGIS 10.5 as an input
layer for susceptibility assessment of gully erosion.
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. Di %

Al = WI (2)
where, Ai represents point i weight, Di denotes the space between the point i and the point of unknown,
and o implies weighing power [67].

The stream power index (SPI) (Figure 4m) is an index of the water flow erosive power according
to the hypothesis that flow is relative to the particular watershed [68].

SPI = As X tan o, 3)

where, As is the particular watershed area per meter and r is the gradient of slope in degrees. The SPI
index is the most important factor adjusting slope erosion processes, as erosive power of flow directly
affect s river cutting and slope to erosion [68]. The regions with great river power measures have
excessive erodibility because it indicates potential energy for limiting sediment [69].

Relative slope position (RSP), (Figure 4n), as a tool, could calculate several terrain indices from
the digital elevation model. General information on the computational concept can be found in [70].

Lithology units (Figure 40), have a dominant contribution in specifying gully erosion
sensitivity [9,50,52,71,72] as gully erosion relies on the lithology properties and different lithological
units display significant differences in erosion instability. In this research, the lithological map for
the region was generated as the present geological maps with a 1:100,000 scale obtained from the
Geological Survey Department, Iran. This area of Gorganrood Watershed is full of various types of
outcrop formations and divided into 10 classes (Table 1).

Table 1. Lithology of the Gorganrood watershed.

Group Code Explanation Formation
1 Ksr Shale containing Ammonite with interaction of orbitolin limestone Sarcheshmeh
2 P1Qc Fluvial conglomerate, Piedmont conglomerate, and sandstone. -

3 Jmz Grey thick-fluvial limestone and dolomite Mozduran

4 Ksn Brown to block shale and thin layers of siltstone and sandstone Sanganeh

4 Murm Light-red to brown marl and gyps marl with sandstone intercalations -

4 Murmg  Gypsiferous marl -

4 Elm Marl, gypsiferous marl and limestone -

5 Mur Red marl, gypsiferous marl, sandstone and conglomerate Dalichai

5 Kad-ab Usual unit comprising argillaceous limestone, marl and shale -

5 Jd \N.ell—.bedded to thin-bedded, greenish-grey argillaceous limestone )
with intercalations of calcareous shale

6 Qftl Concentrated piedmont fan and valley terrace deposits -

6 Qft2 Low level piedment fan and valley terrace sedimentation -

6 Qal River channel, braided drainage and flood plain sedimentation -

6 Qs,d Loose loess sand sedimentation such as dunes -

7 J1 Light brown, thin-bedded to massive limestone Lar

8 Ekh Olive-green shale and sandstone Khangiran

9 Kat Green glauconitic sandstone and shale Aitamir

10 Qsw Swamp -

10 Qm Swamp and marsh -

Soil erosion potential (k-factor) (Figure 4p) influences soil persistence to run-off force or rainfall
impact [73]. The soil erodibility (K) in Universal Soil Loss Equation (USLE), is measured by the texture,
organic matter, infiltration, and soil structure.
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A simplified flow accumulation measure, computed as discrepancy among max and min elevation
in the watershed divided by the square root of the watershed area is Melton ruggedness number
(MRN) (Figure 4q). The measurement is done for every grid pixel, hence minimum elevation equals
elevation in the cell’s location. Flow measurement is easily performed with Deterministic 8 given the
inconsistent nature of a single maximum elevation [74-76].

Topographic position index (TPI) (Figure 4r) serves as an approach widely applied to evaluate
topographic slope location, and to zone ordination automation. This function produces single-band
raster characterized quantities measured upon elevation. TPI is an abbreviation for Topographic
Position Index, in turn, described as the difference between the main pixel and the average of its
adjacent pixels [77].

2.3. Multi-Collinearity Test

The above-mentioned factors were used to consider the effect of correlation among them as the
independent variable. If both predictor variables are intensely related, it is a problemin the modelling
process. The issue is named collinearity. The VIF (variance inflation factor) and Tolerance include
both significant measures of multi-collinearity recognition. Indeed, VIF is simply the reciprocal of
tolerance, on the other hand, tolerance is 1-R2 for the variable regression versus predictors, deprived
of the dependent variable [78]. A VIF of five or 10 and above and/or a tolerance of less than 0.20 or 0.10
indicates a multi-collinearity problem [79,80].

