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Abstract: This study aimed at achieving an organizational solution for improving the governance
of water and land use and, consequently, improving the supply–demand water balance.
Related modeling applied to diverse scenarios focus on water and land use development in the
Mendoza River basin. A strategic analysis of water organization was performed using causal analysis,
producing a Strategic Map (SM) and designing a Balanced Scorecard (BS). To assess the basin’s water
resources supply and demand, the Water Evaluation and Planning (WEAP) model was applied to
the Administrative Management Units existing in the basin, taking into consideration the water
availability and the granted water rights. The application of the organizational and governance model
to various scenarios referring to 2030 show that by reordering allocations and water use criteria,
implementing a better farm irrigation water management, improving capacity building of existing
human resources, and adopting more adequate hard- and software for dams and canal management,
it will be possible to accommodate demand in 2030 better than at present despite climate change
impacts on demand and supply. In addition, users’ participation will be enhanced.

Keywords: water and land management; water users’ organization; water balance; supply–demand
balance model; organizational analysis; participatory management

1. Introduction

The water governance model currently used in the Mendoza River basin, Argentina (Figure 1),
brings about imbalance and unevenness of management inadequate for an area in full transformation.
Spatio-temporal effects of great intensity and magnitude refer to the limited autonomy and
self-sufficiency of local management organizations, the inadequate distribution and use of water
resources, the separate management of water and land, the impact of territorial, economic,
and productive competitiveness, the degradation of soils, all affecting crops production and causing
poor service to users [1]. The water management model emerged in the nineteenth century, derived
progressively very top–down and technocratic, but functional to the corporate external as well as
internal interests. As a result, hierarchical, highly centralized power of decisions does not comply
with the principle of accountability. Improved control would be feasible through an administrative
decentralization process by watersheds and subareas. The primal social contract for the water
administration in Mendoza implemented by the traditional and conservative elite in 1884, in a time of
great and rapid agricultural expansion, does not fit well in current conditions; besides, it has caused
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very negative consequences, difficult to correct, to the territorial–hydrological system. As emblematic
cases, demonstrating such trends: a) despite having passed a century since then, it still lacks the
implementation of water balances as well as legislative changes facilitating reallocation of water rights;
b) loss of water rights in productive areas because use changes from agricultural to recreational ones,
affecting the functioning of the system as a whole; c) groundwater overexploitation and speculative
use of water resources for more than 40 years, which has caused the loss of the aquifer productivity
and quality; and d) failure to consolidate autonomous water organizations for productive local units,
according to appropriate monitoring processes.

The consequences of this model’s 19th century view, extemporaneous today, affect social,
economic, and productive dimensions for not ensuring efficient administration and satisfaction of
the demand [2]. Appropriate practices for the sustainable management of water in the basin include
real-time water measurement, efficient application of irrigation modules and plans, uniformity in the
application of water, clean production associated with water quality, improved land leveling for better
performance of irrigation, soil mulching to reduce evapotranspiration, use of adequate irrigation flow
rates, monitoring of soil moisture and plant water status, proper design of irrigation units, conservation
of drains, and training of water system operators and users [3,4]. Meanwhile, the main issue is to
implement a governance model that provides for improved participatory management through local
water user organizations.
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It is worthy of notice that, as part of the decentralization process implemented by the end
of the 20th century [6], the Mendoza River Water User Organizations (WUOs) contributed not
only to establishing a new governance, but also to the integrated process of regional development,
namely evidencing that water management is a critical factor in a semiarid region [7]. WUOs had
highly influenced the elaboration of the Land Use Law and the Strategic Development Plan
(SDP), the execution of which required an effective supply–demand water balance implementation,
restructuring of granted rights, respect for basin autonomy, effective representation and participation
of the different water users, and consensual reformulation of the instruments necessary to achieve
integrated water management [8]. In this process, there appears that, in the absence of the State,
community management and associative modes have been efficient in supplying water at a local
scale [9]. Territorial governance is thus a nonexclusive governmental dimension, where public
participation influences decision-making and the social and spatial structure of processes involved [10].
Thus, under high social and public control, land and water governance strategies and integrated
management services are expected to ensure strategic and productive territorial development [11].

