
water

Article

Uncertainty in Estimated Trends Using Gridded
Rainfall Data: A Case Study of Bangladesh

Mohamed Salem Nashwan 1,2 , Shamsuddin Shahid 2 and Xiaojun Wang 3,4,*
1 Construction and Building Engineering Department, College of Engineering and Technology,

Arab Academy for Science, Technology and Maritime Transport (AASTMT), 2033 Elhorria, Cairo, Egypt;
m.salem@aast.edu or s.mohamed@graduate.utm.my

2 Department of Hydraulics and Hydrology, School of Civil Engineering, Faculty of Engineering,
Universiti Teknologi Malaysia (UTM), 81310 Skudia, Johor, Malaysia; sshahid@utm.my

3 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic
Research Institute, Nanjing 210029, China

4 Research Center for Climate Change, Ministry of Water Resources, 210029 Nanjing, China
* Correspondence: xjwang@nhri.cn; Tel.: +86-025-8582-8539

Received: 14 December 2018; Accepted: 2 February 2019; Published: 19 February 2019
����������
�������

Abstract: This study assessed the uncertainty in the spatial pattern of rainfall trends in six widely
used monthly gridded rainfall datasets for 1979–2010. Bangladesh is considered as the case study
area where changes in rainfall are the highest concern due to global warming-induced climate change.
The evaluation was based on the ability of the gridded data to estimate the spatial patterns of the
magnitude and significance of annual and seasonal rainfall trends estimated using Mann–Kendall
(MK) and modified MK (mMK) tests at 34 gauges. A set of statistical indices including Kling–Gupta
efficiency, modified index of agreement (md), skill score (SS), and Jaccard similarity index (JSI) were
used. The results showed a large variation in the spatial patterns of rainfall trends obtained using
different gridded datasets. Global Precipitation Climatology Centre (GPCC) data was found to be the
most suitable rainfall data for the assessment of annual and seasonal rainfall trends in Bangladesh
which showed a JSI, md, and SS of 22%, 0.61, and 0.73, respectively, when compared with the observed
annual trend. Assessment of long-term trend in rainfall (1901–2017) using mMK test revealed no
change in annual rainfall and changes in seasonal rainfall only at a few grid points in Bangladesh
over the last century.
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1. Introduction

Trend analysis provides important information required for planning adaptation and mitigation
to climate changes [1]. Therefore, a large volume of literature is available on trend analysis of various
climatic variables using different methods [2,3]. One of the major impediments to the analysis of
climatic trends is the availability of long-term quality climate data. Reliable analysis of climatic trends
requires high-quality data for at least 30 years [4], which is often difficult to obtain for many regions of
the world. Gridded climate data are suggested for such study in regions where long-term high-quality
climate data are not available. With the pace of development, the reliability of gridded climate data in
replicating actual properties of regional climate has been improved, and therefore such data has been
widely used for climatic trend analysis across the world.

Though reliability in trends obtained using gridded data has been reported in many studies [3,5–8],
uncertainty in results is still a major issue. Gridded climate data can be broadly classified as
gauge-based, remote-sensing based, reanalysis, or a hybrid of those methods [9]. The uncertainty in
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different types of gridded data arises mainly due to the techniques used for the preparation of gridded
data, such as interpolation of observed data, remote-sensing data used, or the model used for the
generation of reanalysis data. Besides, the number of stations used for the development of gauge-based
gridded data or the validation of remote-sensing data or reanalysis models plays a major role in the
reliability of the data product. Furthermore, the quality of the observed data and the quality control
procedure used in the selection of observed data can have a significant impact on the uncertainty of
gridded climate data. Therefore, it is often suggested to select the suitable gridded data for the area of
study and the climatic phenomenon should be analyzed [10].

Bangladesh is one of the most susceptible countries to global climate change, where reliable
assessment of the spatiotemporal changes in climate is very important [11–13]. Many studies have
assessed the trends of different climate variables in Bangladesh using observed data. A brief review of
the climatic trend analysis in Bangladesh is presented in Table 1. Contradictory results, particularly in
trends of rainfall, have been reported in different studies, even when the same method is used. This is
mainly due to the different periods used for trend analysis, the use of data without necessary quality
control, and the methods used for filling the missing data. Table 1 shows that different results were
obtained when different periods were used for trend analysis. The table also shows that proper quality
control of data was not conducted before trend analysis in most of the studies. Besides, different
approaches were used to handle missing data in trend analysis. It was attempted to fill the missing
data before trend analysis in some of the studies. Some other cases those were ignored following
different rules; for example, a record of the whole month was discarded if rainfall for consecutive
days was found to be missing. These techniques for filling missing data and the rule adopted for
the consideration of missing data in discarding monthly, seasonal, and annual rainfall records also
resulted in different estimated climate trends.

To overcome the problem of unavailability of long-term quality-assured climate data, gridded
rainfall and temperature datasets are suggested for hydrological and climatology studies [9]. However,
studies revealed that results obtained using different gridded data products are often contradictory
and inconsistent with those obtained using observed data [1,2]. This emphasizes the need for the
assessment of the capability of different gridded data product in reproducing the spatiotemporal
pattern in the trends of rainfall.

