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Abstract: Frequent flash floods in recent years have resulted in a major impact on the living
environment, urban planning, economic system and flood control facilities of residents around
the world; therefore, the establishment of disaster management and flood warning systems is an
urgent task, required for government units to propose flood mitigation measures. To conserve
the numerical accuracy and maintain stability for explicit scheme, the Courant–Friedrich–Lewy
(CFL) condition is necessarily enforced, and it is conducted to regulate the relation between the
numerical marching speed and wave celerity. On the other hand, to avoid the problem of flow reflux
between adjacent grids in executing 2D floodplain simulation, another restriction on time intervals,
known as the Hunter condition, was devised in an earlier study. The objective of this study was to
analyze the spatial and temporal distribution of these two time-interval restrictions during runoff
simulations. Via a case study of the Komarovsky River Basin in Russia, the results show that at the
beginning of a storm, the computational time interval is restricted by the CFL condition along the
upstream steep hillsides, and the time interval is subject to the Hunter condition in the mainstream
during the occurrence of the main storm. The reason of a reduction in computational efficiency,
which is a common problem in conducting distributed routing, was clearly explained. To relax
the time-interval restrictions for efficient flood forecasting, the research findings also indicate the
importance of integrating modified hydrological models proposed in recent studies.

Keywords: flood simulation; diffusion wave; time interval; watershed topography; runoff forecasting
system

1. Introduction

Typhoons or torrential rains have become more frequent in recent years, hence, more careful and
thorough consideration for establishing flood warning system is needed to alleviate flood disasters.
Owing to the complete development of digital topography treatment [1–3], the grid-based digital
elevation model (DEM) datasets have been applied to a variety of study fields. Although at present
high-resolution elevation datasets are readily available and various software tools can be used to
automatically extract geomorphological factors of watersheds, the computational performance of
executing distributed runoff simulations remains to be improved to effectively exploit a finer dataset
with a huge number of grids. The merit of the distributed runoff model is its capability to fully
grasp the spatial and temporal variation in runoff transport by solving the hydrodynamic equations
using numerical schemes. The simplified momentum equation based on a non-inertia wave (diffusion
wave) type, which neglects the local and convective acceleration terms in the momentum equation,
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has been widely applied because of its simple mathematical operations [4–8]. Several studies have
shown that the simplified non-inertia wave equation can still provide appropriate solutions within
tolerable errors in overland-flow simulations even for a rugged landform [6,9]. On the other hand,
in comparison to the fully 2D model, quasi-2D models may neglect some significant aspects of the
spatial variability of hydraulics and are too simplistic in the treatment of flow paths; however, owing
to recent developments in topographic measurement for high resolution data, many previous studies
have noted a growing prospect for quasi-2D models applied to the floodplain simulation [10–12].
In addition, quasi-2D model is also able to perform flood inundation simulation with unstructured
grids [13]. Nevertheless, a restriction in time step needs to be regulated to avoid the crash or oscillation
in numerical schemes.

Computational efficiency and numerical stability are usually acknowledged as the two primary
concerns in conducting distributed runoff routing, though these are difficult to balance because the
computational speed is subject to the time step restrictions, which are obeyed to validate the numerical
schemes. Basically, there are two types of restriction on time interval for grid-based routing system.
The well-known Courant–Friedrich–Lewy (CFL) condition [14] is adopted to adjust the numerical
marching speed (∆x/∆t), which has to be higher than the wave celerity to ensure the numerical
stability for explicit scheme. The other is the Hunter condition [8,12], which was proposed to avoid
back-and-forth refluxing between adjacent grids, resulting in a so-called “checkerboard oscillation”
(Hunter et al., 2005; Bates et al., 2010). Flow refluxing usually occurs on floodplain areas with a fairly
gentle ground bed.

To reinforce the computational performance, several modified approaches, which intend to relax
either of the two restrictions on time intervals, have been proposed [8,12,15–17]. Nevertheless, it is still
worthwhile to elaborate upon how these two restrictions change with the topographic characteristics
and runoff states in a watershed, so as to realize the necessity of applying an integrated model for
runoff simulations. This study aimed to analyze the spatial and temporal distribution of the two
time-interval restrictions in executing runoff routing. To avoid the influence of data resolution on the
limited time step, related simulation cases were performed on a study watershed using structured
data with fixed resolution. The magnitude of the allowable time interval and the difference between
these two restrictions under various topographic and hydrological conditions are illustrated in detail.
The research findings are expected to show the dominant cause of the decrease in computational
efficiency when conducting distributed runoff routings, and further to demonstrate the significance of
adopting an integrated algorithm recently published [18]. It should be noted that this study only focus
on the time-step analyses for diffusion wave model based on structured grids, hence, the applicability
of modified algorithm adopted in an unstructured data still needs to be discussed in the future research.