The main objective of this paper was the formulation of a participatory organizational model
consistent with current requirements of users, as well as with the water supply–demand balance
modeling, in order to reach an equitable and sustainable water resources availability and use in the
Mendoza River basin. It is foreseen that the organizational governance proposal will contribute
to achieving greater efficiency and effectiveness in the water and land use together with the
implementation of the administrative act when considering different prospective modalities relative to
various context scenarios. Accordingly, objectives include the identification of strategies to promote
the decentralized management of water, namely those referring to the ways in which WUOs may
implement water demand management actions based on present supply–demand water balance issues.

The strategic formulation of the governance model was carried out by defining the organizational
identity through the determination of the mission, vision, values, and strategies of WUOs.
The organizational analysis was developed through the preparation of a strategic map [12] and
the linking of the WUOs through the design of the Integral Scorecard (IS) [13]. Secondly, the available
water resources of the Mendoza River basin [14] were assessed through updated water balance (WB)
studies [15] and the application of the Water Evaluation and Planning model (WEAP) [16]. The latter
tool allows contrasting water supply and demand considering a distribution system marked by
spatial and temporal variability. An adjusted modeling approach [17] was used for different scenarios
according to the peculiarities of the basin relative to each of the basin’s Administrative Management
Units (AMUs) and considering the availability of water and the granted uses [18,19]. Based on the
constitutional law of Mendoza, which previses the water balance and assesses for the reallocation
of rights, three scenarios have been considered in water modeling: i) trend, which is to continue
with the allocation of water without changing the category of agricultural rights in use and with the
current efficiencies; ii) possible, which is to equate the agricultural rights in use and delivery of 100%
of the endowment improving the efficiencies, and iii) contrasted, which is to distribute the water with
100% to all the rights registered whatever the use and improving the efficiencies. For this purpose,
different criteria for irrigation planning were analyzed [20], irrigation requirements and scheduling
were considered [21], and strategies for water management were identified [22].

2. The Study Area

The Mendoza River basin is located in the Andean Central West Region of Argentina, covering an
area of 19,553 km2 with a population of 1,170,000 inhabitants [23]. It includes a densely populated
sector corresponding to the urbanized oasis, an intensive irrigated area, and areas of great natural
value as well as areas with more extensive uses such as units of mountain range, premountain range,
and non irrigated alluvial plains (Figure 1). River flows, namely those aimed at the supply of the urban
and irrigated areas, are regulated by the Potrerillos Dam [24].
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With the aim to achieve a systematized knowledge of the basin with snow-glacial regime, it must
be considered that the main contribution, represented by snowfall, its accumulation–compaction,
and freezing–melting phases, generates direct flows complemented, to a lesser extent, with rainfall
contributions. These flows cause surface runoff, as well as subsurface and groundwater flows
corresponding to the various components of the basin water balance (Figure 2), which must be
assessed in order to obtain a comprehensive knowledge of water supply [14].

Water 2018, 10, x FOR PEER REVIEW  4 of 17 

Water2018, 10,x; doi:FOR PEER REVIEW  www.mdpi.com/journal/water 

With the aim to achieve a systematized knowledge of the basin with snow-glacial regime, it must 
be considered that the main contribution, represented by snowfall, its accumulation–compaction, and 
freezing–melting phases, generates direct flows complemented, to a lesser extent, with rainfall 
contributions. These flows cause surface runoff, as well as subsurface and groundwater flows 
corresponding to the various components of the basin water balance (Figure 2), which must be 
assessed in order to obtain a comprehensive knowledge of water supply [14]. 

3. Formulation of the Organizational Model 

The strategic analysis of water organization was performed using the causal analysis method, 
thus considering that such organization is a constituent part of the development of a continuous, 
dynamic process. The sequential chart proposed includes several stages and steps corresponding to 
the main timings, which have been adapted from the strategic map method [12], to identify, organize, 
and describe strategies within the context of the water management model (Table 1). 