The major objective of the present study is to evaluate the performance of six widely used gridded
rainfall data in replicating spatiotemporal patterns of the trends in annual and seasonal rainfall in
Bangladesh. The present study adopted the Sen’s slope as an estimator of the magnitude of change and
the Mann–Kendall (MK) and modified Mann–Kendall (mMK) tests to assess the significance of change
at a 95% level of confidence. The mMK method has been found robust in the estimation of trends in the
presence of short- and long-term autocorrelations in rainfall data [3,6,8,14]. Therefore, it can provide
a unidirectional trend in time series by removing the natural variability of climate. Therefore, the
mMK test is used along with the MK test for the assessment of trend. It is presumed that the presented
approach can be useful for unbiased estimation of rainfall trends.
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Table 1. Summary of recent studies on rainfall trend in Bangladesh.

Study Study Timeframe Study Period Data Type Quality Control of Data Trend Analysis Method Major Findings

Rahman et al. [15] Monsoon - Gauge - MK test Southeast rainfall pattern was changing, no
change was found in monsoon rainfall pattern

Singh [16] Monsoon 1961–1991 Gauge Not mentioned Least squares method Monsoon rainfall increased, with the highest
increase in September then July

Hossain et al. [17] Seasonal 1948–2007 Gauge
Daily missing data were

filled using a simple
averaging

Sen’s slope, MK test, and
linear regression

Post-monsoon and winter rainfall had
significant positive trends, pre-monsoon and

monsoon rainfall had no significant trend

Shahid [18] Annual and seasonal 1958–2007 Gauge

A total of 17 stations with
missing data ≤2%. The

standard normal
homogeneity test used

Sen’s slope and MK test
Annual and pre-monsoon precipitation

increased, no trend in monsoon, post-monsoon,
and winter rainfalls

Shahid [19] Annual and seasonal 1958–2007 Gauge Double mass curve and
the Student’s t test Sen’s slope and MK test An increasing trend in extreme precipitation

indices

Shahid et al. [20] Annual and seasonal 1958–2007 Gauge Double mass curve and
the Student’s t test Sen’s slope and mMK

After removing the scaling effect, annual
rainfall increased in North Bangladesh, and

increase in pre-monsoon period

Endo et al. [21] Seasonal 1950–2008 Gauge

Missing data <10%,
except monsoon filled

and the standard normal
homogeneity tests used

Mann–Kendall’s tau test Trends in monsoon and post-monsoon were not
significant

Sheikh et al. [22] Annual 1961–2000 Gauge RHTest software [23]
used to fill missing data

Mann–Whitney and MK
tests An increasing trend of annual rainfall

Bari et al. [24] Annual and seasonal 1964–2013 Gauge

Months with missing
days discarded and years

having missing data
≥20% omitted

Sen’s slope, MK,
sequential Mann–Kendall

tests

Pre-monsoon and post-monsoon rainfall were
increasing, annual and monsoon rainfall

showed a decreasing trend

Nury et al. [25] Monthly 1975–2012 Gauge Not mentioned Sen’s slope and MK test
Southeast of Bangladesh had the highest

increasing trend, while the northwest had the
lowest.

Mullick et al. [26] Annual and seasonal 1966–2015 Gauge Not mentioned Yue and Wang [27]’s
version of MK test

Annual, pre-monsoon, monsoon, and
post-monsoon rainfall had a positive trend in

most of the stations used
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2. Climate of Bangladesh

Bangladesh, located in the deltas of large powerful rivers, has an extremely flat topography, except
for some uplifted lands and hills in the northeast and the southeast (Figure 1). According to the Köppen
classification, Bangladesh has monsoon (Am), tropical savanna (Aw), and humid subtropical climates
(Cwa). The country has four seasons, namely hot summer pre-monsoon (MAM), rainy monsoon (JJAS),
autumn post-monsoon (ON), and dry winter (DJF). The rainfall of Bangladesh varies spatially, from
1500 mm in the northwest to about 4400 mm in the northeast [11] (Figure 2). Monsoon rainfall accounts
for the majority of the total annual rainfall of Bangladesh [11,28,29].
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3. Data and Sources

3.1. Observed Data

Daily observed rainfall data of 34 stations distributed over Bangladesh (Figure 1) for 1979–2010
were collected from the Bangladesh Meteorological Department. Long-term rainfall records are
available for many locations in Bangladesh. However, data before 1979 contain a large number of
missing records, while missing data after 1979 is very uncommon. Complete daily rainfall data after
1979 was available at 10 stations. Missing data at other stations was less than 1%. The missing data
was mostly random. Continuous missing data for two to three months a year were found at four
stations. Data for the whole year was discarded when it was found that data was missing continuously
for a month. Randomly missing data were filled up using an artificial neural network (ANN) model
developed by Shahid [30]. The ANN model was used to estimate the missing value at the station of
interest from the rainfall of six neighbouring stations.

The complete daily rainfall data generated for the period 1979–2010 (after filling the missing data)
was used in this study. The double mass curve method [31] was used to detect the non-homogeneity
in the annual rainfall time-series where an almost straight line without any breakpoints was observed
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at all the stations. Besides, a Student’s t-test [32] was used, which revealed that the variations between
different sub-samples of rainfall data were statistically insignificant at a 95% level of confidence.

