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Abstract: Many efforts have been made in recent decades to formulate strategies for improving the
efficiency of water distribution systems (WDS), led by the socio-demographic evolution of modern
society and the climate change scenario. The improvement of WDS management is a complex task
that can be addressed by providing services to maximize revenues while ensuring that the quality
standards required by national and international regulations are upheld. These two objectives can be
fulfilled by utilizing optimized techniques for the operational and maintenance strategies of WDS.
This paper proposes a methodology for assisting engineers in identifying water leakages in WDS,
thus providing an effective procedure for ensuring high level hydraulic network functionality. The
proposed approach is based on an inverse analysis of measured flow rates and pressure data, and
consists of three steps: The analysis of measurements to select the most suitable period for leakage
identification, the localization of the best measurement points based on a correlation analysis, and
leakage identification with a hybrid optimization that combines the exploration capability of the
differential evolution algorithm with the rapid convergence of particle swarm optimization. The
proposed procedure is validated on a reference hydraulic network, known as the Apulian network.

Keywords: water distribution systems; leakage detection; optimal sensor placement; hybrid evolutive
optimization; hybrid particle swarm with differential evolution operator

1. Introduction

The maximization of the efficiency of water distribution systems (WDS) is a topic that is receiving
increasing attention from research and industrial institutions due to continuous demographic growth
and a worsening of the water crisis [1]. The improvement of WDS has been a challenging task due
to a lack of structured and consistent measurement data [2]. However, these systems have been
updated recently with advanced data logging systems and intelligent management strategies [3–5].
Such actions are aimed not only at increasing the economic profits of water-related services, but also
at improving the quality of the service in line with national and international standards. One of the
tricky challenges in the management of WDS at the moment is the minimization of water leakages,
which represents not only a mass, energy and economical loss, but is also one of the main factors of
water contamination [6,7].

Different definitions exist for leakage in water distribution systems. One of the most frequently
used defines leakage as the quantity of water which escapes from the pipe network by means other
than through a controlled action [8]. Leakages are typically classified into two different categories:
Background leakages and bursts. The former are due to water escaping through inadequate joints or
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cracks, for example, while bursts (i.e., main breaks) represent structural pipe failures [9]. Leaks can
also exist in reservoirs and tanks. Leakages in distribution systems can be caused by several factors,
such as bad pipe connections, pipe corrosion, and mechanical damage caused by excessive pipe load
(e.g., by traffic on the road above, or by a third party working on the system). Other common factors
that influence leakages are ground movement, high system pressure, damage due to excavation, pipe
age, winter temperature, pipe defects, ground conditions and poor quality of workmanship [8].

The detection of water leakages has usually been undertaken through extensive and expensive
on-field operations. Due to the increasing availability of WDS meter data, several efforts have been
made to support on-field operation with ex-ante analysis in recent years, and several works have
been published on leakage detection and isolation methods for water distribution networks, such as
transient-based leak detection methods [10].

Another set of methods is based on inverse transient analysis [11–14]. The principal concept of
this methodology is the analysis of pressure data collected during the occurrence of transitory events
by means of the minimization of the difference between the observed and calculated parameters [15].

Pudar and Liggett [16] formulated leak detection as an inverse problem using pressure
measurements and defining a sensitivity matrix. This approach, which is used by Pérez et al. [17,18],
is based on pressure measurements and leak sensitivity analysis. Leakage localization methods are
coupled with hydraulic models to detect leaks and to narrow the area sought. The latter aspect allows
focusing investigations into on-site optimal exploration in the areas characterized by a consistent
number of leaks.

District audits are labor-intensive and expensive, since they are performed at night. Nowadays,
the trend is to install permanent flow meters in the network and connect them telemetrically to a
supervisory control and data acquisition (SCADA) system. District audits help identify areas of the
network that have excessive leakage but no specific information about the exact location of the leaks is
given. It is therefore crucial to know which points of the network are the most representative in order
to install the sensor. The selection of the optimal meters positioning, e.g., pressure meters [18–20], is
addressed in several papers concerning principally the detection of contamination in water distribution
networks [21].

The searches for water leaks in WDS, as is generally the case in WDS optimization issues, are
mainly based on evolutionary algorithms (EAs) and other metaheuristic techniques. The development
and application of these algorithms has been a crucial research field for over the last twenty years, and
these techniques are widely used in many different applications, as reported by Maier et al. [22].

In this paper we propose a methodology able to identify water leaks in WDS to support operational
engineers and technicians in the preliminary phases of the localization of water leakages.

