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Abstract: Precipitation plays an important role in the global water cycle, in addition to material and
energy exchange processes. Therefore, obtaining precipitation data with a high spatial resolution is of
great significance. We used a geographically weighted regression (GWR)-based downscaling model to
downscale Tropical Rainfall Measuring Mission (TRMM) 3B43 precipitation data over the middle and
lower reaches of the Yangtze River Basin (MLRYRB) from a resolution of 0.25◦ to 1 km on an annual
scale, and the downscaled results were calibrated using the geographical differential analysis (GDA)
method. At present, either the normalized difference vegetation index (NDVI) or a digital elevation
model (DEM) is selected as the environmental variable in the downscaling models. However, studies
have shown that the relationship between the NDVI and precipitation gradually weakens when
precipitation exceeds a certain threshold. In contrast, the enhanced vegetation index (EVI) overcomes
the saturation shortcomings of the NDVI. Therefore, this study investigated the performances of
EVI-derived and NDVI-derived downscaling models in downscaling TRMM precipitation data. The
results showed that the NDVI performed better than the EVI in the annual downscaling model,
possibly because this study used the annual average NDVI, which may have neutralized detrimental
saturation effects. Moreover, the accuracy of the downscaling model could be effectively improved
after correcting for residuals and calibrating the model with the GDA method. Subsequently, the
downscaled rainfall was closer to the actual weather station rainfall observations. Furthermore, the
downscaled results were decomposed into fractions to obtain monthly precipitation data, showing
that the proposed method by utilizing the GDA method could improve not only the spatial resolution
of remote sensing precipitation data, but also the accuracy of data.

Keywords: precipitation; Tropical Rainfall Measuring Mission (TRMM); downscaling;
(geographically weighted regression) GWR; normalized difference vegetation index (NDVI);
enhanced vegetation index (EVI)

1. Introduction

Precipitation plays an important role in the exchange of material and energy in the global water
cycle and affects soil moisture, vegetation growth, and surface runoff [1–3]. Consequently, precipitation
constitutes the key parameter of various hydrological models, and the quality of precipitation data
directly affects the results of model simulations [4]. Hence, the quality of these data is of great
significance for studying global climate change, assessing surface runoff conditions, and providing
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biomass estimations. Obtaining precipitation data with a high spatial resolution is therefore necessary
for conducting research on ecology, the environment, and hydrology on a global scale.

Generally, rainfall observation stations have a relatively higher observation accuracy at the site
scale, but it is difficult to completely reproduce the spatiotemporal distribution of precipitation due to
sparse or uneven spatial distribution of weather stations. In recent years, a series of satellite remote
sensing precipitation products [5–7], such as the Global Satellite Mapping of Precipitation (GSMaP)
project at 0.1◦ × 0.1◦ resolution [8], the Global Precipitation Climatology Project (GPCP) at 2.5◦ × 2.5◦

resolution [9,10], the Tropical Rainfall Measuring Mission (TRMM) [11–13], and the Global Precipitation
Measurement (GPM) mission with 10 km × 10 km resolution [14], have provided new global and
regional precipitation observations. Among them, TRMM data products offer a spatial resolution of
0.25◦ × 0.25◦ [11]. However, when applied to research on hydrology, ecology, climates, etc., at the
regional scale, various models require higher-resolution precipitation data as input parameters to
obtain more accurate simulation results, and a spatial resolution of 0.25◦ × 0.25◦ cannot meet these
demands [15]. Therefore, it is necessary to develop a downscaling algorithm for satellite precipitation
products to obtain accurate data with a high spatial resolution.