3.2. Gridded Datasets

Six gridded rainfall datasets were used in this study: (1) Asian Precipitation—Highly Resolved
Observational Data Integration Toward Evaluation, APHRODITE v.2; (2) National Oceanic and
Atmospheric Administration (NOAA) Climate Prediction Center (CPC) global dataset; (3) The
University of East Anglia Climatic Research Unit Time Series, CRU TS v4.01; (4) Global Precipitation
Climatology Centre (GPCC) v.7; (5) Center for Climatic Research, University of Delaware (UDel) V.4.01;
and (6) Princeton University Global Meteorological Forcing dataset (PGF) for land surface modeling
v.1. Table 2 presents a summary of datasets used. An elaborate review of the datasets is presented in
the following sections. The spatial distributions of average annual rainfall obtained using each dataset
are given in Figure 2. Although APHRODITE and PGF are available at a resolution of 0.25◦ × 0.25◦,
these were aggregated to 0.5◦ × 0.5◦ resolution for uniform presentation and comparison.

Table 2. Summary of the gridded rainfall datasets evaluated in the present study.

Dataset Spatial
Resolution

Temporal
Resolution

Available
Time Span Data Sources

APHRODITE 0.25◦ Daily 1951–2010 GTS, National and International Agencies
CPC 0.5◦ Daily 1979–2017 NOAA and GTS
CRU 0.5◦ Monthly 1901–2016 WMO and NOAA

GPCC 0.5◦ Monthly 1901–2017 GTS, climate reports and synoptic
weather reports

UDel 0.5◦ Monthly 1900–2014 GHCN2 GHCN-Daily, GSOD, NCAR
PGF 0.25◦ Daily 1948–2010 NCEP, NCAR, and global observed data

GTS: Global Telecommunication System network; NOAA: National Oceanic and Atmospheric Administration;
WMO: World Meteorological Organization; GHCN: Global Historical Climatology Network; GSOD: Global
Summary of Day; NCEP: National Centers for Environmental Prediction; NCAR: National Center for
Atmospheric Research.

4. Methodology

4.1. Evaluation of Gridded Datasets

The performance of six gridded rainfall datasets was evaluated based on their ability to replicate:
(a) the monthly observed rainfall at 34 stations; and (b) the spatial pattern in the magnitude and
significance of annual and seasonal rainfall trends in Bangladesh. Prior to evaluation, APHRODITE,
CPC, and PGF daily rainfall were converted into monthly rainfall. A flowchart showing an overview
of the methodology used in this study is presented in Figure 3. There are two general ways to compare
gridded data with station observation: (i) areal average precipitation for each grid box is computed
from available station data and then a grid-to-grid comparison is conducted; (ii) gridded data is
interpolated to station location and then compared with observed data [1,10,33]. Both the methods
were used in this study for the comparison of the performance of gridded data. For the assessment
of the gridded rainfall using the second approach, the monthly rainfall series of the four nearest
grid points surrounding a station were interpolated at the station location using the inverse distance
weighting method [10]. These interpolated series were compared with the observed gauge series. Four
established statistical indices were adopted to evaluate the performance of gridded data in simulating
the monthly observed rainfall: these are the Root-Mean-Square Error (RMSE), Kling–Gupta Efficiency
(KGE) index, modified index of agreement (md), and Skill Score (SS). These statistical indices are
widely used in the evaluation of gridded data [7,10,34]. RMSE represents the standard deviation
of error in simulation. Developed by Gupta et al. [35], KGE (Equation (1)) is an integrated index
that represents the correlation and bias, and similarity in variability between observed and gridded
data. The md calculates the additive and proportional differences between the mean and variance
of observed and gridded data [36], as in Equation (2). The SS (Equation (3)) measures the overlap
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between the observed and simulated probability distribution functions [37]. The optimal value of
RMSE is zero. Therefore, values of KGE, md, and SS near to 1 indicate a better match between observed
and gridded data.

KGE = 1−

√
(r− 1)2 +

(
1− µsim

µobs

)2
+

(
σsim/µsim

σobs/µobs

)2
(1)

md = 1− ∑n
i=1(xobs,i − xsim,i)

j

∑n
i=1
(
|xsim,i − xobs|+

∣∣xobs,i − xobs
∣∣)j (2)

SS =
n

∑
i=1

min( fsim, fobs) (3)

where r is person’s correlation; µ and σ represent mean and standard deviation, respectively, of
simulated (sim) and observed (obs) data; n referrers to the number of grid points; xobs,i is the observed
time-series of station i; xsim,i is the interpolated time-series from the gridded data at station i; xobs is
the mean of xobs; j is an arbitrary positive power; and fsim and fobs are the probability distribution of
gridded and observed data, respectively.
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4.2. Trend Analysis

Sen’s slope [38] was used to calculate the magnitude of change in observed and gridded monthly
rainfall data, while MK [39,40] and mMK [41,42] tests were used to assess the significance in change.
The non-parametric MK method is widely used for trend tests since it needs only the assumption of data
independence as serial autocorrelation in data can increase the chance of significance in trend [18,43].
However, recent studies have shown that the significant trends over time were also sensitive to
the assumptions of whether the underlying data have short-term or long-term autocorrelation.
Koutsoyiannis and Montanari [44] stated that MK trend test statistic is heavily affected by long-term
autocorrelation due to multi-decadal variability of climate. Thus, the MK test overestimates the
significance of trend due to long-term fluctuation in time series caused by natural variability in climate.
Hamed [42] proposed an mMK trend test that takes scaling of the data into account to discriminate
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the multi-scale variability from unidirectional trends. Several recent studies in different regions have
concluded that significant trends in hydro-climatic data obtained using the MK test resulted from
ignoring the natural variability of climate [3,6,20,45,46]. Therefore, the mMK test was used in this
study to confirm the trend detected using the MK test. In the mMK test, the significant trend found
in time series was first removed. The equivalent normal variants of the rank of the de-trended series
were then obtained to derive the Hurst coefficient and its significance. If the Hurst coefficient was
found to be significant, the significance of the mMK trend was estimated using a function proposed
by Hamed [42]. The full description of the Sen’s slope, MK, and mMK methodologies can be found
in [3,39–41].