Table 1. Sequential description of organizational analysis [12]. 

Stages Steps Description 

Organizational identity 

Mission Why do we exist? 
Vision What do we want to do? 
Values What is important to us? 

Strategy Our game plan 
Organizational analysis Strategic map Translate the strategy 
Organizational linkage Balanced scorecard To act, measure, and focus 

 

 
Figure 2. Main water balance components and physical processes in the Mendoza River basin. 

At this stage, we proceeded to describe stakeholders involved in the proposed water 
organization, based on the present situation and envisaging the future one [25]. The required water 
management objectives have also been considered in order to understand the complexities and 
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3. Formulation of the Organizational Model

The strategic analysis of water organization was performed using the causal analysis method,
thus considering that such organization is a constituent part of the development of a continuous,
dynamic process. The sequential chart proposed includes several stages and steps corresponding to
the main timings, which have been adapted from the strategic map method [12], to identify, organize,
and describe strategies within the context of the water management model (Table 1).

Table 1. Sequential description of organizational analysis [12].

Stages Steps Description

Organizational identity

Mission Why do we exist?
Vision What do we want to do?
Values What is important to us?

Strategy Our game plan
Organizational analysis Strategic map Translate the strategy
Organizational linkage Balanced scorecard To act, measure, and focus

At this stage, we proceeded to describe stakeholders involved in the proposed water organization,
based on the present situation and envisaging the future one [25]. The required water management
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objectives have also been considered in order to understand the complexities and problems of managing
the Mendoza River basin mainly in terms of making compatible the balance between supply and
demand. At this stage:

• Mission is highlighted as the base of the water governance, the reason for its existence and its
purpose, which is reflected in its activities.

• Vision, in turn, presents an image of the future, the course desired to be adopted and that enables
knowing what is to be accomplished.

• Values allow knowing which aspects are important to water governance and constitute the
reference framework for its image within the community. Values define the set of bases and
principles that regulate water management of the organization and allow the building of the
institutional philosophy [26].

• Strategy is the set of ordered actions that are developed in a dynamic way, according to the
context and the capabilities available to implement them. It describes how a water organization
intends to create values in the organization in relation to the services it offers, as well as to
their implementation. The strategy covers various topics in a simultaneous and complementary
manner, depending on their implementation timings, with operational processes usually being
quicker than those that include the application of innovation processes. It also requires a specific
link between the users and the values proposed to meet their needs [27].

A Strategic Map (SM) presents a causality structure enabling identification of components and
interrelations of the organizational model’s strategy with the aimed processes and results. It also
allows assessing, measuring, and improving the most critical processes leading to their successful
implementation. It makes it possible to conduct a strategic analysis, interpret the development stage
of the strategy, and visualize the connection between tangible and intangible assets. Furthermore,
an SM eases the assessment and selection of strategic options based on quantitative and qualitative
criteria. The strategy’s most critical factor is its efficient implementation, in order to ensure a sustained
creation of value. In turn, this depends on the management of key internal processes, namely
financial, operational, relations with costumers and innovation, and social and regulatory processes.
Strategic maps, therefore, become visualization tools that facilitate the organizational description and
drive the valuation process [13]. SM is thus a tool to measure organizational performance and to
analyze the strategy used. It allows creating value from four different perspectives: a) the financial
perspective, relative to the strategy for growth, profitability, and risk, viewed from the shareholder’s
perspective; b) the customer’s perspective, referring to the strategy to create value and differentiation
from the customer’s viewpoint; c) the process perspective, relative to the strategic priorities of the
different business processes that create satisfaction for clients and shareholders; and d) the learning
and growth perspective, which refers to those intangible assets that are more important to develop
strategies, such as human assets, information capital, and organizational culture.