Although the dynamic downscaling method has a clear physical meaning and is applied to any
place without being affected by observation data, it is computationally intensive and susceptible
to mode system errors. The main principle of the statistical spatial downscaling method is based
on the relationships between precipitation and various land surface environmental variables. The
corresponding statistical model, which is established at a coarse resolution, is applied to high-resolution
variables of the land surface environment to downscale the precipitation data. Since the launch
of the TRMM, research on the downscaling of TRMM precipitation data has become increasingly
popular [16–19]. At present, either the normalized difference vegetation index (NDVI) or a digital
elevation model (DEM) is selected as the environmental variable for downscaling models [14,20,21].
For example, Immerzeel et al. [17] developed an exponential relationship between precipitation and
the NDVI to downscale TRMM data over the Iberian Peninsula on an annual scale. Considering the
effects of topography on precipitation, Jia et al. [16] used the NDVI and a DEM as surface explanatory
variables and established a multiple linear regression (MLR) model to downscale TRMM data from
0.25◦ (approximately 27 km) to 1 km. Subsequent studies have shown that MLR-based downscaling
models can achieve fine-resolution precipitation data [16,22].

The methods used in the previous mentioned studies [1,14] assume that the relationships between
precipitation and surface environmental variables (such as the NDVI or DEM) are spatially constant,
however, some scholars believe that the relationships between precipitation and environmental
variables are not stable and should vary in space [23,24]. Accordingly, based on a local regression
model, Brunsdon et al. [25] proposed a geographically weighted regression (GWR) model to explore
this spatial nonstationarity [26,27]. GWR introduces primarily geographical location information
into a regression model based on the similarity between the dependent variable and the explanatory
variable in a particular geographical location. A GWR-based downscaling algorithm performs better at
downscaling precipitation data than an MLR-based downscaling algorithm. However, the GWR-based
downscaling algorithm suffers from certain limitations in applications involving the downscaling
of TRMM data. Nevertheless, studies have shown that the relationship between the NDVI and
precipitation gradually weakens when the precipitation exceeds a certain threshold. Alternatively, the
enhanced vegetation index (EVI) overcomes the saturation shortcomings of the NDVI and exhibits
a better response to precipitation [28,29]. At present, there have been relatively few studies on the
use of the EVI in the downscaling model. Zhang et al. [30] used the EVI instead of the NDVI to
estimate particulate matter less than 2.5 µm (PM2.5) in the GWR model. The results showed that the
EVI-based model was more effective than the previous GWR model. Moreover, in the downscaling
model of precipitation, Shi et al. [31] introduced the EVI into the random forest model to downscale
precipitation over the Tibetan Plateau. In this study, we attempted to investigate the performances
of both EVI-derived and NDVI-derived downscaling models at downscaling TRMM precipitation
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data. In addition, the NDVI response to precipitation has a time lag on a monthly scale. Therefore,
downscaling models are used to downscale monthly precipitation data, which is likely to produce
large errors.

The purpose of this study was to use the GWR model to downscale TRMM precipitation products
in the study area to obtain higher-resolution precipitation data. The specific objectives were as follows:
(1) To use the GWR-based downscaling model to downscale TRMM 3B43 precipitation data from 0.25◦

to 1 km on an annual scale in the middle and lower reaches of the Yangtze River Basin (MLRYRB);
(2) to investigate the efficiencies of the NDVI-based and EVI-based GWR models; and (3) to obtain
monthly precipitation data based on the calibration of the annual downscaling results and evaluate
the accuracy of those data.

2. Data and Methods

2.1. Study Area

The Yangtze River Basin is the third-largest river basin in the world, with a total drainage area of
approximately 1.8 million km2, accounting for 18.8% of China’s land area [32]. The annual precipitation
in the MLRYRB, which was chosen as the study area (as shown in Figure 1), is 1000–1400 mm, and the
distribution of precipitation decreases from southeast to northwest. Generally, precipitation reaches a
maximum in summer, followed by spring, autumn, and winter.
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Figure 1. The locations of the meteorological stations and the digital elevation model (DEM) over the
middle and lower reaches of the Yangtze River Basin (MLRYRB).