2.4. Multivariate Adaptive Regression Splines (MARS Model)

MARS can adapt complicated, non-linear associations among the independent and dependent
measures although providing an explainable model [81]. The MARS algorithm has been applied in
geomorphology to forecast and mapping the incidence of gullies [25-27] and landslides [17,38,82].

This technique functions via dividing magnitudes of the explanatory predictors into areas and
through the fitting, for every area, a linear regression equation. “Knots” divides quantities among
regions, whereas the phrase “basis function” (BF) denotes implying every various condition factor
interval (dependents). BFs are functions of the following:

max(0, x—k)or

max(0, k —x),

where k denotes constant equal to a knot and x is an independent variable. The MARS may be stated
generally as below:

N
y= () =oa+ ) Bahn(x), )
n=1

where y is predictor variable anticipated via function f(x), N denotes terms number, who is shaped by
a coefficient 3n, « is a constant, and h;, (x) represents a separate basis function or multiplication of BFs.
MARS analysis was carried out by the Earth version of the R software [83-85]

Evaluation of the Model

The evaluation pathway comprises the fitting degree assessment (goodness of fit), robustness, and
prediction skills of the model [22,86]. The goodness of fit demonstrations capability of the approach in
forecasting the training subset, whereas the predictive efficiency (prediction skills) is a fundamental
step for model precision to forecast a validation set (the percent of gully points that do not use the
training process) [39,87]. While changing training and validation points, the precision of the forecasting
model is determined as the consistency of outputs of the model in respect to model precision. Here,
predictive performance and goodness of fit of the model are subjected to assessment using both
threshold-driven and non-threshold-dependent methods. ROC curve, as a threshold-driven method,
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was drawn for all datasets as well as afterwards goodness of fit (i.e., degree of fitting) and forecasting
efficacy of the algorithms were studied, respectively [88].

The Kappa coefficient, Youden index, and efficiency (as threshold dependent performance) were
calculated based on the components of the confusion matrix [89]. Furthermore, sensitivity (S5T) and
specificity (SPF) are common statistical indexes applied for validation of each model performance [90].
Comparison of the model observed data and results are demonstrated through a contingency matrix
(Table 2). According to Table 2, the true negative (TN) and true positive (TP) are the numbers of pixels
that are correctly and appropriately classified, whereas false negative (FN) and false positive (FP) are
the numbers of pixels fallaciously classified.

TP

SST = TP I TN’ ®)
TN
PF = TN +FP’ ©)

Efficiency (E) is the ratio of gully points and non-gully cells which output model accurately divided:

B TP + TN
~ TP+ TN+ FP+EN’

E @)

The Kappa factor (K) describes the potential of the employed model to categorize the gully point
cells [1], and can be expressed as the ratio of given consistency beyond that expected by chance:

K= 2 ®)

where P, represents the ratio of cells that are properly divided as gully occurrence or non-gully and
Pexp denotes the ratio of pixels whose consistency is random [91]. Py and Pexp can be measured
as below:

Pops = TP + TN, )

Pexp = [(TP + FN)(TP + FP) + (FP + TN) (EN + TN)]. (10)

The performance of model given the Kappa factor may be categorized as <0 (weak), 0-0.2 (slight),
0.2-0.4 (fair), 0.4-0.6 (moderate), 0.6-0.8 (high), and 0.8-1 (almost perfect) [1,2].

Table 2. Contingency matrix applied for the Multivariate Adaptive Regression Splines (MARS)

model assessment.

Predicted
Observed
%Gully (+) %Non-Gully (-)
Gully (+) (+|+) True positive (TP) (—|+) False negative (FN)
Non-gully (-) (+]-) False positive (FP) (—I-) True negative (TN)

The ROC (receiver operating characteristics) curve, as a non-threshold-driven method, is widely
used to quantify the measure classification [92-94]. The receiver operating characteristics is the
area under the curve (AUC-ROC) that describes the performance of a model to precisely forecast
non-incidence or an incidence [95,96]. The forecasting precision of the model according to the AUC
value may be categorized as three classes of accuracy following the classification proposed by [97]:
0.7, 0.8, and 0.9. AUC thresholds were used for acceptable, superior, and substantial performance,
respectively [22,37].

Since the admission of a forecasting model entails, for assessment of its precision, trifle variations
of the input data (i.e., data susceptibility), a gully erosion sensitivity model was developed on 10 various
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samples of mapping measures. Therefore, robustness in forecasting models and their consistency
were furthermore evaluated when the training and validation samples are altered (i.e., a replicate
method) [8,22,41,96,98]. The model was employed to given data, and subsequently was tested by
the validation datasets. As for the ROC curve, the calculated event map by the validation dataset
were compared.