4.3. Assessment of Spatial Similarity

Four indices were used to assess the spatial similarity between the rainfall change maps prepared
using observed data and different gridded data: (a) Jaccard similarity index (JSI); (b) md; (c) SS; and
(d) the percentage of bias (Pbias). The md and SS are described in Section 4.1. Those four indices were
used to compare the Sen’s slope obtained at each 0.5◦ grid point against the interpolated Sen’s slope
estimated using observed data at a resolution of 0.5◦.

The Jaccard similarity index (JSI) [47,48] is a statistical measurement of the similarity between
two sets of data using the concept of intersection over union. It can be mathematically calculated as:

J(X, Y) =
|X ∩Y|
|X ∪Y| (4)

where J(X, Y) is the JSI between X and Y datasets based on a similarity threshold value.
The JSI computes the number of data shared between two sets and represents it as a percentage of

the total number of data in both sets. Thus, it can have a value between 0 and 100%, where a higher
percentage represents more similarity between the datasets. Yin and Yasuda [49] compared the JSI
with 19 other well-known similarity assessment indices and found JSI was the best for providing stable
and discriminable results.

Pbias measures the difference between the Sen’s slopes obtained using gridded data and
interpolated observed data as below:

Pbias =
xsim,i − xobs,i

xobs,i
× 100 (5)

4.4. Assessment of Accuracy in Trends

The results of the MK and mMK tests were used to estimate the positive or negative trend at each
grid point. As this result is categorical, the Probability of Detection (POD) index was used to assess the
reliability of gridded datasets in detecting the spatial pattern of trends. POD (Equation (6)) measures
how many significant trend signs obtained using observed data were correctly estimated by gridded
data. For example, if the sign of an observed trend is found to be the same as the sign of the trend in
the corresponding grid point, the POD counts it as a correct detection. The sign means either positive,
negative, or no trend. This means that if no significant trend at an observed location is also detected at
the corresponding grid point, the POD counts it as a correct detection. The optimal value of POD is 1.
The POD was calculated for both the MK and mMK tests at all the gauge locations.

POD =
Count of observed trend signs which were detected by gridded data

Total number of stations
(6)
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5. Results

5.1. Evaluation of Gridded Datasets

Two methods as mentioned in methodology section were used to assess the performance of six
gridded rainfall data for the period 1979–2010 using four statistical indices. Figure 4 presents box plots
of the statistical metrics results obtained using the grid-to-grid comparison method, while Figure 5
presents the results obtained using the point-to-point comparison method. Consistency in results was
obtained using both the methods. Both the methods revealed the superiority of GPCC in replicating
the observed monthly rainfall of Bangladesh. Although both the GPCC and APHRODITE showed
the lowest RMSE median (121 mm), the range of RMSE for GPCC was lower than that obtained for
APHRODITE. The KGE median scores for GPCC were found to be much nearer to the optimal value
compared to other datasets. This indicates that the correlation of GPCC with observed data is higher,
bias is lower, and variability is smaller. The md for GPCC was found to be higher than others in term
of median and 3rd quantiles. APHRODITE ranked as the second best in terms of md, while CPC
ranked as the worst. GPCC data was also found to generate Probability Distribution Functions (PDFs)
that overlapped the observed rainfall PDFs at different grid points. Therefore, the mean SS of GPCC
was higher (0.95 and 0.91 for grid-to-grid and point-to-point comparison methods, respectively) than
that obtained for other gridded datasets.
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Figure 5. Box plots of the four indices—(a) RMSE, (b) KGE, (c) md, and (d) SS—used to evaluate the
performance of monthly gridded rainfall data against observed rainfall data recorded at 34 locations
distributed over Bangladesh during 1979–2010 using point-to-point comparison method.

5.2. Comparison of Trends

The characteristics of rainfall data were analyzed before trend analysis to reveal the presence
of autocorrelations and multi-decadal variability in time series. The autocorrelation function (AFC)
was used in this study to find a significant correlation for various time lags, while the presence of
decadal and multi-decadal variability in the time series of climate indices were assessed through
wavelet decomposition of time series data [50]. The AFC plot of annual rainfall data at two locations is
shown in Figure 6. The vertical lines in the plot that exceed the blue confidence band (horizontal lines)
indicate significant correlation. The figure clearly shows positive autocorrelation up to 7-lag years in
the time series.
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Figure 6. Plots of the autocorrelation function of the annual rainfall of Bangladesh for the period
1979–2010 at: (a) Bogra, in the north; and (b) Khulna, in the south.