The resulting SM makes use of all four perspectives described and is an important tool for strategy
control through continuous monitoring. In addition, it allows explaining the strategy hypotheses in
a coherent, integrated, and systemic way [12]. For the purpose of applying the SM method in this
research, we adopted it by including an additional perspective related to water management, similar to
that adopted in the Water Strategic Plan 2020 [28].

The Balanced Scorecard (BS) is a procedure corresponding to a management model of strategic
initiatives. One of its main attributes is controlling financial variables jointly with those related to
intangible assets. Using BS requires that objectives and associated indicators, both financial and
nonfinancial, derive from the water organization’s vision and strategy. For this reason, it is a method to
align trends, business units, human resources, and technological means with the water organization’s
strategy [29]. The BS is generally proposed as an organized process involving different perspectives.
Goals to reach are proposed for each perspective, which are causally related to one another. The model
explaining these relationships is the above-mentioned Strategic Map, which describes the strategy
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hypothesis and raises the connection of the desired results of the strategy with the inducers and their
linkage that will make them possible through relationships in different perspectives [13].

Social conflicts in the irrigated areas are manifested in: territorial transformations without
planning and regulation, poor service to the irrigator, imbalances and inequities in water distribution,
soil, water, and plant degradation, centralization in organizations, affecting territorial, economics,
and productive competitiveness, with lack of profitability and investments in rural areas under
irrigation and exodus of the peasant population to urban areas.

4. Modeling the Supply–Demand Water Balance

4.1. Water Balance Formulation

It is understood as the result of an adjusted model that contrasts water supply and demand at
the level of the Administrative Unit of Management (AMU), considering agro-climatic conditions
influencing irrigation demand and also nonagricultural uses [30], the following:

CWB = GS − GD (1)

where CWB represents the Mendoza River current water balance, GS is the mean Gross Supply from
the river and contributing streams, and GD is the total Gross Demand per AMU, with the total GD per
AMU defined as the sum of water demand per crop type:

GD = Σ (RA × RC × ETc × Ef) (2)

where RA is the registered area having water rights per type of use in the AMU, RC is the reduction
coefficient of water allocation depending upon the category of the granted water rights, ETc is crop
evapotranspiration per type of land use, and Ef is the current global irrigation efficiency.

The AMUs were defined according to the available surface and groundwater sources of supply,
as well as the existent channel network. Complementarily, we considered the catchment and channeling
infrastructure, irrigation performance [31], edaphic conditions [32], and predominant land and water
uses. The distribution system in the Mendoza River basin was analyzed, and existing WUOs were
grouped into different AMUs according to their sources of water supply, the modality of operation of
the system, and homogeneity criteria of management (Figure 3).

The WEAP model (Water Evaluation and Planning) [16] was adopted for calculating the
supply–demand water balance. For the estimation of irrigation efficiency [4], two components were
analyzed: the transport and distribution efficiencies through the canal system, and the irrigation
application efficiencies relative to the farm fields [33]. Field efficiency studies were analyzed and
compared with observed ones, particularly referring to the Mendoza River basin [34,35]. The following
modeling parameters were considered: registered areas, reduction coefficients according to category of
water rights, and average irrigation efficiencies (Table 2).

Table 2. Water rights to irrigation water use and efficiencies. Mendoza River basin.

Categories of Use Permanent
Water Rights

Temporary
Water Rights

Public Town
Irrigation Urban Uses

Surface area (ha) 42,147 40,195 3,087 6,498
Allocation reduction coefficient 1 0.8 0.8 1

Farm application efficiency 51.4%
Canal transport efficiency 81.8%

Global efficiency 42.0%
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4.2. Water Supply