Through subtracting the maximum and minimum accuracy values according to each assessment
measures precision of the model was calculated [22,96]:

Ravuc-—roc = AUC = ROCpax = AUC = ROCpyin, (11)

where RAUC-ROC is model precision as per AUC-ROC measures, and AUC-ROCpax includes
maximum precisions within all sets. As well, least accuracy values are represented as AUC-ROC
min within whole datasets. In addition, in this research, ROC curves were applied to designate the
optimum benchmark point of the model rate, via considering Youden's index (J) [99], with ] relative to
the maximum perpendicular space between the ROC and the former bisector as follows:

] = Maximum (sensitiviity + specificity —1). (12)
3. Results

3.1. Gully Erosion Susceptibility Model

First, Google Earth images, field surveys, and national reports were used to provide a gully-hedcut
evaluation map consisting of 307 gully-hedcut points. Here, the MARS model was employed on
balanced given sets (positives/negatives), and each one comprises all the positive (gully point) pixels
and same randomly inferred negative (non-gully spots) cells, that was for two processes of integrating
some repeats and samples, involving 90%/10% and 80%/20% with 10 replications. To assess the
robustness of the model’s data sensitivity, 5, 10 and 15 sample datasets (replicates) for 70%/30% sample
size, were prepared through random selection of different data sets in the calibration and validation
subsets. Figure 5 indicates the relative diffusion of the mean of gully erosion susceptibility categorizes
for 10 groups in the sample data sets (70%/30%).
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Figure 5. Sensitivity maps of gully erosion of the study area by the MARS model for 70%/30%,
10 replications.
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The results of the relative distribution of the average of gully erosion susceptibility classes for
other models are presented in Table 3. However, in the other combinations, the results were almost
similar together. As well, the actuarial features of the probabilistic forecasting of the gully erosion of
10 sample data sets and replicates are shown in Table 4.

Table 3. Relative distributions of the gully susceptibility classes.

Relative Distributions of the Gully Susceptibility Classes

70%/30% 80%/20% 90%/10%
MARS Model
5rep * 10 rep 15 rep 10 rep 10 rep
Low 47.14 44.72 45.86 47.55 47.65
Medium 22.83 23.63 22.85 22.16 21.94
High 15.70 17.10 16.27 15.20 16.17
Very high 14.34 14.55 15.02 15.09 14.25

* rep: Replicate.

Table 4. Actuarial features of the probability values inferred from the MARS model.

Probabilistic Prediction Values

MARS Model 70%/30% 80%/20% 90%/10%
5rep 10 rep 15 rep 10 rep 10 rep
Mean 0.277 0.279 0.283 0.277 0.275
SD 0.281 0.270 0.280 0.285 0.273
Minimum 0.000 0.000 0.000 0.000 0.000
Maximum 0.999 0.997 0.996 0.999 0.998

SD: Standard deviation.

3.2. Evaluation of the Susceptibility in Gully Erosion

The results of the goodness-of-fit are shown in Table 5. The results did not show considerable
variation in the accuracy of the model, with altering the percentage of calibration to validation samples
and number of model replications.

Table 5. Forecasting efficiency of the model given 10 data sets.

70%/30% 80%/20%  90%/10%
MARS Model
5 rep 10 rep 15 rep 10 rep 10 rep

Sensitivity 0.86 0.79 0.85 0.88 0.86
Specificity 0.72 0.81 0.66 0.83 0.72
(Negative predictive value) 0.70 0.78 0.72 0.74 0.75
(Positive predictive value) 0.83 0.73 0.82 0.85 0.84
Efficiency (%) 79.0 76.0 76.0 79.0 779
Kappa 0.58 0.51 0.52 0.58 0.58
AUC Mean 0.80 0.82 0.83 0.84 0.83
Robustness 0.03 0.08 0.11 0.01 0.15