Different levels of decompositions reveal the presence of different cycles in the time series.
The obtained results for annual rainfall at two stations are shown in Figure 7. The fourth-level
decomposition of data revealed the presence of a cycle of nearly 20 years in both stations. The x-axis of
the graph shows the number of years and the y-axis shows the decomposed precipitation anomaly.
Similar results were obtained at other stations. The results indicate the presence of short- and
long-term autocorrelations in the annual rainfall of Bangladesh. The presence of such multi-decadal
variations in annual rainfall time series can significantly affect the trend in rainfall if it is not taken into
consideration during trend analysis. Therefore, the mMK test along with the MK test was also used in
the present study.

Water 2018, 10, x FOR PEER REVIEW  11 of 23 

 

 
Figure 6. Plots of the autocorrelation function of the annual rainfall of Bangladesh for the period 1979–2010 
at: (a) Bogra, in the north; and (b) Khulna, in the south. 

 
Figure 7. The fourth-level decomposition of the annual rainfall data for Bogra (black) and Khulna (red), 
which revealed the presence of multi-decadal variability with a cycle of nearly 20 years. 

Changes in annual and seasonal rainfall in Bangladesh were assessed using six gridded and observed 
rainfall data for the period 1979–2010. The monthly rainfall data were converted to annual and seasonal 
total rainfall to assess the trends. The obtained results were used to prepare maps to show the spatial 
pattern of the change (Sen’s slope) in the annual and seasonal rainfall at 0.5° × 0.5° grid. For the comparison 
of slopes in observed and gridded data, observed data were gridded to the resolution of gridded data 
(0.5° × 0.5°) and the areal average rainfall for each grid box was computed. The grid-to-grid comparison 
of slopes was conducted by comparing the Sen’s slope estimated for the areal average of observed rainfall 
at each grid box with the Sen’s slope estimated for gridded data.  

The spatial distribution of the changes in annual rainfall in Bangladesh obtained using different 
gridded data and observed data is shown in Figure 8. The colour gradients of the maps in Figure 8 
represent the Sen’s slopes and the signs (positive or negative) represent the significance of trends at a 95% 
level of confidence at the grid/station location. The black signs represent significance in trend estimated 
by MK test while the white signs represent the significance of trend estimated by MK and mMK. Table 3 
represents the percentage of areal coverage where different gridded data products showed a significant 
change in rainfall at a 95% level of confidence. 

-250

-200

-150

-100

-50

0

50

100

150

200

250

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

De
co

m
po

se
d 

Pr
ec

ip
ita

tio
n 

An
om

al
y

Bogra Khulna

Figure 7. The fourth-level decomposition of the annual rainfall data for Bogra (black) and Khulna
(red), which revealed the presence of multi-decadal variability with a cycle of nearly 20 years.

Changes in annual and seasonal rainfall in Bangladesh were assessed using six gridded and
observed rainfall data for the period 1979–2010. The monthly rainfall data were converted to annual
and seasonal total rainfall to assess the trends. The obtained results were used to prepare maps to
show the spatial pattern of the change (Sen’s slope) in the annual and seasonal rainfall at 0.5◦ × 0.5◦

grid. For the comparison of slopes in observed and gridded data, observed data were gridded to the
resolution of gridded data (0.5◦ × 0.5◦) and the areal average rainfall for each grid box was computed.
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The grid-to-grid comparison of slopes was conducted by comparing the Sen’s slope estimated for the
areal average of observed rainfall at each grid box with the Sen’s slope estimated for gridded data.

The spatial distribution of the changes in annual rainfall in Bangladesh obtained using different
gridded data and observed data is shown in Figure 8. The colour gradients of the maps in Figure 8
represent the Sen’s slopes and the signs (positive or negative) represent the significance of trends
at a 95% level of confidence at the grid/station location. The black signs represent significance in
trend estimated by MK test while the white signs represent the significance of trend estimated by MK
and mMK. Table 3 represents the percentage of areal coverage where different gridded data products
showed a significant change in rainfall at a 95% level of confidence.
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Table 3. Percentage of the area where gridded data showed significant positive (+ve) or negative (−ve)
change in annual and seasonal rainfall using the Mann–Kendall (MK) and modified MK (mMK) tests
during 1979–2010.

Method Gridded Dataset

Area (%)

Annual Pre-Monsoon Monsoon Post-Monsoon Winter

+ve −ve +ve −ve +ve −ve +ve −ve +ve −ve

MK

APHRODITE 9.5 0.0 2.7 1.4 5.4 0.0 16.2 0.0 0.0 2.7
CPC 43.2 0.0 10.8 0.0 31.1 0.0 50.0 0.0 29.7 0.0
CRU 0.0 0.0 0.0 5.4 0.0 5.4 0.0 0.0 0.0 27.0

GPCC 1.4 2.7 1.4 10.8 0.0 0.0 2.7 0.0 0.0 4.1
PGF 0.0 0.0 0.0 8.1 0.0 4.1 17.6 0.0 0.0 8.1
UDel 0.0 4.1 0.0 4.1 0.0 4.1 5.4 6.8 0.0 13.5

mMK

APHRODITE 2.7 0.0 2.7 1.4 0.0 0.0 16.2 0.0 0.0 0.0
CPC 1.4 0.0 4.1 0.0 0.0 0.0 29.7 0.0 29.7 0.0
CRU 0.0 0.0 0.0 5.4 0.0 5.4 0.0 0.0 0.0 8.1