2. Approach for Distributed Runoff Routing

The de Saint Venant equations, according to the physically based hydrodynamic theorem, are
usually applied to distributed overland-flow routings. In this study, the determination of flow direction
for each grid follows the steepest gradient of the water surface among eight adjacent grids; in other
words, the flow discharge of each grid can merely be assigned to its single downstream grid. Therefore,
only a one-dimensional (1D) equation is required to calculate the flow discharge in a single direction
and to conduct a two-dimensional (2D) grid-based overland flow simulation. Such a method to
perform runoff simulation is termed quasi-2D routing. This system concept has been implemented for
distributed watershed routing in several previous studies [6,13]. If the wind shear, eddy losses, and the
x component of the rainfall intensity are neglected, the governing equations in a 1D form consisting of
a set of continuity and momentum formulations can be expressed as follows:

∂h
∂t

+
∂q
∂x

= ie (1)
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∂q
∂t

+
∂

∂x

(
q2

h

)
− gh

(
So −

∂h
∂x

)
+ ghS f = 0 (2)

where h is the water depth, q is the discharge per unit width, ie is the intensity of excess rainfall, So is
the ground slope, and S f is the friction slope. By neglecting all the inertia terms in the momentum
equation, a simplified momentum equation in a non-inertia wave type, adopted to derive the discharge
of each cell, can be expressed as follows:

q =
1
n

h5/3S1/2
f (3)

where
S f = So −

∂h
∂x

(4)

where n is the Manning roughness coefficient. Equation (3) indicates that the movement of flow is
dominated by the gradient of the water surface. The conventional explicit scheme used to solve the
aforementioned governing equations is explained in the following section.

2.1. Conventional Numerical Scheme

At the beginning of the simulation, the initial flow depth and grid elevation are used to calculate
the water surface elevation; then, the single flow direction of each grid can be determined according to
the steepest water surface gradient among the adjacent grids. The gradient of the water surface can be
provided for Manning’s equation to obtain the flow discharge. Subsequently, following the first-order
backward finite difference scheme, the continuity equation as shown in Equation (1) can be discretized
to estimate the time-varying increment of the water depth as follows:

∆hj =
∆t
∆x
[
qj,IN(t)− qj(t)

]
+

∆t
2
[ie(t) + ie(t + ∆t)] (5)

where qj(t) denotes the discharge per unit width of grid j and qj,IN(t) represents the total inflow
discharge per unit width of grid j, namely the accumulated discharge collected from all the upstream
adjacent grids. For example, as shown in Figure 1, the inflow discharge of Grid 5 can be expressed
as follows:

q5,IN(t) = q1(t) + q2(t) + q4(t) (6)

Figure 1. Drainage directions of grid-based dataset in quasi-2D routing system.

Hence, the water depth at t + ∆t can be obtained as follows:

hj(t + ∆t) = hj(t) + ∆hj (7)

By substituting the updated water depth into Equations (3) and (4), the discharge at t + ∆t can be
expressed as follows:
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qj(t + ∆t) =
hj(t + ∆t)5/3

n

(
So −

hj(t)− hj,DOWN(t)
∆x

)1/2

(8)

where hj,DOWN(t) represents the downstream water depth of grid j. For example, as shown in Figure 1,
Grid 6 is recognized as the single downstream grid of Grid 5. The aforementioned content illustrates
the conventional procedure of DEM-based non-inertia wave simulation using an explicit scheme.
It should be noted that to consider a possible backwater effect the flow direction of each grid has to be
re-determined at each time step following the time-varying water surface level.

2.2. Time Interval Restrictions for the Conventional Scheme

To conserve the accuracy of numerical solutions and maintain the stability of the numerical
schemes, two types of conditions are necessary to provide an allowable time interval during the
process of a runoff simulation. One is the CFL condition [14] and the other is the Hunter flow limit
condition [12]. In executing explicit schemes, the CFL criterion is acknowledged as the stability
condition of the non-inertial wave model [6,19], whose time-interval restriction, depending on the grid
size and wave celerity, can be expressed as follows:

∆tMC =
∆x
c

(9)

where ∆tMC is the time step subject to the CFL criterion and c is the celerity of non-inertia wave, which
can be expressed as (dQ/dh)/∆x [20,21]. The CFL condition is believed to validate the numerical
algorithm; nevertheless, it is still not sufficient to completely guarantee the stability [8,12].