In assessing surface water resources, we considered the mean supply from river and streams,
in accordance with the provisions of Provincial Laws 386 and 430, which mention it as a reference
value for average flows [36]. The mean water supply from the Mendoza River was obtained from the
study of water volumes recorded at the Guido gauging station, located upstream of the Potrerillos
Reservoir before the exit to the fluvial valley in the pre-mountain massif (Figure 4).
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The series of hydrologic years considered for modeling corresponds to the 2006–2015 period,
which has been considered highly representative, and includes data on precipitation, operation,
and spills. Yearly data of that period varies from rich to poor in terms of flow. In addition, for the same
period, real-time nival and meteorological data from the Horcones and Toscas stations in the High
Cordillera are made available to increase the integral hydrological knowledge of the basin. There is also
information for this period about the operation of the Potrerillos Dam and Reservoir, the stabilization
of management, and the calibration of hydro-mechanical equipment. Average historical volumes were
computed from daily records, the average historical spills were assessed, and the average historical
discharges were estimated with monthly frequencies for the Cipolletti Dam [5]. The operation of
dams and reservoirs is dependent upon weather conditions, service provided by some branch canals,
occurrence of rainfall, or compensatory measures that make the rules of operation be dynamic and
varying from one cycle to other.

An analysis was made of the operations carried out in the modeling period. The recorded
and modeled volumes discharged by the Potrerillos Dam were compared (Figure 5) and the quality
of simulations performed was assessed with the Nash–Sutcliffe modeling efficiency indicator [37],
resulting NSE = 0.82. This coefficient expresses the relative magnitude of the mean square error relative
to the observed data variance. The maximum value is NSE = 1.0, which can only be achieved if there is
a perfect match between all observed and simulated values. The closer the values of NSE are to 1.0,
the better are the estimates of discharges. The obtained NSE value is quite high and therefore indicates
that the simulation model provides confident results. Computations took into consideration the spill
losses (Table 3).
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Table 3. Averages spills at Potrerillos Dam, 2006–2015.

Spills (hm3)

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Annual

65.0 94.6 124.9 161.4 182.8 163.3 128.4 96.7 73.6 70.8 57.8 41.4 1260.7

4.3. Water Demand

For estimation of water demand, various indicators of the water use performance were used [38].
Interactions between surface water and groundwater could not be omitted [3]. Demand and
groundwater supply were estimated in a complementary manner for all AMUs considering
groundwater use or a conjunctive use of surface and groundwater. In the case of conjunctive use,
it was taken into account that groundwater pumping was only carried out in those fields equipped
with wells and it was assumed that this pumped water was used to satisfy seasonal deficits due to
scarce supply by the canal system [5].
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Land use in agricultural areas has been characterized adopting representative crops for each
AMU. Irrigation requirements were determined through the Kc-ETo approach that combines the
reference evapotranspiration ETo with a crop coefficient characteristic of each crop [3,39]; net irrigation
demands were computed by considering the local agricultural calendars for each type of crop as
previously tested [40]. The referred WEAP software [16] accepts that the Kc-ETo approach is calculated
externally by the user [41]. Thus, ETo was calculated using the FAO-PM method [39]; crop coefficients
(Kc) and other parameters (e.g., crop phonological dates, soil characteristics) were obtained from
literature [3,39,40] and adjusted to the AMU areas based upon existing field data [34]. For those
computations, available climate data were used and spatially distributed using the method of Thiessen
polygons [42]. These data allowed computing crop evapotranspiration and estimating effective
precipitation, which directly contribute to meet crop demands [43], as well as other useful precipitation
that may influence the efficiency of water use [44]. Spatial information was then obtained with a GIS
tool. Data were used as input to the model built in the WEAP software [35]. It was therefore possible
to characterize and map the main land uses (Figure 6) and water and irrigation requirements for the
Mendoza River basin after aggregating results relative to all AMUs. Thus, the volumetric demand
distribution was assessed for all selected series and AMUs. The procedure was replicated for diverse
hydrologic years in the 2006–2015 period, with inclusion of demand variability depending on each
year’s weather conditions.
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4.4. Supply–Demand Relationships