As first, hours when the WDS was less perturbed were identified and the optimal place to insert
a sensor was evaluated through a correlation analysis. Afterwards, the leakages were localized by
using a hybrid optimization technique based on differential evolution algorithms and particle swarm
optimization. All the analyses were carried out on the Apulian network.

This paper is organized as follows: Introduction of the methodology for both sensor placement
and leakages detection, summary of the results, and presentation of conclusions.

2. Methodology

The goal of this study is to localize the position of an imposed leakage in a well-known network
through an inverse analysis, taking into account the flow rate delivery by the reservoir, and pressures
measured at specific points in the network.

To do this, a hybrid evolutive algorithm [23] was used to localize and identify the magnitude of the
leakages into WDS. This algorithm combines the large exploration capability of differential evolution
(DE) and the fast convergence of particle swarm optimization (PSO), so it is called “differential
evolutive particle swarm optimization” (DEPSO).
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The proposed methodology was tested and validated on the Apulian network [24] which is a
synthetic network consisting of 34 pipes, 23 users, and 1 reservoir (Figure 1).
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Figure 1. Apulian network layout with the leaking nodes and the correspondent emitter coefficients
highlight in red.

Each user node was suitable for the insertion of a flow meter while emitter nodes were placed in
the middle of each pipe of the network in order to evaluate pipe leakages. The location and the amount
of fictitious leakages are shown in Figure 1 through the large circles and the corresponding value,
which were chosen according to Debiasi et al. [25]. In order to minimize error in the inverse analysis
and to make this analysis consistent with a real case study, the hours in which the WDS presented a
minor perturbation were identified (i.e., when the system had a maximum sensitivity to losses), and
the best location for placing a sensor was investigated.

2.1. Characterization of the Demand Pattern

The real data of water consumptions in two small municipalities in the Trentino-Alto Adige region
of Italy were analyzed. We were then able to build the demand pattern of the Apulian network by
analyzing the data measured in real cases. In fact, the hourly pattern used in the Apulian network
was the average of the two municipalities’ demand behavior, and the resulting weight function was
adopted for leak detection.

Figure 2a,b show the statistics of hourly consumptions recorded during a year of measurements.
The demand and pressure of the two networks were analyzed to identify the more suitable hours for
the inverse analysis of leak detection. The hours characterized by a high variability of water demand
were not sufficiently stable or representative of the global behavior of the WDS, so low importance was
associated to such hours, which were usually daytime hours. On the contrary, higher weights were
assigned to the night time hours, which were characterized by limited variability. Figure 2c shows the
weight associated to each hour, calculated as the inverse of the correspondent water demand variance.
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2.2. Measurement Points Identification

Since the number of sensors that can be displaced in a real network is limited, it is important to
place them in optimal locations. In this study, during the identification of the best measurement points,
it is assumed that only four pressure sensors are usable in the WDS. The challenge was to select the
four measurement nodes (users) that both maximize the sensitivity of the pressure meters with respect
to the leakages, and provide uncorrelated measurements. These two requirements were fulfilled by
a sensitivity analysis and a subsequent correlation analysis of the WDS. To this aim, the procedure
followed the approach developed by Bort et al. [19], as shown in the algorithm scheme in Figure 3.
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This methodology was based on two stages. The first analysis related to the sensitivity analysis of
the user nodes at leakages. A sensitivity matrix was calculated for each hour of the day, by placing a
known leakage into one pipe and recording the pressure measured on every user node. The leaking
flow was set as a ratio of the nominal flow (where no leakages are placed into the network). Three
ratios were tested: 0.5, 1, and 2, in order to consider the effect of the leakage magnitude. The emitter
coefficient was calculated from the imposed leaking flow as follows:

ki = qi p−γ
i , (1)

where pi is the pressure, and γ is the pressure exponent set to 0.5. The sensitivity matrix relative to
the h-th hour is called ∑h and it has as many rows as the number of user nodes (i.e., 23), and as many
columns as the number of pipe nodes (i.e., 34). Each element of the 24 sensitivity matrices was called
p%m,l,h, and this represents the percentage of variation of the pressure at the measurement node m
with respect to the nominal case when a leakage was placed into the pipe l and the measurement was
carried out at hour h.