When the 2D non-inertia wave simulation is performed on a nonstaggered grid-based routing
system, the problem of a “checkerboard oscillation” usually occurs [8,12,22]. This oscillation is induced
by excessive flow volume leaving from a cell in a single time interval and causing flow reflux during
the next time step as illustrated in Figure 2. This situation is particularly prone to occur on floodplains
in rainfall-runoff simulations. To avoid overestimation of the solution and to provide an unreasonable
constraint on discharge delivering to the downstream grid, Hunter et al. [12] deduced a criterion for
determining an adaptive time step as follows:

∆tMH =
∆x2

4

[
2n

h5/3

∣∣∣∣ ∂h
∂x

∣∣∣∣1/2
]

(10)

where ∆tMH is the allowable time step subjected to the Hunter condition. It can be inferred that
the adaptive time step shown in Equation (10) would decrease with a decreasing grid size ∆x and
water surface gradient. The two aforementioned criteria have to be used at each time step during the
flow simulation.

Figure 2. Schematic diagrams denoting the flow reflux between adjacent grids; (a) 1st time step; (b) 2st
time step; (c) 3st time step.
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2.3. Rainfall Infiltration Estimation

In this study, runoff simulation of storm events caused by excessive rainfall is the main concern.
The Green-Ampt method [23] was adopted to deduct the amount of infiltration from the rainfall
hyetograph. The basic assumption behind this method is that water infiltrates into relatively dry soil
as a sharp wetting front. The equation of infiltration rate based on this theoretical concept can be
expressed as

f (t) = Ks + Ks

∣∣∣ψ f

∣∣∣(θs − θi)

F
, for t > tp (11)

f (t) = P(b), for t ≤ tp (12)

where Ks is the saturated hydraulic conductivity (cm/h); ψ f is the suction head at the wetting front
(cm); θs is the saturated moisture content; θi is the initial moisture content before infiltration began; F is
the cumulative amount of infiltrated water (cm); P is the rainfall rate (cm/h). With the assumptions
and physical structure of this approach, soil characteristics are taken into account. In the simulation
cases applied to the study watershed, Ks was set as 1.09 cm/h; ψ f was set as 11 cm and θs was set as
0.45 according to the soil type of sandy loam.

3. Analysis of Time-Interval Restrictions

To examine the magnitude of the time step subject to these two restrictions in various terrains,
the Komarovsky watershed, a subwatershed of the Komarovka River Basin in the Far East of Russia,
was adopted as the study site. The topography and geographic location of the watershed are shown
in Figure 3: it consists of steep hillsides, a higher order of stream networks, and wide riparian areas.
The drainage area is 60.3 km2 with an average slope of 0.13. This watershed is mainly covered by
forest and only part of the area is alluvial plain in valleys. The soil type is a mixture of sand, loam,
and clay. Brown forest soil 25 cm in thickness is predominant in this region [24]. Figure 4 shows the
spatial distribution of the local slope in the watershed, in which there is a wide range between 0.001
and 0.8. As shown in Figure 3, there are two rain gauges installed in the Komarovsky watershed, and
a flow gauging station at the watershed outlet provides hourly flow data. The annual rainfall in the
Komarovsky watershed ranges from 600 mm to 920 mm and the annual evapotranspiration varies
with terrain between 450 mm and 550 mm. Because the Komarovsky is an upstream subwatershed of
the Komarovka River Basin, detailed channel cross-sectional data is unavailable. Hence, DEM-based
overland-flow routing should be among the promising means for runoff simulation. In performing the
simulations, a DEM dataset of 10 m resolution was used and the D8 flow direction method was applied.

Considering the land surface of the Komarovsky watershed is mainly forested, the Manning’s
roughness assigned for the overland flow routing was preliminary inferred in a range of 0.4–0.8
according to the reference value provided by the Hydrologic Engineering Center [25]. In this study,
the root-mean-square error (RMSE) between flow records and simulated results was applied to derive
an adequate roughness parameter by using an iterative method to evaluate 12 rainfall events. After a
series of calibration steps using hydrological records, the overland roughness was selected as 0.62 for
the runoff simulations. Figure 5 shows the simulated discharge hydrographs compared to the flow
records of four storm events that occurred in the watershed. Basically, the numerical model using the
conventional explicit scheme (first-order backward finite-difference method) is capable of providing a
fair discharge estimation. Hence, the applicability of the non-inertia wave model can be recognized.
In the following sections, the temporal and spatial distributions of the two time-interval restrictions
are analyzed and compared in detail.
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Figure 3. Topography and geographic location of the Komarovsky watershed in the far eastern Russia.

Figure 4. Distribution of ground slopes in the Komarovsky watershed.



Water 2019, 11, 431 7 of 18

Figure 5. Simulated flow hydrographs of four storm events that occurred in the Komarovsky watershed,
(a) 16 August 1968, (b) 9 August 1972, (c) 3 October 1974, (d) 18 August 1979.