2.2. Data

The TRMM satellite, sponsored by the National Aeronautics and Space Administration (NASA)
and the Japan Aerospace Exploration Agency (JAXA), was successfully launched in November 1997.
This study used the TRMM 3B43 monthly product, with a spatial resolution of 0.25◦ × 0.25◦ over a
latitude range from 50◦ S to 50◦ N [33,34]. The TRMM 3B43 product incorporates satellite rainfall
estimates with gauge data into gridded estimates. In addition, the Moderate Resolution Imaging
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Spectroradiometer (MODIS) instruments on board the Terra and Aqua satellites are designed to observe
the earth’s surface, and the MODIS products provide data beginning in 2000 [35–37]. Therefore,
we downscaled the TRMM precipitation products during the period 2000–2016. Furthermore,
for comparative analysis, we also selected the GPM-3IMERGM precipitation product (available
at https://pmm.nasa.gov/data-access/downloads/gpm), which provides data beginning in March
2014 with a spatial resolution of 10 km × 10 km [38].

The NDVI and EVI products, which provide monthly data at a 1 km × 1 km spatial resolution
as a gridded level-3 product in the sinusoidal projection, were obtained from the Terra MODIS
Vegetation Indices Version 6 data product (MOD13A3) [39]. The annual NDVI and EVI were obtained
by averaging the monthly NDVI and EVI, respectively. Additionally, the Shuttle Radar Topography
Mission (SRTM) DEM product was provided by the International Scientific & Technical Data Mirror
Site, Computer Network Information Center, Chinese Academy of Science, with a spatial resolution of
90 m (http://www.gscloud.cn).

The monthly precipitation data recorded at 70 meteorological stations from 2000 to 2016 used
in this study were provided from the China Meteorological Data Sharing Service System (available
at http://cdc.nmic.cn/home.do). Annual precipitation was accumulated by summing the monthly
precipitation at each station.

2.3. Methodology

GWR represents a local regression method in which the relationships between variables change
with spatial position, and nonstationary relationships between dependent and explanatory variables
are effectively considered [40]. Moreover, we selected the adaptive bi-square as the kernel function, and
the small sample bias-corrected Akaike’s information criterion (AICc) as the criteria [40]. This study
used EVI, DEM, and TRMM data to establish a GWR model, where the GWR equation is expressed
as follows:

PLR = β0(uj, vj) + βEVI(uj, vj)EVILR + βDEM(uj, vj)DEMLR + εLR(uj, vj) (1)

where PLR, EVILR and DEMLR represent the TRMM annual precipitation, EVI, and elevation at a low
resolution (LR) of 0.25◦, respectively; (uj, vj) is the geographical position, where uj represents the
longitude and vj represents the latitude; β0(uj, vj) is the intercept; βEVI(uj, vj) and βDEM(uj, vj) are the
slopes of precipitation with respect to the EVI and the DEM, respectively; and εLR(uj, vj) is the residual
at a 0.25◦ spatial resolution. The reader is referred to the literature for a more detailed introduction to
the GWR method [27,41,42].

This study assumed that the spatial heterogeneity of precipitation can be explained by two
environmental variables, namely, the EVI and DEM. Based on the GWR model, functional relationships
were established between the TRMM data and the EVI and DEM to downscale the TRMM precipitation.
The main steps of the downscaling process are as follows:

1. Monthly TRMM precipitation data during the period 2000–2016 are accumulated to obtain the
annual precipitation data, the monthly EVI1km is averaged to obtain the annual EVI1km, and the
1-km resolution EVI and DEM data are resampled to a 0.25◦ resolution by bilinear interpolation.
The model parameters in Equation (1), namely, β0(uj, vj), βEVI(uj, vj) and βDEM(uj, vj), are
obtained at a spatial resolution of 0.25◦ by using the GWR model;

2. The model parameters, namely, β0(uj, vj), βEVI(uj, vj), and βDEM(uj, vj), are resampled to 1 km
using bilinear interpolation, where β1km