Suitable performance indexes are defined on each element of the matrix in order to reduce the
dimensions of the 24 matrices ∑h to four values for user nodes [19]. The four indexes are as follows:

1. The mean f1,m of the mean percentage pressure variations across different positions of the leaking
pipe p%m,h. These quantities are calculated as:

p%m,h =
∑33

l=1 p%m,l,h

33
, (2)

f1,m =
∑24

h=1 p%m,h

24
; (3)

2. The variance of p%m,h across the day:

f2,m =
∑24

h=1 (p%m,h − f1,m)
2

24
; (4)

3. The mean across the whole day of σ2
m,h, that is defined as the variance of p%m,l,h across the different

position of the leakages:

σ2
m,h =

∑33
l=1 (p%m,l,h − p%m,h)

2

33
, (5)

f3,m =
∑24

h=1 σ2
m,h

24
; (6)

4. The variance across the whole day of σ2
m,h:

f4,m =
∑24

h=1 (σ
2
m,h − f3,m)

2

24
. (7)

Once the four features were calculated, a principal component analysis (PCA) was carried out in
order to extract the most sensitive from between m-nodes. Figure 4 shows the principal component
analysis carried out on the sensitivity study results.
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By definition of the calculated features, only the positive principal components were associated to
a decreasing in the measurement pressure due to a leaking pipe. For such a reason, the negative values
of principal components were neglected and rounded to zero. The four most sensitive measurement
nodes found from this analysis were numbers 23, 12, 13, and 21. Figure 5A shows that these sensitive
nodes are close to each other, therefore, redundant information was used for the inverse analysis if the
pressure sensors were placed on the most sensitive nodes.

Water 2019, 11, x FOR PEER REVIEW 6 of 11 

 

Figure 4. Principal components calculated for each measurement node. 

By definition of the calculated features, only the positive principal components were associated 
to a decreasing in the measurement pressure due to a leaking pipe. For such a reason, the negative 
values of principal components were neglected and rounded to zero. The four most sensitive 
measurement nodes found from this analysis were numbers 23, 12, 13, and 21. Figure 5A shows that 
these sensitive nodes are close to each other, therefore, redundant information was used for the 
inverse analysis if the pressure sensors were placed on the most sensitive nodes. 

 

Figure 5. Results of the sensitivity (A) and correlation (B) analysis. 

The second stage aimed to overcome this limitation through a correlation analysis, following the 
scheme in Figure 6. The percentage variations 𝑝% , ,  of the measured pressure with respect to the 
non-leaking cases were averaged across the hours of the day, thus obtaining a 23  33 matrix P 
whose elements were the daily average of percentage of the pressure variations. According to the 
considerations made from the previous PCA analysis, all the rows of 𝑃 associated to nodes with 
negative principal components were neglected. Therefore, the matrix 𝑃 is reduced to a dimension 9  33. The correlation matrix 𝐶 was defined as: C = 𝑃  𝑃. (8) 

The most uncorrelated points were obtained by solving a least square optimisation (LSQ), that 
was defined as: 𝑚𝑖𝑛  𝑋 |𝐶|𝑋, (9) 
where 𝑋  is a vector with 9 elements, in which the 𝑗 -th element is associated to the candidate 
measurement node with the 𝑗-th 1st PCA component. The following constraints were associated with 
the target function: 

• The 𝑗-th element of 𝑋 was close to 1 if it was uncorrelated from other nodes (it will host a 
pressure sensor), 0 otherwise: 𝑋 < 1        𝑓𝑜𝑟  𝑗 ∈ [0; 1]; (10) 

• The node 23, that is the most sensitive measurement node, was always taken as a measurement 
node: 𝑋 = 1. (11) 
The outcome of this analysis was the four nodes 23, 16, 13, and 4, which were not only sensible 

to the position of leakages in the network, but also uncorrelated from each other. The position of these 
four measurement nodes is shown in Figure 5B. 

Figure 5. Results of the sensitivity (A) and correlation (B) analysis.

The second stage aimed to overcome this limitation through a correlation analysis, following
the scheme in Figure 6. The percentage variations p%m,l,h of the measured pressure with respect to
the non-leaking cases were averaged across the hours of the day, thus obtaining a 23× 33 matrix P
whose elements were the daily average of percentage of the pressure variations. According to the
considerations made from the previous PCA analysis, all the rows of P associated to nodes with
negative principal components were neglected. Therefore, the matrix P is reduced to a dimension
9× 33. The correlation matrix C was defined as:

C = PT P. (8)

The most uncorrelated points were obtained by solving a least square optimisation (LSQ), that
was defined as:

min XT |C|X, (9)

where X is a vector with 9 elements, in which the j-th element is associated to the candidate
measurement node with the j-th 1st PCA component. The following constraints were associated
with the target function:
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• The j-th element of X was close to 1 if it was uncorrelated from other nodes (it will host a pressure
sensor), 0 otherwise:

Xj < 1 f or j ∈ [0; 1]; (10)

• The node 23, that is the most sensitive measurement node, was always taken as a
measurement node:

X1 = 1. (11)

The outcome of this analysis was the four nodes 23, 16, 13, and 4, which were not only sensible to
the position of leakages in the network, but also uncorrelated from each other. The position of these
four measurement nodes is shown in Figure 5B.
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2.3. Leakage Detection

The inverse analysis for the leak detection was formulated as an optimization problem. The
emitter coefficients k j of all pipes nodes were calibrated until the pressures of the four selected
measurement nodes and the flow rate supplied by the reservoir simulated by the widely used hydraulic
simulator EPANET [26] matched the pressures and flow rate measured. The latter is the theoretical
Apulian network in which four leakages were imposed according to Figure 1. The formulation of the
optimization problem is shown by the following equation:

min J(k) =
24

∑
t=1

wt

[
4

∑
t=1

∣∣∣∣∣ Ĥi,t(k)− Hi,t

Hi,t

∣∣∣∣∣+
∣∣∣∣∣ Q̂t(k)−Qt

Qt

∣∣∣∣∣
]

, (12)

where k = [k1, k2, k3, k4] is the vector of emitter coefficient, wt are the hourly weights calculated from
step 1 (Figure 2c), Ĥi,t(k) is the pressure simulated at the i-th measurement node and recorded at t-th
hour (note the dependency of the pressure from the value of the emitter coefficients k), Q̂t(k) is the
simulated water flow leaving the reservoir relative to the t-th hour, while Hi,t and Qt are the reference
pressure at measurement nodes and flow rate respectively. Note that it is assumed that only four
nodes in the network were leaking since the pressure was measured on only four nodes, otherwise the
optimisation problem would be ill-conditioned.
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Three constraints are applied to the target function. Sources of uncertainty on the moder of the
hydraulic network were taken into account by accepting that the global emitter Kglob(k) could vary up
to 10%:

p1(k) =


|Kglob(k)−9|

9 i f Kglob(k) < 9
0 i f 9 ≤ Kglob(k) < 11
|Kglob(k)−11|

11 i f Kglob(k) ≥ 11.

(13)

Each emitter coefficient ki was constrained to be positive, but limited to a maximum value. The
upper limit was set by assuming that in the worst case the total leakage of the network was concentrated
in one node. Such a condition corresponds to a maximum emitter coefficient kmax = 6 l/smγ:

p2(k) = [max(0,−ki)]
2; (14)

p3(k) = [max(0, ki − kmax)]
2. (15)

The complete target function is obtained by combining Equation (12) with Equations (13)–(15):

Jtot(k) = J(k) + p1(k) + p2(k) + p3(k). (16)

The optimization algorithm used for minimizing the target function in Equation (16) was the
differential evolution particle swarm (DEPSO), which is a hybrid evolutive algorithm in which a
population (i.e., a group) of individuals (i.e., candidate set of emitter coefficients) is evolved until the
target function is minimized. Each population had 50 individuals, and each individual was a set of
8 variables. The first four elements of an individual defined the number of the four leaking nodes (the
number of leaking nodes matches the number of nodes in which pressure was measured in order to
avoid ill-conditioned problems), while the remaining four elements defined the emitter coefficient of
each leakage.

The individuals of the first population were generated by randomly sampling the emitter
coefficients from a uniform distribution. The evolution then proceeded by alternating an iteration with
the differential evolution (DE) [27] with an iteration with the particle swarm optimization (PSO). At
the k-th iteration step, each individual of the population Pk was updated with the best population Pbest,
which was the population grouping of the best individuals calculated during the whole optimization
process. The values of the target functions relative to the elements in Pbest are stored into Jtot,best.

Then, the mutation operation was performed according to a random scheme. Three array of
indexes I1, I2, and I3 were randomly generated from a uniform distribution, and with as many elements
as individuals in the population (that in this study is 66). The population Pk,m was given by:

Pk,m = Pbest(I1) + w f (Pbest(I3)− Pbest(I2)), (17)

where the scaling factor w f is equal to 0.6 (this value has been chosen after a manual calibration).
The cross-over operation was applied to Pk,m with a probability of 60%. For each i-th individual

Pi,k,m in Pk,m, a vector ri was produced of 8 randomly generated numbers sampled from a uniform
distribution defined in the interval [0, 100]. The indexes corresponding to the elements of ri ≥ 60
identify which elements of Pi,k,m were replaced with the correspondent elements of the individual
Pi,best and Pbest.