3.1. Variation in Time Step During Different Periods of the Storm

As shown in Figure 5a, the storm event that occurred in 1968 was taken to analyze the temporal
variation in the two time-interval restrictions during simulation. Water depths and time-interval
restrictions occurring at two specific times, the 2nd hour and 20th hour, were investigated. The 2nd
hour is the time at the beginning of the storm and the 20th hour is the recorded peak time of the
flood. The distribution of the water depth shown in Figure 6a indicates that at the beginning of the
storm (during the 2nd hour), the regions with greater water depths (h ≥ 0.08 m) were scattered on
the upstream lower-order streams and the downstream riparian areas. As shown in Figure 6b, with
the stream network collecting more rainwater provided by the main storm, the water depth in the
mainstream during the 20th hour (h ≥ 0.3 m) was obviously greater than that presented during the
2nd hour.

In the numerical simulation of the storm that occurred on 16 August 1968, the most limited time
step found in the watershed subject to the CFL condition and the Hunter condition was adopted
as the computing time interval at each routing round. To investigate the regions prone to cause an
overall limitation of computational efficiency, Figures 7 and 8 show the spatial distributions of the
allowable time step at the 2nd and 20th hour, respectively, subject to the two conditions. Regarding
the CFL condition, as shown in Equation (9), the time step depends on the flow wave speed. Because
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at the beginning of the storm, the wave speed is significantly more influenced by the steep terrain
than by the depth of the sheet flow, more grids with a time step shorter than 30 s at the 2nd hour are
mainly distributed on the low-order steep streams with rapid flow (as shown in Figure 7a. In contrast,
at the 20th hour the grids with a time step shorter than 10 s are found in the mainstream as shown
in Figure 7b. Such a spatial distribution of time steps subject to the CFL condition is caused by the
obvious increase in the wave speed in the mainstream.

Regarding the Hunter condition, which mainly depends on the water depth and the gradient of
the water surface level as shown in Equation (10), the distributions of the allowable time step at the
2nd and 20th hours are shown in Figure 8. It can be seen that the change in time-interval restriction
between the two specific times is basically similar to that of the CFL condition shown in Figure 7.
However, at the 2nd hour only a minority of grids have time steps shorter than 30 s according to the
Hunter condition. It can be inferred that at the beginning of the storm, the CFL condition would have
a more stringent constraint on time step than that of the Hunter condition. Relatively, at the 20th
hour, obviously increased grids with time steps shorter than 1 second appear in the mainstream as
shown in Figure 8b. Hence, it can be summarized that the time step is mainly restricted by the CFL
criterion at the beginning of the storm, and then the Hunter criterion would alternatively dominate the
constraint on time step with the development of water depths in the stream network after receiving
more rainwater during the period of the storm.

Figure 6. Distribution of the water depths during the simulation of the storm occurring on 16 August
1968, (a) 2nd hour, (b) 20th hour.

Figure 7. Distribution of the allowable time steps subject to the CFL condition during the simulation of
the storm occurring on 16 August 1968, (a) 2nd hour, (b) 20th hour.
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Figure 8. Distribution of the allowable time steps subject to the Hunter flow limit condition during the
simulation of the storm occurring on 16 August 1968, (a) 2nd hour, (b) 20th hour.

3.2. Variation in Time Step Under Different Topographic Conditions

In addition to investigating the spatial distribution of the allowable time step during different
storm periods, a variation in the two time-step restrictions under different topographic conditions
was also analyzed. Three specific zones in the Komarovsky watershed were selected for investigation
according to local topographic characteristics. As shown in Figure 9, Zone A is a small steep hillslope
(A = 0.61 km2) in which the average slope reaches 0.37 and no distinct channel or gully is apparent.
The outlet of Zone A is at a source point of a 1st-order stream. Relatively, Zone B possesses a larger
contributing area of approximately 13.58 km2, containing hillsides as well as an obvious 2nd order
stream network; and the outlet of Zone B is that of the 2nd-order stream. Zone C is approximately
5.20 km2 in area, denoting downstream riparian areas with a fairly mild slope of less than 0.005;
therefore, the extent of Zone C was determined by choosing the grids whose slopes were smaller than
0.005 in the downstream lowland.

Figure 9. Three types of areas with various topographic conditions adopted for the time step analysis.