GPCC 0.0 1.4 1.4 9.5 0.0 0.0 1.4 0.0 0.0 2.7
PGF 0.0 0.0 0.0 8.1 0.0 4.1 13.5 0.0 0.0 6.8
UDel 0.0 4.1 0.0 4.1 0.0 4.1 2.7 6.8 0.0 8.1

The spatial distribution of Sen’s slope in annual rainfall (Figure 8) showed negative values (0 to
−183 mm/decade) in most parts of Bangladesh. A significant decrease in annual rainfall was observed
at two stations (Chandpur and Faridpur) by both MK and mMK tests and a significant increase at two
stations (Teknaf and Khepupara) by only MK test at a 95% level of confidence. None of the gridded
rainfall data showed exactly the same spatial distribution of Sen’s slope obtained using observed data.
However, GPCC showed a significant positive trend in annual rainfall in the southwest corner of
the country (216 mm/decade) and negative trends in the south-central region (−183 mm/decade)
where positive and negative trends were detected using observed data. The CPC showed a significant
increase in annual rainfall in most of the country, while CRU and PGF showed no change at any grid
point over Bangladesh.

The spatial distributions of the trends in pre-monsoon rainfall are shown in Figure 9. Overall,
the Sen’s slope estimated negative changes (−31 to −121 mm/decade) in pre-monsoon rainfall in the
centre region and positive changes (93 mm/decade) in the southeast of Bangladesh. Trend analysis
results showed that the Sen’s slopes estimated using observed data were significant only at a few grid
points in the central and south-central regions (negative) and mountainous southeast corner (positive).
A very similar result was obtained using GPCC, which showed negative trends in pre-monsoon rainfall
in the central region and positive trends in the southeast corner. However, GPCC showed negative
trends at more grid points in the central region compared to that obtained using observed data. On the
contrary, CRU showed a negative trend for both MK and mMK tests in the southeast corner. CPC
showed no change in the central region, however showed increases in pre-monsoon rainfall in the
northeast and southeast.
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Figure 9. Trends in pre-monsoon rainfall (PreR) in Bangladesh during 1979–2010.

The spatial distributions of trends in monsoon rainfall are presented in Figure 10. The Sen’s slope
estimated for monsoon rainfall using observational data showed negative slopes (0 to−81 mm/decade)
in most parts of Bangladesh, except at a few locations in the southeast, northeast, and northwest. Trend
analysis results obtained using MK and mMK tests revealed that the slopes were not significant at
any of the stations. Among the six gridded data, only GPCC showed no significant trend in monsoon
rainfall at any grid point, while the others showed increasing/decreasing trends in different parts.
CPC showed an increase in rainfall in most parts of the country, APHRODITE showed a significant
increase in the southeast, CRU showed a decrease in the northeast, PGF showed a decrease in the
north, and UDel showed a decrease at three grid points in the central region. The results revealed
highly contradictory results in the trends of monsoon rainfall, which shares a major portion of annual
total rainfall in the country.
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Figure 10. Trends in monsoon rainfall (MnR) in Bangladesh during 1979–2010.

The spatial distributions of the Sen’s slopes estimated for post-monsoon rainfall are presented in
Figure 11. The spatial distribution of slopes obtained using GPCC and APHRODITE was found to be
consistent with that obtained using observed data. A significant increasing trend in post-monsoon
rainfall was found only at two stations located in the southern coastal region using the mMK test. Only
GPCC was found to replicate the spatial distribution of the observed trend in post-monsoon rainfall.
GPCC also showed a significant increasing trend at two grid points near to those observed stations
but only one using the mMK test and another using the MK test. A large variation in trends was
found for other data products. The CPC showed an increase in post-monsoon rainfall over the whole
country except in the southeast. The increase was found to be significant for most of the grid points
by the MK test and in the central and southern areas for the mMK test. APHRODITE also showed
a significant increase in the southern coastal region and the north of Bangladesh. CRU showed no
significant change at any grid point, while UDel showed a decrease at a few grid points in the central
and southern regions, where APHRODITE and PGF showed an increase. The results clearly indicate
large variability in the spatial pattern of post-monsoon rainfall trends obtained using different gridded
data products.
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Figure 11. Trends in post-monsoon rainfall (PostR) in Bangladesh during 1979–2010.

Compared to other seasons, better consistency in rainfall changes among the gridded data was
observed for winter (Figure 12). Nevertheless, a large variation was noticed in the patterns of significant
trends. CRU showed a significant decrease in winter rainfall mostly in the southwest, UDel in the
south-central region, and PGF in the north, while APHRODITE showed almost no changes and CPC
showed an increase in the whole central and southern regions. Station data showed a decrease in
winter rainfall only at two stations, one located in the north and the other in the southwest, which
was found to match better with APHRODITE and GPCC. GPCC showed an increase in winter rainfall
at two grid points, one in the north and the other in the southwest, while APHRODITE showed a
decrease in rainfall at two grid points in the southwest.
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Figure 12. Trends in winter rainfall (WnR) in Bangladesh during 1979–2010.

The JSI was calculated for Sen’s slope maps prepared for each gridded data against the observed
data at 0.5◦ resolution (Figures 6–10). The results (Table 4) showed more similarly of the GPCC map
with the observed map for annual and all seasonal rainfall except pre-monsoon. The JSI was found
to be 22%, 21%, 80%, and 22% for annual, monsoon, post-monsoon, and winter rainfall for GPCC.
APHRODITE was found to be more similar for pre-monsoon rainfall. However, it was found to score
zero for annual rainfall.