The MARS algorithm performed excellently both in predictive performance. It can be observed
that the MARS model for combination of 80%/20% had the highest performance in terms of SST
(0.88), SPF (0.83), E% (0.79), Kappa (0.58), Robustness (0.01) and AUC (0.84) compared to the other
combinations. The combination of 70%/30% with five replicates only had the highest performance in
terms of E% (0.79). Figure 6 illustrates the mean ROC curves for the MARS model through 10 replicates.
The results of AUC as a threshold-driven method for other scenarios are as follows: (70%/30% with 5,
10 and 15 replicates: 0.80, 0.82, 0.83 respectively; 90%/10%: 0.83). The MARS model revealed from
acceptable to excellent performances, with AUC values above the 0.77 and 0.8 thresholds. By adopting
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the J index, 0.386 probability cut-off values were generated for the susceptibility gully erosion model
(Figure 6). Based on these cut-off values, the probability of gully erosion occurrence for each cell
was adapted into a binary (positive/negative) prediction to achieve the spatial distribution of cases
correctly categorized (true positives and negatives (TP, TN)) and incorrectly classified (false positives
and negatives (FP, FN)) for the MARS susceptibility model (Table 6). Figure 7 shows the distribution
of true positive (TP), false positive (FP), true negative (TN), and false-negative (FN) cases within the
study area. A larger true positive prediction is produced by the model, indicating that the conditions
for gully erosion are widespread.

ROC-plot qully
- Cut-off = 0.386
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0.2
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|
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Figure 6. Average Receiver Operating Characteristic (ROC) curves for the MARS model through
10 replicates.

70%/30%-5rep 70%/30%-10rep

| 4%

| i‘

TN WFN WFP uTP TN WFN WFP uTP
70%/30%-15rep 80%/20%-10rep

HTN EFN WufFP wu1P HTN EmFN WFP TP

Figure 7. Contingency matrix applied for assessing the MARS model for all scenarios.
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Table 6. Contingency matrix applied for assessment of the MARS model.

Predicted
Observed
%Gully (+) %Non-gully (-)
Gully (+) (+]+) 40% (TP) (=1+) 10% (FN)
Non-gully (-) (+|-) 14% (FP) (—|-) 36% (TN)

4. Discussion

The results of the model (based on all sample data sets) show different ranges of susceptibility
values of gullying. The output map was divided into four classes of poor, high, and very high for
each model by the Natural breaks classification approach [96,100,101]. As the regions of the area were
categorized as high and very high, gully erosion susceptibility maps were complementary with the
sections of the watershed with low slope and near to roads. For an average of gully susceptibility, more
than 31% of the study area has a high (HGES) and very high sensitivity (VHGES). Approximately
23.63% of the research field was classified as moderate classes (MGES). A total of 44.72% of the cells in
the study region classified into low susceptibility groups (LGES). On the other hand, the low density of
gullies was observed in forest areas with high slopes. In the forest areas, roughness due to vegetation
covering may lead to medium runoff factors on this area as well, hence, low degradation force of
centralized flow [96]. Areas nearer to roads and streams, with sparse vegetation and higher drainage
density than other areas, have more potential for gully occurrence. These findings are in line with [4].
The parts of the basin with low slope and near to roads classified as high and very high gully erosion
susceptibility maps (HGES and VHGES), and high density of gully erosions occurred in these parts of
the catchment. The distribution of gullies over lithological units by other studies observed that poorly
sorted materials are favorable conditions for gully erosion development [102-104].

The MARS model precision for gully erosion susceptibility was assessed by both threshold-driven
and non-threshold-driven methods as pointed out in the methodology section. To assess the robustness
of the model’s data sensitivity similar with references [8,22,35], 5, 10 and 15 sample data sets, (replicates)
for 70%/30% sample size, were prepared through random selection of different data sets in the calibration
and validation subsets. This method is in agreement with studies of Rotigliano et al. [36]. The MARS
model reproduces non-linear relationships using several linear regressions. Hence, this allows MARS
to generate models with a better fit to the training data set while maintaining high predictive power [5].