By applying the rainfall event that occurred on 16 August 1968 (as shown in Figure 5a, the
variations in the allowable time steps, subject to the aforementioned restrictions, in each zone during
the storm were calculated as shown in Figure 10. As shown in Figure 10a, the steep terrain of Zone A
enforces a time step (subject to the CFL condition) quickly decreasing to shorter than 20 s. In contrast,
during the first six hours of the simulation, the allowable time step extracted in the riparian area of
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Zone C maintains a significantly greater value of approximately 77 s as a result of its fairly mild surface,
where the time step (subject to the CFL condition) is less restricted. Moreover, the variation in the time
step in Zone A is not as great as that found in the other two zones during the whole storm. The reason
for this situation is that the drainage area of Zone A is quite small (only 0.61 km2); therefore, a greater
water depth cannot form on the hillslope to cause a continuous reduction in the time step according to
the CFL criterion. However, owing to the presence of mainstream in Zone B and Zone C, which are
capable of collecting floodwater from upstream areas, the magnitudes of the time step subjected to the
CFL condition continuously decreased to 1.1 s and 0.72 s, respectively. Moreover, it was found that the
value of the time step would rebound during the period of runoff recession.

Figure 10b shows the results of a similar test considering the Hunter criterion. The time step
subject to this criterion in Zone A is longer than 65 s during the entire period of simulation because
of the steep terrain, which would cause the larger gradient in the water surface level. Relatively, the
allowable time steps in Zone B and Zone C gradually decrease to 0.11 s and 0.03 s during the flood
rising period. It should be noted that the limitation of the time step subject to the Hunter condition in
Zone B and Zone C is more stringent than that subject to the CFL condition (as shown in Figure 10a).

Figure 10. Temporal variations of the allowable time steps within different zones during the simulation
of the storm occurring on 16 August 1968, (a) CFL criterion; (b) CFL criterion.

3.3. Variation in the Time Step along the Flow Path

Another test was conducted to track the variation in the time step subject to the two criteria
along the longest flow path from the most remote point of the watershed to the outlet. As shown in
Figure 11, the flow path (as shown by the light blue line) starts from the most remote overland area
and connects to the 1st-order, 2nd-order, 3rd-order, and 4th-order streams and the outlet with a total
length of 14,073 m. Figure 12 shows the longitudinal elevation and the greatest water depth at each
grid along the flow path during the storm that occurred on 16 August 1968 (as shown in Figure 5a).
Figure 12a shows that the elevation of the ground bed quickly decreases from 558 m to 345 m within a
distance of 1200 m, in which the average slope is approximately 0.18. This terrain condition causes
the water depth to significantly change and reach more than 0.5 m in a short distance as shown in
Figure 12b. Because the key feature of the stream is its superiority in collecting flow, the water depths
in the mainstream area are obviously greater than that in upstream overland areas.

Figure 13 shows the variations in time step, respectively subject to the CFL condition and Hunter
condition along this drainage course. For both criteria, the magnitude of the allowable time step is
very sensitive to the slope of the ground bed; therefore, the oscillation of the time step along the stream
can be clearly determined. Moreover, the variation range in the time step under the Hunter criterion
(from 10−3 s to 107 s) is greater than that under the CFL criterion (from 10−1 s to 102 s) along the flow
path. This figure also shows that the CFL criterion dominates the restriction of the time step in the
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upstream 1st-order stream because of the steep topography with rapid and shallow flow; the allowable
time step subject to the Hunter criterion gradually reduces to shorter than 1.0 s when the flow path
reaches the downstream higher-order streams. Hence, the Hunter criterion would alternately be
responsible for the decrease in computational efficiency.

Figure 11. The longest drainage path from the farthest watershed ridge to the outlet.

Figure 12. Ground bed elevation and the greatest water depths along the longest drainage path during
the simulation of the storm occurring on 16 August 1968, (a) Elevation of ground bed; (b) Greatest
water depth.
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Figure 13. Allowable time steps subject to the two different criteria along the longest drainage path
during the simulation of the storm occurring on 16 August 1968.

4. Review for Modified Algorithms

According to the analyzed results discussed in the previous sections, it can be inferred that only if
the two time-step criteria are simultaneously relaxed, can the computational efficiency be effectively
enhanced. One may wonder how much computational time can be saved if the two restrictions are
relaxed in the simulations. In the following sections, the two modified approaches, separately used to
relax the CFL and the Hunter conditions, are first introduced. Then, the execution procedure of each
algorithm and how to integrate the two modified methods into a conventional algorithm are explained.