Supply and demand relationships have been determined for the current situation considering all
granted water rights, the current irrigation efficiency, and the rules of operation of reservoirs, canals,
and diversion dams. To this end, we considered two key indicators for achieving an appropriate
supply–demand balance in the Mendoza River basin—demand dissatisfaction and demand coverage
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(percent of demand covered by the supply)—to estimate the percent guarantee of irrigation water [45],
for which the reference value for the region is 81% [46]. Demand dissatisfaction corresponds to the
difference between the water volume required to meet gross demand and the amount of supply
available to satisfy such demand. This factor also allows determining the missing water volume
(i.e., that cannot be covered by the available supply) [47]. There is also a link to the failure total, which
is the summation of the monthly failures expressed in volume, understanding that a failure occurs
when, in a certain month, supply does not suffice to meet the gross demand. The demand coverage
corresponds to the percentage of gross demand effectively satisfied by the available supply, considering
the monthly coverage for each AMU. It is computed as the difference to 100% of the ratio between
failure and gross demand expressed in percentage. This value is lower than the global annual coverage
because, although annual supply could have been enough to meet annual demand, when performing
a monthly analysis, it became evident that the unevenness of such supply throughout the year results
in months with deficit and others with surplus [22].

The global annual balance is calculated from the summing to the year of the volumes of supplies
and demands. It indicates whether the annual supply–demand balance is deficient, excessive,
or balanced. In turn, the global annual coverage is the percent value of the ratio between annual
supply and annual gross demand. That coverage is limited to 100 percent to take into consideration
that monthly surpluses or deficits are unevenly distributed throughout the year. Deficits for each AMU
are computed monthly and expressed in hm3. The demand dissatisfaction is expressed in terms of
ratios between water volume and area, the latter referring to where water is lacking, and is expressed
in mm during the whole cycle. Another indicator is the percentage of gross demand met by the
available supply, which corresponds to the inverse of the demand dissatisfaction when expressed in
percentage [30].

5. Governance Organization and Forecasted Supply–Demand Balance

5.1. Governance Organizational Model

Mission, vision, values, and strategy are defined for the organizational water management model
in an irrigated area of the Mendoza River basin with high social and environmental dynamics:

Mission: Building up an organizational model for local water management that responds to the
socio-economic requirements of the land and water users of the irrigated area in the Mendoza River
basin, particularly considering the users’ participation through WUOs and AMUs.

Vision: Ensuring sustainable water use and productivity by achieving appropriate water demand
management in a context of climate variability and territorial transformation in the Mendoza
River basin.

Values: Responsibility with the community and the environment; effective participation of
users; technical administrative efficiency in management; transparency in actions and communication;
integrity and equity; commitment to local and territorial development.

Strategy: Achieving proper water administration performance in irrigated management units
in the Mendoza River basin, using an autarchic, technically based organizational model that enables
progressive implementation of training and innovation actions for sustainable use of water resources
in the territory and that contributes to the local development process.

The proposed organizational model refers to an institution of public nature but not state-run,
and with significant alliance with the private sector. Therefore, it must be taken into account that
while for public sector organizations, it is relevant to analyze the system water use and management
performance in order to achieve the defined mission with the highest level of success, for the private
sector organizations, more importance is given to water and land productivity. Considering the
above-mentioned aspects, objectives were grouped in agreement with key organizational dimensions,
and to determine causal connections between objectives and perspectives, that is, cause–effect
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relationships, through building a strategic map of the organizational and governance model for
the Mendoza River basin (Figure 7).Water 2018, 10, x FOR PEER REVIEW  11 of 17 
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Among the most important aspects of the methodological adaptation of the Strategic Map
(SM) and of a Balanced Scorecard (BS), the financial perspective was taken as the basis of the
organizational model because financial and socio-economic variables have a great relevance in
institutional functioning. The following indicators were therefore adopted: (i) financial self-sufficiency,
ratio between the income resulting from water rights fees and the costs of operation, maintenance,
and management of the water system [45]; (ii) performance of channel water allocation, ratio between
effective and predicted recovery of water fees [45]; and (iii) monetary efficiency in water use, computed
as the ratio of costs per volume of water allocated [48]. These indicators are used per every AMU.
The learning and growth perspective is next in importance relating to the implementation of modern
technical management, thus improving the capacity building of human resources and modernizing
the hard- and software of the water system.
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These water management issues definitely support technological innovation and are paramount
to implement and develop both the learning process and the quality of the organizational processes.
In addition, BS was methodically executed around different perspectives whose achievable aims were
proposed. The organizational model that explains those relations in the strategic map helps describe
the strategy’s hypothesis aimed at fully achieving the water management goals.