At the end of the cross-over step, a new population Pk,mr was obtained and the target function
was evaluated for each individual of Pk,mr. The DE step ended by creating a population Pk,de assembled
by merging the best individuals of Pk,mr and Pbest.
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At this point it was applied a PSO step to Pk,de, according to the algorithm proposed in Clerc &
Kennedy [28]. It is defined a constriction factor C:

C =
2∣∣∣2− φ−

√
φ2 − 4 ∗ phi

∣∣∣ = 0.73, (18)

φ = cs + cc, (19)

where cs = 1.3 is the social acceleration coefficient and cc = 2.8 is the cognitive acceleration coefficient.
The values of the two parameters were selected as suggested in the literature [29] and by assuring that
cs + cc ≤ 4.

Then the velocities of each i-th individual in Pk,de were updated:

vi,k = C
(

vi,k−1 + cc rc(Pi,best − Pi,k,de) + cs rs

(
Pg,best − Pi,k,de

))
. (20)

Pg,best is the best individual in the Pbest population, while rr and rc represent uniform random
numbers between 0 and 1. The velocities vk were used to update the current population:

Pk,pso = Pk,de + vk. (21)

The target function was evaluated for each individual in Pk,pso, and the relative values of the target
function were stored in Jk. The optimisation was stopped if the difference between the maximum and
minimum values in Jk was less than 10−5, or after 3000 iterations. Otherwise, the next iteration was
performed starting again from step 1.

3. Results

In order to take into account the intrinsic stochasticity of evolutive algorithms, the identification
was performed 10 times. The best result of the 10 identifications is shown in Figure 7. On the top left
the convergence plot is shown on a logarithmic scale. Convergence was reached after 253 iterations.
The best set of emitter coefficients is shown on the top right and it is compared to the a-priori imposed
leakages. It is possible to observe how the identified leakages match not only their position, but also
their nominal values.

Emitter coefficients across the best population are shown in the lower panel: The abscissa shows
the individuals, and the ordinate shows the number of leaking pipes, while color is associated with the
magnitude of the emitter coefficient. This colored diagram shows the stability of the identified solution:
Horizontal streams of colors indicate that a given pipe number was recognized as leaking for multiple
individuals in the population. Due to the intrinsic stochasticity behind the DEPSO optimization
algorithm, emitter coefficients, that were more frequent across the individuals of the population, were
more likely be closer to the exact solution.

The performance of the proposed methodology was strongly dependent on the initial guest
provided to the DEPSO algorithm. In order to achieve a robust identification, increasing the number
of identification trials while reducing the number of iterations was recommended. By doing this, the
exploration of a large space of the optimization domain was guaranteed.
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4. Conclusions

A methodology suitable for supporting technicians and engineers in locating and quantifying
leakages in a water distribution system has been proposed. The suggested methodology was based
on three innovative concepts: A statistical analysis of water consumption, a sensitive and correlation
analysis, and an inverse identification through a hybrid evolutive optimization algorithm.

The statistical study of water consumption trends during a one-year period allowed us to
determine the hours of the day that were characterized by more repeatable consumption patterns,
which could therefore provide accurate measurements. Such an approach extends the applicability
of the proposed procedure to a wide category of WDS, even characterized by intermittent water
consumptions. The sensitivity and correlation analyses of the hydraulic network suggested which
the optimal nodes of the network were, and where to install pressure sensors, suitable for the health
monitoring of the WDS. Finally, the inverse identification attempted to reconstruct the set of emitter
coefficients (i.e., leakages) that generated the measured pressures.

The proposed approach was validated by a theoretical network that is characterized by the
complete knowledge of topological and hydraulic properties.

The network was monitored by four pressure sensors which were strategically located, and the
leakages were estimated to be half way along four pipes. The result of the inverse optimization shows
that with a reduced number of pressure sensors it is possible to estimate the position of the leakages on
a restricted subset of pipes in the network. Due to the stochasticity of evolutive algorithms, multiple
identifications had to be run in order to achieve a robust solution. However, each identification
needed to be run for a low number of iterations since the initial guest appeared to be the major
factor in finding the global optimum. It had to be mentioned, moreover, that the procedure was
carried out on a low-power personal computer, and this could have been overcome by exploiting
parallelized implementations of the DEPSO algorithm to be executed on distributed processors, such
as on graphical processing units (GPU).
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Finally, it should be mentioned that one of the advantages of the proposed approach is that it is
scalable. Large WDSs can be sectioned into smaller WDS if the boundary conditions are set properly
(e.g., by monitoring the nodes at the frontier of the sub-WDS with pressure and flow sensors).
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