4.1. Quasi-2D MacCormack Recursive Formulation

To enlarge the computational time step without being restrained by the CFL criterion,
MacCormack [15] preliminarily developed a 1D recursive formulation to ameliorate the numerical
stability as follows:

∆h′ j =
∆hj + λ ∆t

∆x ∆h′ j,IN

1 + λ ∆t
∆x

(13)

where ∆hj is obtained from the continuity equation shown in Equation (5); ∆h′ j represents the modified
form of ∆hj; ∆h′ j,IN denotes the modified time-varying increment of inflow depth at grid j; and λ is a
parameter that can be defined as follows:

16 August 1968, λ = a ·Max
(

0, c− ∆x
∆t

)
(14)

where c is the wave celerity and a is an adjustable coefficient. Huang and Lee [17] showed that the
coefficient a mainly depends on the wave celerity and geomorphologic features of the watershed; they
found that the most adequate value of a is approximately 0.6 for a non-inertial wave model. Moreover,
it should be noted that the variable ∆h′ j,IN shown in Equation (13) cannot be calculated because every
single grid in a DEM dataset can be connected to multiple upstream grids. Given this, Huang and
Lee [17] converted ∆h′ j,IN into a function of total inflow discharge via Manning’s equation as follows:

∆h′ j,IN = h′ j,IN(t + ∆t)− h′ j,IN(t) (15)
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=

 n√
S f

qj,IN(t + ∆t)

3/5

−

 n√
S f

qj,IN(t)

3/5

(16)

As shown in Equation (13), the total inflow discharge qj,IN(t + ∆t) is needed to perform the
recursive formulation shown in Equation (11), which is conducted to permit a larger time step.
To obtain the total inflow discharge from upstream grids prior to performing Equation (13), Huang
and Lee [17] suggested a valid routing sequence, following the descending order of a water stage at
each grid for the DEM-based runoff simulation. The recursive formulation shown in Equation (13)
is implemented to derive ∆h′ j by correcting ∆hj, which is calculated from the continuity equation.
Subsequently, the water depth at t + ∆t can be calculated as follows:

hj(t + ∆t) = hj(t) + ∆h′ j (17)

4.2. Bates Inertial Momentum Formulation

Hunter et al. [16] proposed an approach to avoid flow reflux between adjacent grids by adding
the local acceleration term into the non-inertia wave equation as follows:

∂q
∂t
− gh

(
So −

∂h
∂x

)
+ ghS f = 0 (18)

It can be seen that in the aforementioned equation only the convective acceleration term is omitted
from the full-type momentum equation. Hunter et al. [16] denoted that the inertial force, the first
term (local acceleration term) of Equation (17), considered in the momentum equation can alleviate
excessive flux delivery to the downstream grid. Based on this research finding, Bates et al. [8] further
exploited Equation (17) to deduce an inertial momentum formulation as follows:

qj(t + ∆t) =
qj(t) + ghj(t + ∆t) · ∆t

(
So −

∂hj(t)
∂x

)
1 + ghj(t + ∆t) · ∆t

n2qj(t)

h10/3
j (t+∆t)

(19)

Bates et al. [8] reported that this modified momentum equation, used to replace Equation (8)
(the non-inertia wave equation), is capable of relaxing the Hunter condition owing to its superior
convergence. Nevertheless, the restraint of the time interval subject to the CFL condition remains
when applying the aforementioned scheme [8].

4.3. Execution Procedures of the Modified Models

In the preceding two sections, the quasi-2D MacCormack recursive formulation was devised to
modify the water depth that derived from the continuity equation, and the Bates inertial momentum
formulation was adopted to replace the momentum equation that was originally based on the
non-inertia wave assumption. The following content illustrates the routing procedure of combining the
two aforementioned methods to simultaneously relax the CFL condition and the Hunter condition [18].

1. Assign the rainfall condition and the initial condition of the ground bed;
2. Arrange the routing sequence of each grid according to the descending order of the water stage;
3. Determine the steepest flow direction of each grid;
4. Derive the time-varying increment of water depth ∆hj using Equation (5);

5. Calculate the related parameters used in the recursive formulation according to Equations (14)
and (15);

6. Modify the increment of the water depth using Equation (13);
7. Calculate the water depth at following Equation (16);
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8. Calculate the discharge by substituting the updated water depth into Equation (18);
9. Accumulate the flow discharge for the downstream grid;
10. Repeat the process from Step (2) to Step (9) in the next time step.

To compare and evaluate the computational performance of different numerical approaches,
the routing procedures of various methods are listed in Table 1.

Table 1. Comparison of routing procedures using different numerical methods.