5.2. Scenarios for Simulation

Forecasted supply–demand water balance alternatives were analyzed for the 2030 horizon.
The Demand Dissatisfaction and Demand Coverage indicators were used. Three future scenarios (Table 4)
were proposed in addition to the current one (Sc0):

• Sc1 – when temporary water rights allow the use of up to 80% of the available water (i.e., RC = 0.80)
• Sc2 – when temporary water rights allow the use of up to 100% of the available water (i.e., RC = 1.0)
• Sc3 – when irrigation aims at satisfaction of the total registered area, including land where irrigation was

previously abandoned

The forecasts on the availability of surface water resources as influenced by climate change
consider a reduction of snowfall of 20% by 2080, and an increase in air temperature of 4 ◦C for the
next century [49]. For modeling purposes, an average reduction rate of snowfall close to 0.31% per
year was adopted [50]. This decrease, together with the increase in temperature, induces a change in
the basin hydrology that, on average and for the projected period of analysis, shall modify the flow
regime and requires adaptability in the use of the water [51,52] because there would be higher flows
in winter and lower ones in summer compared to present [53]. The induced variation of climate and
hydrologic behavior in the context of global climate change [54,55] requires assessing water balance
changes and related impacts on different categories of water rights in terms of area and/or water
allocation. The cultivation of land presently abandoned but that could have water rights was not
considered except for scenario Sc3.

Table 4. Main characteristics of scenarios used for supply–demand water balance modeling, Mendoza
River basin.

Scenarios for the 2030 Horizon Climate-Change-
Affected Variables

Efficiency of
Water Use

RC of Temporary
Water Rights

Sc0 – Current water use and governance Present condition 51% 0.80

Sc1 – Temporary water rights with
RC = 80%

Reduced snowfall,
higher temperature in

lowlands,
increased

evapotranspiration

59% 0.80

Sc2 – Temporary water rights with
RC = 100% 59% 1.00

Sc3 – Water service to the total
registered area 59% 1.00

Factors commonly taken into account for developing and simulating all scenarios (Table 4) consist
of: (i) an improved irrigation water management providing for a reasonable efficiency of water use of
59% without requiring structural changes in the canal system; (ii) a decrease in mountain snowfall that
would lead to the variation of the river flow regime, thus to adaptation changes in water supply; (iii) an
increase in temperature in the lowlands that likely will cause variable increases in evapotranspiration
and demand for water, depending on the type of water use; (iv) variation in land use, namely referring
to the distribution of areas cropped and urbanized; and (v) changes in management and operation of
the basin water system, mainly relative to the governance issues, improvement of the AMUs, and more
effective participation of users through the respective WUOs.
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5.3. Forecasts for Supply–Demand Water Balance for the 2030 Horizon

The previously defined gross demand, the supply and failure total, the percent coverage
of demand by supply (including total failures), the global supply–demand balance, and global
annual coverage of demand by supply were estimated using WEAP for both agricultural and other
consumptive uses. Results relative to the considered scenarios are presented in Table 5.

Table 5. Comparing results for supply–demand water balance scenarios for the 2030 horizon, Mendoza
River basin.