0 (uj, vj), β1km
EVI (uj, vj), and β1km

EVI (uj, vj) represent the model
parameters at a 1-km resolution;

3. The annual precipitation is estimated at a 1-km resolution by using the 1-km model parameters
obtained in the previous step with the following equation:

P1km
estimated(uj, vj) = β1km

0 (uj, vj) + β1km
EVI (uj, vj)EVI1km + β1km

DEM(uj, vj)DEM1km (2)

https://pmm.nasa.gov/data-access/downloads/gpm
http://www.gscloud.cn
http://cdc.nmic.cn/home.do
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4. The residual εLR(uj, vj) at a 0.25◦ resolution is interpolated into a resolution of 1 km using
ordinary kriging [43], the result of which is expressed as ε1km(uj, vj). Then, the downscaled
precipitation is obtained by adding the 1-km precipitation estimated in the previous step to the
residual ε1km(uj, vj), and the result can be expressed as follows:

P1km
downscaled(uj, vj) = P1km

estimated(uj, vj) + ε1km(uj, vj) (3)

5. The geographical differential analysis (GDA) method proposed by Cheema et al. [44], based
on residual merging algorithms for multisource data, is used to reduce the difference between
the observation data and the downscaled precipitation data [45]. The difference Ppoint

error between
the downscaled precipitation data and the corresponding meteorological observation data is
calculated using Equation (4), after which Ppoint

error is interpolated into a 1-km resolution as P1km
error

using ordinary kriging. Then, P1km
error is subtracted from the downscaled data P1km

downscaled to obtain
the downscaled and calibrated precipitation data P1km

GDA:

Ppoint
error = P1km

downscaled − Ppoint (4)

6. The fraction Fraction0.25
◦

i is obtained by calculating the ratio of the monthly TRMM 3B43
precipitation data to the annual precipitation as follows [46]:

Fraction0.25
◦

i =
TRMMi

12
∑

i=1
TRMMi

(5)

where TRMMi represents the original TRMM precipitation at a 0.25◦ resolution in the ith month
of the year, and the denominator is the corresponding annual precipitation;

7. Ordinary kriging interpolation is employed to interpolate the fraction Fraction0.25
◦

i of each month
into gridded data Fraction1km

i at a 1-km resolution. Finally, the fraction Fraction1km
i is multiplied

by the annual downscaled data obtained in the fifth step, and the precipitation data of each month
in 2000–2016 are obtained. The main steps of the downscaling method are shown in Figure 2.
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Figure 2. Flow chart of the geographically weighted regression (GWR)-based downscaling method
proposed in the study.

2.4. Validation

We used data from weather stations that were not used for the calibration step to verify the
downscaling results. The coefficients of determination (R2), the root mean squared error (RMSE), and
the mean absolute error (MAE) were selected to evaluate the results:

R2 =
∑n

i=1 [(Pi − P)(Oi −O)]√
∑n

i=1 (Pi − P)2
√

∑n
i=1 (Oi −O)

2
, (6)

RMSE =

√
∑n

i=1 (Pi −Oi)
2

n
, (7)

MAE =
∑n

i=1|Pi −Oi|
n

, (8)

where P is the precipitation calculated by the downscaled results, and O is the precipitation observed
at the weather stations. R2 represents the correlation between variables. The larger the R2 value,
the higher the correlation, and vice versa. The RMSE is used to measure the deviation between the
predicted value and the true value. A higher RMSE value indicates a larger prediction bias, and vice
versa. MAE is the average of absolute errors, avoiding positive and negative cancellation. The smaller
the MAE value, the higher the prediction accuracy of the model.