Table 4. The Jaccard similarity coefficient calculated for annual and seasonal rainfall changes estimated
for the period 1979–2010. The highest values for different seasons are presented using bold font.

Dataset Annual Pre-Monsoon Monsoon Post-Monsoon Winter

APHRODITE 0% 24% 1% 63% 7%
CPC 0% 12% 1% 30% 5%
CRU 10% 12% 16% 72% 6%

GPCC 22% 12% 21% 80% 22%
PGF 13% 11% 16% 61% 16%
UDel 17% 22% 17% 51% 14%
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The results of the three statistical indices used to assess the spatial similarity are presents in Table 5.
The statistical indices were calculated between the slopes estimated from interpolated observed data
and gridded data at all the grid points to assess the spatial similarity in slopes. The Pbias of the Sen’s
slopes estimated for GPCC at different grid points was found to be very near to zero for annual and all
seasonal rainfall expect post-monsoon, for which UDel was found to outperform the GPCC. For the
monsoon, all the products were found to overestimate the rate of change, while in winter all of them
were found to underestimate the change. Also, GPCC obtained the highest score of md for all the
seasons except post-monsoon. The md for post-monsoon was highest for APHRODITE (0.4) while it
was second-highest (0.39) for GPCC. In the case of SS, GPCC was found to be best at replicating the
PDF of annual and all seasonal rainfall trends. Overall, the results revealed the ability of GPCC to
generate the most accurate rainfall slopes and trends in Bangladesh.

Table 5. The results of the statistical indices used to assess the spatial similarity in changes (Sen’s slope)
obtained using different gridded datasets for annual and seasonal rainfall during 1979–2010. The best
scores obtained for different seasons are highlighted using bold font.

Test Dataset Annual Pre-Monsoon Monsoon Post-Monsoon Winter

Pbias

APHRODITE −872.7 −478.7 49.1 −125.1 −765.2
CPC −1868.5 −956 67 −624.1 −845
CRU 581.9 324.5 19.6 167.7 −633.5

GPCC −26.4 −9.6 1.5 53.9 −552.6
PGF −81.1 37.6 31.1 67.2 −685
UDel −118.8 −38.6 17.3 24.6 −623.3

md

APHRODITE 0.27 0.2 0.51 0.4 0.04
CPC 0.13 0.1 0.27 0.27 0.04
CRU 0.28 0.22 0.45 0.07 0.05

GPCC 0.61 0.36 0.62 0.39 0.05
PGF 0.47 0.28 0.51 0.36 0.04
UDel 0.48 0.31 0.27 0.38 0.05

SS

APHRODITE 0.21 −0.06 0.88 0.33 −0.25
CPC −0.10 −0.19 0.75 −0.23 −0.25
CRU 0.05 0.30 0.80 −0.051 −0.29

GPCC 0.73 0.42 0.90 0.44 −0.26
PGF 0.51 0.37 0.81 0.38 −0.20
UDel 0.55 0.38 0.64 0.41 −0.26

Pbias: percentage of bias; md: modified index of agreement; and SS: skill score.

Though GPCC was found to be most suitable in estimating rainfall changes and trends in
Bangladesh; the statistical scores of GPCC for winter were very low (Pbias −552.6%, md = 0.05,
SS =−0.26). The winter rainfall in Bangladesh accounts for only 3% of the total annual rainfall. In some
years, it is 0 at some stations. Therefore, a small deviation in winter rainfall between observed and
GPCC caused a large variation in bias and other statistics. The mean winter rainfall in Bangladesh is
27 mm, whereas the GPCC estimated the mean winter rainfall as 4.89 mm; thus, the Pbias is −552.6%.

Table 6 shows the POD score for different gridded data for annual and seasonal rainfall trends.
POD was estimated based only on the ability of gridded data to detect the sign of significant trend
(positive and negative) and no trend in observed data. Changes in other grid points where no
station data was available were not taken into consideration during the computation of POD. Overall,
PODs of all products were found to be above 0.5, except for CPC, in detecting trends in annual and
post-monsoon (0.44 and 0.35, respectively) rainfall using the MK test. GPCC showed the highest POD,
which indicates its capability of accurate detection of trends in annual and seasonal rainfall expect for
pre-monsoon. The POD of GPCC in detecting monsoon and post-monsoon rainfall trends using the
MK test was 1, while annual, pre-monsoon, and winter rainfall were 0.88, 0.82, and 0.94, respectively.
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The POD of APHRODITE was the highest in detecting trends in pre-monsoon rainfall using both the
MK and mMK tests. However, PGF can be considered as the second best in terms of POD, and the
CPC as the worst in detecting trends using the MK test and the UDel using mMK.

Table 6. The Probability of Detection (POD) score of the different gridded datasets in detecting trends
obtained using observed data for the period 1979–2010. The highest values of POD for annual and
seasonal rainfall are shown in bold.