Routing Procedure
Numerical Methods

Conventional Bates MacCormack Integrated

Assign the rainfall condition and the initial condition
√ √ √ √

Sort the routing sequence of each grid
√ √

Determine the steepest flow direction of each grid
√ √ √ √

Derive the time-varying increment of water depth using
Equation (5)

√ √ √ √

Calculate the related parameters using Equations (14) and (15)
√ √

Modify the increment of water depth using Equation (13)
√ √

Calculate the water depth using Equation (16)
√ √ √ √

Calculate the flow discharge using Equation (8)
√ √

using Equation (18)
√ √

Accumulate the flow discharge for the downstream grid
√ √ √ √

CFL condition Required Required No need No need
Hunter condition Required No need Required No need

5. Benchmark Test of Runoff Simulation

A simulation case for benchmark test is conducted to demonstrate the applicability of three
aforementioned modified algorithms, including the MacCormack recursive formulation, Bates inertial
momentum formulation and the integrated algorithm by comparing the simulated hydrographs with
the analytical solution. In this study, to obtain an analytical solution for model comparison, runoff
simulation on an impervious overland plane was implemented to examine the numerical accuracy
of each model. Continuous rainfall with a constant intensity of 70 mm/h was assigned on an 800 m
overland plane, of which the uniform slope is 0.3 and the size of mesh spacing is 2 m. In performing
the numerical tests, a fixed Manning’s roughness coefficient of 0.1 was assigned and all the simulations
were executed commencing at an initially dry surface.

Figure 14a,b show the simulated hydrographs of discharge and water depth at the end of the plane
by applying the four different algorithms based on diffusion-wave approximation and the analytical
solution for kinematic-wave equation. Several previous studies have indicated that the flow transport
on steep terrains simulated by the kinematic wave equation can be analogous to that simulated by
either the diffusion-wave or dynamic-wave equations [26–28]. In the numerical tests, the maximum
allowable time step was 2 s when the conventional algorithm and the Bates inertial momentum
formulation were performed, while the time step can be enlarged to 30 s when the MacCormack
recursive formulation and the integrated algorithm were adopted owing to the efficacy of releasing the
CFL condition. It should be noted that the situation of flow refluxing would not occur in the case of
a 1D overland plane, hence, the CFL condition was the dominant criterion to restrain the time step.
As shown in Figure 14a,b, both the discharge and water depth hydrographs predicted by the four
algorithms are close to the analytical solution of the kinematic-wave equation despite the slight delay
of time to equilibrium. The hydrographs generated by the integrated algorithm and the Bates inertial
momentum formulation are similar because of using the identical momentum equation as shown in
Equation (17), in which one more inertial force term is included in the original diffusion wave equation
as shown in Equation (4). Hence, the larger deviations between the simulated results and the analytical
solution of kinematic-wave equation can be found in these two methods in comparison with the other
two numerical solutions of non-inertial wave equation. Basically, this test manifests the feasibility of
applying different modified models for rainfall-runoff simulation.
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Figure 14. Predicted and analytical hydrographs using different algorithms, (a) Discharge,
(b) Water depth.

6. Evaluation of Computational Efficiency

To clarify the efficiency of relaxing the time-step restrictions by applying modified approaches
in runoff simulations, the hydrological records of four storm evens as shown in Figure 5 were
adopted to compare computational costs (CPU time) among the different algorithms. As shown in
Table 1, “conventional” denotes the conventional explicit scheme (first-order backward finite difference
method), in which the CFL condition and Hunter condition are simultaneously required; hence the
most limited time step among all the grids in the watershed should be sought at each routing round and
selected as the computational time step. To meet the two restrictions while conducting the conventional
explicit scheme, the time step ∆t was found to vary in a range of 0.001–20 s. “MacCormack” denotes
the algorithm that combines the quasi-2D MacCormack recursive formulation with the conventional
explicit scheme to relax the CFL condition; hence, only the Hunter criterion is required. “Bates”
denotes the method that replaces the non-inertia wave equation Equation (8) with the Bates inertial
momentum formulation Equation (16) in the conventional explicit scheme to relax the Hunter condition,
but the CFL criterion is still required. “Integrated” denotes the algorithm that integrates both the
quasi-2D MacCormack recursive formulation and the Bates inertial momentum formulation into the
conventional explicit scheme; hence, the computational time step ∆t can be lengthened to 60 s without
being subject to the CFL condition and Hunter condition.

Although in this case study the integrated algorithm still has its maximum limit on time step (60 s)
when applied to the Komarovsky watershed, Table 2 shows that the integrated algorithm obviously
needs less CPU time than that of the other three algorithms for all of the four storm events. It also
shows that individually applying the quasi-2D MacCormack recursive formulation or the Bates inertial
momentum formulation in the model is not sufficient to enhance the overall performance because
one of the time-interval restrictions remains. To clarify the computational efficiency using different
numerical algorithms, Table 3 shows the ratios of CPU time, obtained by comparing each of the earlier
methods to the integrated algorithm. The results show that the computational speed of the integrated
algorithm outperforms that of the conventional explicit scheme by a maximum factor of 67 among
the four storm events. Moreover, the integrated algorithm is more than 39 and 17 times as fast as
the two methods, individually applying the quasi-2D MacCormack recursive formulation and the
Bates inertial momentum formulation. However, as shown in Table 4, an index, normalized mean
square error (NMSE), was adopted to calculate the deviations in the discharge hydrographs between
the conventional and modified methods. Results show that the integrated model produces larger
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deviations because the calculated time step is lengthened to 60 s. However, the NMSE values in
the four simulation sets, assigned with different rainfall conditions, are still within 10−2, and do not
present an obviously visible deviation among the hydrographs.