3. Results and Discussion

3.1. Comparison between the NDVI-Based and EVI-Based GWR Models

In this study, the year of 2016 was selected to show the main results of the downscaling process.
To investigate the efficiencies of the NDVI-based and EVI-based GWR models, the NDVI-derived
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and EVI-derived GWR annual downscaling models were established at a spatial resolution of 0.25◦,
and the downscaled results from 2000 to 2016 were obtained according to steps (1) through (4) of the
abovementioned downscaling procedure. Figure 3 shows a comparison between the downscaling
results from the NDVI-based and EVI-based GWR models. Evidently, regardless of whether the
NDVI-based or EVI-based method was used, the accuracy of the downscaling results was better than
that of the original TRMM data, thereby validating the applicability of the constructed downscaling
models in the MLRYRB. In addition, a comparison between the box plots of the NDVI and EVI (where
the NDVI-based box plots and EVI-based box plots are shown in green and blue, respectively) revealed
that the NDVI performed better than the EVI in the annual downscaling model. At present, there have
been few studies on the EVI-based downscaling model. Zhang et al. [30] used the EVI to estimate PM2.5

in the GWR model and concluded that the use of EVI could more effectively estimate PM2.5 than the
previous GWR models, mainly because EVI is not easy to saturate even when the chlorophyll content is
high. Although studies have shown that the NDVI is prone to supersaturation when the precipitation
exceeds a certain threshold, this study used the annual NDVI average, which may have neutralized
this saturation effect. This could explain the observed superiority of the NDVI. Therefore, in the
following analysis, we employed the NDVI-based GWR annual precipitation downscaling model.
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Figure 3. Comparison of the accuracies of the downscaled annual precipitation results between the
normalized difference vegetation index (NDVI)-based and the enhanced vegetation index (EVI)-based
GWR models. (a) R2; (b) RMSE; and (c) MAE.

3.2. The Annual Downscaled Results and Ground Validation

The spatial distribution of the annual precipitation based on the TRMM data in the MLRYRB
is shown in Figure 4a. Based on the original TRMM data, the NDVI-derived downscaled results
after correcting the residuals in the MLRYRB were obtained following the GWR-based downscaling
procedure (Figure 4b). In addition, by utilizing the GDA calibration method, the difference between
the meteorological station observation data (that is, the weather station data used for the calibration)
and the 1-km downscaled results at each corresponding position was calculated and then interpolated
into 1-km resolution data using ordinary kriging (Figure 4c). Finally, the annual downscaling data
calibrated by the GDA method were obtained (Figure 4d).
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Figure 4. (a) Annual Tropical Rainfall Measuring Mission (TRMM) precipitation data over the MLRYRB
for 2016 at a 0.25◦ resolution; (b) downscaled results after residual corrections for 2016 in the MLRYRB;
(c) interpolated residuals using ordinary kriging; (d) annual downscaled precipitation calibrated by the
geographical differential analysis (GDA) method.

Figure 4a,b showed that the original TRMM precipitation data were consistent with the
residual-corrected precipitation distributions, and the R2 of the results downscaled with GWR was
0.91, indicating that the GWR method could downscale the TRMM annual precipitation data from
0.25◦ × 0.25◦ to 1 km× 1 km over the MLRYRB. The variation range of the original TRMM precipitation
was 528.73–3022.32 mm (Figure 4a), while the downscaled precipitation range after the residual
correction was 305.77–3469.84 mm (Figure 4b). The downscaled precipitation clearly contained
more detail and better reflected the spatial variations in the precipitation. In addition, the residual
variation range was −235.70–76.14 mm (Figure 4c), where red indicates a slight overestimation of
rainfall, blue indicates an underestimation, and yellow indicates a very accurate rainfall estimate at
the weather stations.