Method Gridded Dataset
POD

Annual Pre-Monsoon Monsoon Post-Monsoon Winter

MK

APHRODITE 0.76 0.85 0.88 0.71 0.91
CPC 0.44 0.71 0.53 0.35 0.94
CRU 0.85 0.59 0.88 0.91 0.53

GPCC 0.88 0.82 1.00 1.00 0.94
PGF 0.85 0.71 0.91 0.68 0.94
UDel 0.76 0.65 0.76 0.68 0.65

mMK

APHRODITE 0.91 0.88 1.00 0.71 0.97
CPC 0.91 0.79 0.97 0.56 0.94
CRU 0.91 0.65 0.88 0.91 0.91

GPCC 0.94 0.82 1.00 0.97 0.97
PGF 0.94 0.74 0.94 0.74 0.97
UDel 0.76 0.71 0.76 0.71 0.74

6. Discussion

Though Bangladesh is relatively small in area, rainfall in the country varies widely from the west
to the east. Therefore, the country receives a different amount of rainfall in different geographical
regions. Changes in rainfall could have different impacts in different climatic regions. For example,
a decrease in rainfall in the northwest low-rainfall region can increase the severity of existing water
scarcity, while an increase in rainfall in the northeast high-rainfall region can increase the probability
of more extreme rainfall events and floods. Therefore, a reliable estimation of the spatial pattern of
the changes in rainfall is very important for the country for climate change impact assessment and
mitigation planning.

The lack of long-term high-quality data from many sites is a major problem for the spatiotemporal
assessment of the changes in the climate of Bangladesh. Gridded data has been used in recent years in
several studies for the analysis of hydro-climatic changes in Bangladesh and nearby countries [51].
The present study revealed large uncertainty associated with different gridded climate data in
replicating the spatial pattern of such changes. The study revealed that gridded climate data should be
assessed properly in respect to observed data based on the purpose of the study.

Many factors influence the performance of gridded rainfall data in a certain region, including
the number and distribution of gauges used, the quality and homogeneity of collected data, and the
interpolation method used. In the present study, GPCC data was found to be better at replicating
monthly rainfall compared to other data products used in terms of all statistical measures used. One
of the major causes of the better accuracy of GPCC data is the use of relatively more gauge data
during data interpolation. The smart interpolation is used for the development of GPCC data, which
considers the elevation of gauges while estimating the gridded data, and consequently enhances the
interpolation accuracy. Furthermore, observation data used in GPCC were inspected through a series
of automatic statistical and visual quality checks to ensure the reliability of extreme outliers in the
collected data. Schneider et al. [52] validated GPCC over several topography terrains in reproducing
precipitation amount and pattern worldwide. GPCC data are also used in the ground bias correction of
the latest remote-sensing rainfall estimate, Integrated Multi-satellitE Retrievals for GPM (IMERG) [53].
Those factors probably made GPCC more reliable than other gridded datasets.
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Several studies have revealed GPCC to be the most suitable rainfall dataset in neighbouring
countries of Bangladesh [54,55]. For instance, Prakash et al. [54] compared the performance of four
gauge-based land-only rainfall products with the Indian Meteorological Department gridded rainfall
dataset and reported that APHRODITE and GPCC rainfall showed the highest scores in term of
different skill indices compared to other rainfall products. Additionally, Kishore et al. [55] investigated
the features of Indian rainfall using reanalysis and gauge datasets and found that GPCC has a high
degree of similar characteristics.

The GPCC data was used for the assessment of long-term trends (1901–2017) in annual and
seasonal rainfall in Bangladesh using the MK and mMK tests. The spatial patterns of trends using
both tests are presented in Figure 13. The trend in annual rainfall showed an increase at a point in
the north and decrease at two points in the south, while the mMK test showed no change in annual
rainfall at any locations in Bangladesh. This result indicates that the annual rainfall trend estimated at
the three grid points in Bangladesh by the MK test may be due to its insensitivity to natural variability
of climate. Using similar analysis, it was observed that the pre-monsoon rainfall in Bangladesh is
increasing at two grid points in the north and at three grid points in the southwest mountainous region.
Monsoon rainfall was found to decrease significantly at two grid points in the central-west region.
The winter rainfall was found to increase in the southeast, while the pre-monsoon rainfall was not
found to change at any locations by the mMK test.
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7. Conclusions

The spatial pattern in rainfall trends in Bangladesh was assessed using six gridded rainfall data,
namely APHRODITE, CPC, CRU, GPCC, PGF, and UDel, in order to understand the uncertainty
in results. The results revealed a large variation in the spatial pattern of the trends in annual and
seasonal rainfall. Determining the spatial pattern in rainfall trends is vital for climate change impact
assessment and adaptation planning. The use of gridded climate data without proper validations can
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be misleading regarding the understanding of climate change impacts. The ability of gridded data to
replicate the mean and variability of rainfall is not sufficient to use it for any hydro-climatic studies.
The gridded data should be validated according to their ability to replicate the phenomena for which
they are to be used.

The results of the present study revealed a better performance of GPCC over other gridded rainfall
data used in this study in estimating monthly observations and in the assessment of rainfall trends in
Bangladesh. However, large differences were still observed in annual and seasonal trend distributions
between the GPCC and observed rainfall maps. The long-term trend analysis of rainfall using GPCC
revealed no change in annual and post-monsoon rainfall, increase in pre-monsoon rainfall at a few
grids in the north and southeast regions, decrease in monsoon rainfall in the central-west region, and
increase in winter rainfall in the southeast region. It is expected that the findings of this study will
help to understand the uncertainty in the spatial pattern of the trends estimated using gridded climate
data. The results of long-term rainfall trend analysis can be helpful for understanding the impacts of
climate change and necessary mitigation planning for Bangladesh.
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