Given the accuracy, the MARS algorithm performed excellently in predictive performance. It can
be observed that the MARS model for combination of 80%/20% had the highest performance in terms of
SST (0.88), SPF (0.83), E% (0.79), Kappa (0.58), Robustness (0.01), and AUC (0.84) compared to the other
combinations. Since the accuracy values are very similar for the all sample data sets, the MARS model
was robust when the validation group changed [2]. As well, in the research of Rahmati et al. [29], three
various classes of training samples were applied to accompany different machine learning models
for predicting the susceptibility of gully erosion. Three different sample data sets (51, 52, and S3),
were randomly prepared to evaluate the robustness of the models. Their results illustrated accurate
predictions. Additionally, it was found that performance of RF and RBF-SVM for modelling gully
erosion occurrence is quite stable when the learning and validation samples are changed. Regarding
forecasting efficiency, the results of AUC as a threshold-driven method for scenarios are as follows:
(70%/30% with 5, 10 and 15 replicates: 0.80, 0.82, 0.83 respectively; 90%/10%: 0.83, 80%/20%: 0.84).
The MARS model revealed from acceptable to excellent performances, with AUC values above the 0.77
and 0.8 thresholds [97]. This result demonstrated a strong agreement between the distribution of the
existing gully erosion points and the final predictive susceptibility map. Additionally, the AUC values
for all data sets are approximately similar and the modelling method can be considered as robust to
changes in learning points. Our results similar and agree with studies of Gomez-Gutiérrez et al. [26],
who also applied the MARS model to predict gully erosion occurrence, and obtained AUC in the
range of 0.75-0.98. The other MARS application to gully erosion susceptibility evaluation was made
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by Gomez-Gutiérrez et al. [27], who achieved a mean AUC of 0.826 and 0.859 in Spain and Sicily
respectively. Accordingly, Conoscenti et al. [17] pointed out that even for the worst validation AUC
value inferred from five datasets, MARS is much more than the best calibration AUC value calculated
compared with the logistic regression (LR) model. In addition, Conoscenti et al. [102] evaluated
gully erosion sensitivity in both surrounding farmed basins of Sicily (Italy) by using multivariable
adaptive regression splines. Model assessment on the whole basins indicates the outstanding predictive
performance of models. This finding supports our results. Based on cut-off values, the probability
of gully erosion occurrence for each cell was adapted into a binary (positive/negative) prediction to
achieve the spatial distribution of cases correctly categorized (true positives and negatives (TP, TN))
and incorrectly classified (false positives and negatives (FP, FN)) for the MARS susceptibility model
(Table 6). A larger true positive prediction is produced by the model, indicating that the conditions for
gully erosion are widespread. As Rahmati et al. [96] pointed out, random ordination of datasets is the
main origin of uncertainty in spatial modelling. From the validation result, it is clear that the MARS
model provided acceptable to excellent performance in predicting the probability of gully erosion
occurrence based on independent and dependent assessment measures. In light of abovementioned
results, it is obvious that the MARS model can be used as an efficient statistical model for the prediction
gully erosion susceptibility map. This is in line with the other studies that applied this model to
landslides and gully erosion susceptibility mapping [9,25-27,102]. This is a relevant issue to achieve
sustainable land management where gully erosions must be restored when they have developed
as a result of human mismanagement, and for this it is necessary to use nature-based solutions [6].
To achieve success in gully erosion control, the strategies must find a way to reduce the connectivity of
the flows [7].

5. Conclusions

Recognition of a precise and calibrated model to alleviate errors in modelling gully erosion
susceptibility and determining gully erosion susceptible areas is of great importance. The present
study enriches the systematic assessment of the multivariate adaptive regression splines model
(MARS) to model gully erosion susceptibility among others. The major concluding remarks might be
written as below: the aforementioned MARS model not just confirmed superiority for either based on
limits-independent and limits-driven approaches, at the same time led to precise forecasting while
changing the sample dataset. Hence, it can be inferred that this model is superior to evaluate gully
erosion susceptibility while research aims to generate an exact gully erosion susceptibility map (GESM)
and to pave the way to offering information on the outstanding potential of predictors. Reconnaissance
and gully alleviation controls are not cost-effective and at the same time are not time-effective, and
hence, to develop comprehensive susceptibility forecasting system as per modelling seems to be a
remarkable possibility. In the current research based on past studies [34] and multicollinearity tests,
digital elevation model, aspect map, slope percent, curvature of profile, curvature of plan, land use
(LU), soil texture, TWI, distance to streams, distance to roads, drainage density, annual rainfall, stream
power index, relative slope position, lithological formation, K factor, melton ruggedness number, and
topographic position index are significant factors that influence gullying in the study area. Additionally,
in this study we tried to investigate gully erosion susceptibility through the MARS model and analyzed
the performance and accuracy of this technique for zoning gully erosion. While changing training and
validation spots, the precision of the forecasting model was determined as the consistency of outputs of
the model in respect to model precision. Here, predictive performance and goodness of fit of the model
was subjected to assessment using both threshold-driven and non-threshold-dependent methods.
This validates the robustness as well as the effectiveness of this model. Zonation of the gully erosion
susceptibility for that section of Gorganrood display regions with high hazard susceptibility as well as
demonstrates a valid map, in which the result is useful to managers and stakeholders to recognize the
most prone area gully erosion and dedicate inputs for soil protection actions in the best manner.
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