To test the performance of the constructed downscaled model, we compared the downscaled
results with remaining weather station data during the period 2000–2016. Figure 5a shows scatterplots
of the TRMM data and the weather station observation data, where the R2, RMSE, and MAE
values were 0.86, 180.52 mm, and 146.44 mm, respectively. The original TRMM data overestimated
precipitation in comparison with the rain gauge observations. However, before the residual corrections,
the R2, RMSE, and MAE values were 0.75, 200.42 mm, and 153.97 mm, respectively (Figure 5b). Prior
to performing the residual corrections, the spatial resolution clearly improved from 0.25◦ to 1 km,
but the accuracy was not as good as that of the TRMM data. Figure 5c illustrates that, after the
residual corrections, the R2 increased by 0.12, the RMSE value was reduced by 53.96 mm, and the MAE
value decreased by 36.79 mm. Hence, the accuracy of the downscaling model could be effectively
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improved after correcting for residuals, thereby verifying the importance of residual corrections in
the downscaling model for the MLRYRB. After calibration with the GDA method, the downscaled
rainfall was more similar to the actual rainfall observations from the weather stations (R2 = 0.88,
RMSE = 140.56 mm, and MAE = 113.56 mm). Thus, the calibration process was essential for acquiring
more accurate downscaling results.
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3.3. Downscaled Monthly Precipitation Results

According to the preceding downscaled steps, the annual downscaled results within the MLRYRB
were decomposed to obtain downscaled precipitation data with a spatial resolution of 1 km on a
monthly scale (Figure 6). Figure 6 shows the original 0.25◦ resolution TRMM data from January
to December and the downscaled precipitation data with a spatial resolution of 1 km for each
corresponding month. The results showed that the TRMM data and the downscaled results had
similar overall spatial distributions, but the downscaling results had a higher resolution and thus
could display more detailed information.

Table 1 shows a comparison between the monthly precipitation accuracies. The results showed
that the mean R2, RMSE, and MAE values between the monthly precipitation data and the weather
station observations based on the calibrated downscaling procedure were 0.86, 34.63 mm/month, and
23.12 mm/month, respectively, while those between the original TRMM precipitation and weather
station observations were 0.85, 38.01 mm/month, and 25.69 mm/month, respectively. These results
showed that the downscaled method proposed in this study could improve not only the spatial
resolution of remote sensing precipitation data but also the accuracy of the data through the GDA
method. Furthermore, the proposed approach can provide a theoretical basis for obtaining precipitation
data with high spatial resolution.
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Table 1. Comparison between the TRMM original resolution data (0.25◦ × 0.25◦) versus the weather
stations. RMSE: Root mean squared error; MAE: Mean absolute error.

Weather
Station Name

Longitude Latitude Elevation
TRMM Downscaled Results

R2 RMSE MAE R2 RMSE MAE

Yichang 111.30 30.70 105 0.90 29.73 20.18 0.90 25.80 16.99
Wuhan 114.13 30.62 14 0.91 28.85 18.72 0.93 26.23 17.89

Yueyang 113.08 29.38 19 0.78 42.26 31.44 0.84 32.48 22.83
Anhua 111.22 28.38 201 0.83 43.95 26.66 0.85 43.55 27.99

Jian 114.92 27.05 44 0.84 41.61 29.85 0.84 40.83 29.34
Wugang 110.63 26.73 338 0.91 23.52 17.10 0.91 21.89 16.08

Chenzhou 113.03 25.80 179 0.86 37.51 25.38 0.87 35.52 23.45
Chaohu 117.87 31.62 21 0.74 44.40 28.14 0.76 41.68 23.05
Boyang 116.68 29.00 20 0.79 50.54 32.72 0.82 44.71 29.78

Nancheng 116.65 27.58 64 0.92 37.67 26.69 0.92 33.65 23.82

3.4. Comparison and Analysis of Downscaling Results of TRMM and GPM Data

TRMM data have been widely used in a series of satellite remote sensing precipitation products.
As an extension of TRMM satellite precipitation products, GPM data have a resolution of 10 km in
comparison with the 0.25◦ resolution (approximately 27 km) of TRMM data, and some studies have
shown that the accuracy of the former data is also better than that of the TRMM data [47]. Because
GPM data begin in March 2014, GPM products suffer from a short time series. However, as NASA’s
GPM mission continues to provide long-range products, we will be able to obtain high-resolution and
long series of satellite remote sensing precipitation products in the future. Here, we chose a complete
year (2016) as an example to compare and analyze the downscaling performance of TRMM data with
that of GPM data over the MLRYRB.