Table 2. Comparison of computational time among different algorithms.

Date of Storm
Event

CPU Time (min)

Conventional
(∆t = 0.001−20 s)

MacCormack
(∆t = 0.001−20 s)

Bates
(∆t = 0.1−20 s)

Integrated
(∆t = 60 s)

16 August 1968 1778.81 1225.89 568.86 28.83
9 August 1972 2543.27 1926.28 836.75 48.85
3 October 1974 2258.56 1715.66 742.18 41.64
18 August 1979 3864.42 2585.22 1246.17 57.66

Table 3. Evaluation of computational efficiency for different algorithms.

Date of Storm Event
Ratio of CPU Time

Conventional/Integrated MacCormack/Integrated Bates/Integrated

16 August 1968 61.7 42.5 19.7
9 August 1972 52.1 39.4 17.1
3 October 1974 54.2 41.2 17.8
18 August 1979 67.0 44.8 21.6

Table 4. Deviation of hydrographs between the conventional and modified algorithms.

Date of Storm Event

NMSE (Normalized Mean Square Error)

MacCormack vs.
Conventional

Bates vs.
Conventional

Integrated vs.
Conventional

16 August 1968 2.47 × 10−3 3.34 × 10−3 4.82 × 10−3

9 August 1972 1.83 × 10−3 2.16 × 10−3 5.25 × 10−3

3 October 1974 4.59 × 10−3 6.85 × 10−3 8.77 × 10−3

18 August 1979 4.73 × 10−3 5.91 × 10−3 6.42 × 10−3

Note: NMSE = 1
T

T
∑

t=1

(Qt−Qconventional )
2

QQconventional
, Q = 1

T

T
∑

t=1
Qt and Qconventional =

1
T

T
∑

t=1
Qconventional t.

7. Conclusions

As reported in previous studies, there are two types of time-interval restriction regulated to
maintain the accuracy and stability during grid-based flood simulations. The CFL criterion is enforced
to validate explicit schemes, and the Hunter condition is conducted to alleviate the situation of flow
reflux between adjacent grids. This study aimed to detect the spatial and temporal variations in
allowable time steps subject to these two criteria under different terrain conditions and runoff states,
hence, the inefficient problem in conducting distributed flood simulation can be understood.

Three findings can be summarized via a case study of the Komarovsky watershed in the far East
of Russia. First, at the beginning of the runoff simulation, the CFL criterion in the steep hillsides
dominates the computational time step. With increasing water depth in the mainstream, the Hunter
condition gradually becomes the main reason for the reduction in the time interval. Second, for a steep
hillside with a small drainage area, the allowable time step subject to the CFL condition was much
shorter than that subject to the Hunter condition during the entire period of simulation; however,
for a watershed that contains wide channels and mild riparian areas, the magnitude of the time step
subject to the Hunter condition can be below 10−1 s, which is more restrained than the allowable time
step subject to the CFL condition. Third, according to the result of the allowable time steps extracted
along the longest drainage path from the watershed ridge to the outlet, the variation extent of the time
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step under the Hunter criterion (from 10−3 s to 107 s) was greater than that under the CFL criterion
(from 10−1 s to 102 s). The CFL criterion provided a more limited time step at the upper reach ahead of
the first-order stream node; relatively, for the remainder of the downstream path, the Hunter condition
resulted in a shorter time step.

Through an in-depth investigation of time-step limitations, it was shown that only if the two
time-interval criteria are simultaneously relaxed can the computational performance be effectively
enhanced. This study also emphasized the significance of integrating the two modified approaches
(the quasi-2D MacCormack recursive formulation and the Bates inertial momentum formulation) into
the conventional explicit algorithm to relax the CFL and Hunter conditions. The integrated algorithm
was capable of surpassing the two methods, i.e., individually applying the quasi-2D MacCormack
recursive formulation and the Bates inertial momentum formulation, by at least 39 and 17 times in
terms of computational efficiency. Consequently, it can be applied to a real-time flood forecasting
system to strengthen the numerical stability as well as the calculation speed in runoff simulation.
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