Scenarios for the 2030
Horizon

Registered
Cropped

Area
(ha)

Gross
Demand

(hm3)

Supply
Total
(hm3)

Failure
Total
(hm3)

Demand
Coverage

(%)

Global
Annual
Balance
(hm3)

Global
Annual

Coverage
(%)

Sc0 – Current water use
and governance 54,720 955.49 1131.05 −34.26 96.4% 175.57 100%

Sc1 – Intermittent water
rights, RC = 0.8 54,720 793.09 1040.47 −4.07 99.5% 247.38 100%

Sc2 – Intermittent water
rights, RC = 1.0 59,342 866.30 1042.79 −5.58 99.4% 176.49 100%

Sc3 – Service to the total
registered area 76,534 1170.44 1049.65 −170.74 85.4% −120.79 86%

The current balance (Sc0) does not include the abandoned old lands, but does take into account
the factors of the current climate and the existing efficiency in the farm, which reaches an average
value of 51.4%. Analyzing the indicators produced when modeling with scenario Sc1 (temporary water
rights and RC = 0.8), it was observed that indicators are generally better than those obtained for the
current condition (Table 5) despite global change-influenced climate and hydrologic variables for the
2030 horizon, resulting in increased demand and more varied water supply. That improvement is likely
due to higher farm application efficiency, 59% vs 51%, and to an optimized operation of reservoirs
and diversion dams, which are expected to contribute to decreasing failures and improving the water
supply distribution service, thus resulting in an increased guarantee of irrigation water availability.

For Sc2 (temporary water rights and RC = 1.0), there is a larger registered cropped area due
to transformation of temporary into permanent water rights. An increase in annual gross demand
of 73.21 hm3 occurs and there is a negligible increase of 1.51 hm3 in the sum of failures, while the
base water supply remains the same. An improved supply is considered due to improvements
in water distribution and global efficiency, which are expected to keep failures, demand coverage,
and global annual coverage at levels similar to Sc1. However, the global annual balance diminishes.
Notwithstanding, analyzed in general, this difference continues to be positive for average years.

The modality Sc3 is for a scenario where the whole of the granted area in the basin is predicted
to have irrigation, thus including all abandoned lands, recently or not. The sum of failures reaches
then a high value of 170.74 hm3, particularly important due to high demand when river runoff is low.
Demand coverage falls to 85% while the gross demand increases about 215 hm3 and the global annual
coverage reaches 86%. But even so, these values are above the regional reference value of the irrigation
water guarantee percentage. Thus, scenario Sc3 requires adopting additional measures not considered
in this study.

6. Conclusive Remarks

A strategic formulation of the organizational model was defined after performing a strategic
analysis of the organization. Designing the strategic map of the organization from the perspective
of users and the community and relating to new perspectives on water management, processes,
learning and knowledge, and finance responded well to objectives. Moreover, in the proposed
organizational and governance model, the effective participation of users was considered as the main
basis for formulating institutional cross-sectoral (horizontal/integral) policies. That participation is
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aimed at concrete decision-making by all stakeholders involved in every circumstance concerning
water management. The result is that the designed SM for the Mendoza River basin is aimed at
supporting sustainable productive development and satisfaction of socio-economic requirements
through an appropriate supply–demand management and adopting volumetric water delivery to
users. The Administrative Units of Management (AMUs) were adopted to manage water at local level,
and the areas of influence of the WUOs were reformulated accordingly.

The evaluation of the water resources of the Mendoza River basin was performed and an analysis
was made of the operations carried out in the modeling period of 2006–2015. The recorded and
modeled volumes at the Potrerillos dam were compared. A high value of 0.82 for the Nash–Sutcliffe
modelling efficiency indicator of goodness of fit was obtained, which allowed considering that the
available supply was confidently assessed. The demand was estimated on basis of previous studies
and used the updated methodology of FAO56 guidelines. The balance supply-demand was computed
with model WEAP. For the modeling period of 2006–2015 three scenarios were tested and compared
with the base one referring to present conditions. It was observed that more requiring scenarios
than present were evaluated positively but not a scenario where irrigated areas would increase much
to include presently abandoned ones. Positive results were obtained due to the new organization
and governance model, which assumed decentralized water management through the AMUs, users’
participation with the Water User Organizations (WUOs), and increased global water efficiency due
to improved water management and canal transport and deliveries through adopting innovative
approaches related to hard- and software, as well as capacity building.
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