Figure 7 illustrates the spatial distribution of the TRMM precipitation data (0.25◦ × 0.25◦) and
GPM precipitation data (10 km × 10 km). To further analyze the accuracies of these data, we selected
60 meteorological stations to analyze the downscaling accuracy of these two data sources. Figure 8
displays scatterplots of the meteorological station observation data and the TRMM and GPM datasets.
The results showed that the R2 of the GPM data was 0.83, which was better than that of the TRMM
data, but the MAE and RMSE values of the GPM data were slightly higher than those of the TRMM
data. The results of the three indices (MAE, R2, and RMSE) suggest that the accuracy of the TRMM
and GPM in modeling annual precipitation in the MLRYRB was comparable. The R2 indicated GPM
was more efficient than TRMM, whereas the RMSE and MAE showed that the TRMM was quite better.
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According to steps (1) through (4) of the downscaling procedure, the GPM precipitation data
were downscaled and compared to the downscaled TRMM precipitation data in Figure 9 for the year
of 2016. The spatial distribution trends of the two data sources were similar, but the downscaled
results for the MLRYRB based on the TRMM data ranged approximately from 305.77 to 3469.84 mm,
while those based on the GPM data ranged approximately from 227.26 to 2844.65 mm. To validate
the results, we plotted scatterplots of the two data sources and the weather station observations in
Figure 10. The results showed that the R2 and RMSE values of the GPM precipitation data (R2 = 0.87
and RMSE = 183.88 mm) were generally better than the TRMM precipitation data, but the MAE value
of the former (MAE = 153.06 mm) was slightly larger than that of the latter precipitation product. The
RMSE and MAE values of the GPM data were higher than the TRMM data before downscaling, and
the RMSE of the GPM data was lower than the TRMM data after downscaling. Since NASA’s GPM
mission will continue to provide GPM remote sensing precipitation products, there will be more years
with which to compare and analyze the differences between these two data sources when the time
series are longer.
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4. Conclusions

In this study, we used a GWR-based downscaling model to downscale TRMM 3B43 precipitation
data from a resolution of 0.25◦ to 1 km on an annual scale in the MLRYRB. The 1-km residual-corrected
model based on the GWR method was then used to calculate the precipitation data, after which the
annual downscaled results were calibrated by the GDA method. Then, the calibrated 1-km annual
precipitation data were decomposed into fractions to obtain monthly precipitation data from 2000 to
2016 over the MLRYRB. The main conclusions can be summarized as follows:

(1) We compared the accuracies of the annual downscaled results acquired with the NDVI-based and
EVI-based GWR models, showing that the NDVI performed better than the EVI in the annual
downscaling model. This may have been because this study used the annual average NDVI,
which may have neutralized any detrimental saturation effects;

(2) The accuracy of the downscaling model could be effectively improved after correcting
the residuals and performing a calibration with the GDA method. Subsequently, the
calculated rainfall was closer to the actual weather station rainfall observations (R2 = 0.88,
RMSE = 140.56 mm, and MAE = 113.56 mm). Thus, the calibration process was essential in
providing more accurate downscaling results;

(3) The downscaled results were decomposed into fractions to obtain monthly precipitation data.
The downscaled method proposed in this study could improve not only the spatial resolution
of remote sensing precipitation data, but also the accuracy of such data, by utilizing the
GDA method;

(4) Finally, we analyzed and compared the downscaling performance of TRMM data to GPM data
over the MLRYRB. The results showed that the R2 and RMSE values of the GPM precipitation
data (R2 = 0.87 and RMSE = 183.88 mm) were generally better than the TRMM precipitation data,
but the MAE value of the former (MAE = 153.06 mm) was slightly larger than that of the latter.
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