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Abstract: This paper presents a monitoring-based investigation of rainwater collection systems
using economic performance indicators in a group of households with nonconventional end-uses
for rainwater that are not traditionally associated with rainwater supply. The monitored data for
five household rainwater tank systems were analysed in two stages. For the first stage, the data
was empirically analysed to develop a method to predict effective roof catchment areas. For the
second stage, the effective roof catchment areas, together with roof area connection percentages,
were analysed against different types of water demands in individual households. The individual
systems were investigated for yield capacities, costs and water security using a modified Roof Runoff

Harvesting Systems average annual yield model based on daily water balance procedures. The Life
Cycle Costing analysis of the systems using the model was based on the Capital Recovery Method by
taking into consideration the capital costs as well as ongoing costs for maintenance, replacement and
operation of the systems. The analysis established the optimal sizing requirements for the studied
rainwater tanks and their corresponding roof area connectivity.

Keywords: integrated water management; smart monitoring; rainwater harvesting; residential
water demand

1. Introduction

Over the past few decades, rainwater tanks have been commonly used in Australian households
to mitigate the need for mains (potable) water supply, thereby contributing to the management of
increasing demand on centralised water supply systems [1]. The South Australian State Government
building rules require new dwellings and extensions or alterations greater than 50 m2 to have additional
water supply to supplement mains water [2]. The Department of Environment, Water and Natural
Resources (DEWNR) recommends that the most common way to meet the additional water supply
requirement is to install plumbed rainwater tanks with a minimum storage capacity of 1000 L.
Alternative ways to meet the additional water supply requirement include recycled water schemes,
decentralised wastewater systems [3,4], connection to community rainwater storage tanks [2,5], using
dual reticulated (fixed pipe) water supply systems or using licensed bore water. However, household
rainwater tanks are by far the most commonly adopted choice. Additionally, more than 30,000 existing
households in South Australia have utilised SA Water’s Stand Alone Rainwater Tank Rebate Scheme
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between 2011 and 2014 [6]. This scheme provides rebates of up to $200 to residents purchasing
a rainwater tank of 1000 L or greater [6]. Rainwater tanks are commonly connected internally to
non-potable end-uses such as toilet cisterns and cold water taps supplying washing machines. They
are also often fitted to outdoor irrigation (garden) taps.

However, for the households in this study, which was based in the Adelaide suburb of Lochiel
Park in South Australia (Figure 1), the setup of rainwater systems differed from the conventional
configurations often adopted across the rest of Adelaide. The water saving guidelines designed for
the Lochiel Park households [7,8] investigated in this research exceed the minimum standard under
the current Building Code of Australia (BCA) and other legislation [9,10]. The households in this
study were required to have rainwater tanks of a minimum size of 1500 L, in contrast to the minimum
SA building requirement of 1000 L [11,12] per house to collect rainwater from a minimum of 80%
of the roof surface area, plumbed into hot water systems. The minimum SA building requirement
is 50 m2 of roof area [11]. Unlike conventional Australian households, the rainwater tanks in this
study were plumbed into hot water systems supplying non-potable hot water to household end-uses
such as showers and bathroom and kitchen taps. At Lochiel Park, typical end-uses associated with
rainwater use (toilets, washing machines and outdoor irrigation taps) were instead connected to an
on-site Aquifer Storage and Recharge (ASR) treatment plant designed to provide year-round recycled
stormwater supply.
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Figure 1. Lochiel Park, South Australia, Australia (Source: Google Maps Inc. [13]).

The implementation and the technology selection for roof runoff harvesting (RRH) systems are
strongly influenced by economic constraints and local regulations emphasising the need for empirical
research to allow improved modelling of these systems [14]. Many RRH systems are focused solely
on water conservation without considering other potential benefits of these systems [14], such as
their benefit to the environment in their role towards drought preparedness and flood mitigation [15].
There is also a lack of research involving non-traditional use of rainwater systems in urban residential
environments. Additionally, there is limited empirical data to highlight the several possibilities of
rainwater harvesting in households. Thereby, the rainwater-to-hot-water setup in the households
in this study provides a unique opportunity to empirically analyse the economic performance of
rainwater tanks in an alternative setup that involves atypical end-uses. The study was also able to
explore hypothetical possibilities where water demands from the roof runoff harvesting (RRH) systems
were modified to service end-uses that were allocated to water sources other than rainwater, such
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as the onsite ASR recycled water supply. The monitored data used in this study provided a unique
opportunity to compare modelling-based results with the actual water consumption values in the
studied households. Thereby, the study aims to present the outcomes to improve the overall economic
and environmental viability of RWH depending on the varying contexts.

There have been various approaches to studying RRH systems in the past with several factors
influencing their efficiency, such as catchment area, rainfall patterns, household demand, tank sizing
and, accessories and configurations related to their setup of the systems. Most of these studies have
been made based on deterministic approaches [16,17], while others have been probabilistic [18,19]
or stochastic [20] in nature. However, this study was built with the intention of minimising the
assumptions associated with the RRH systems’ configurations and characteristics by using empirical
data obtained through auditing and monitoring methods. Although cost assumptions for components
and accessories associated with such systems are highly variable, this research provides a baseline
for future investigations involving cost sensitivities. Overall, the paper presents a methodology that
contributes to improving the design of RRH sizing and costing by highlighting some limitations to
existing methods.

Additionally, the study also demonstrates a novel method to determine the connected roof runoff

catchment areas which may be used as a reference for future studies where catchment areas cannot be
easily obtained. Several studies on rainwater tanks have previously made hypothesised assumptions
for roof catchment areas that were generally based on the building guidelines relevant to the location
of the households [21]. Sometimes, studies have relied upon map services to determine crude planar
surface areas without taking the intricacies of roof angles, slopes and elevations into consideration.
The method adopted in this study yielded results that were based on the change in runoff volumes
collected in the systems and their associated rainfall intensities, eliminating the need to determine the
influence of roof characteristics such as roof positioning, materials, shapes of gutters and downpipes
and first flush devices.

2. Materials and Methods

A group of five Lochiel Park households with RRH systems were chosen for this study. Unlike
conventional Australian households, rainwater tanks in this study were plumbed to hot water systems
supplying non-potable hot water to household end-uses such as showers and bathroom and kitchen
taps. Typical end-uses associated with rainwater use (toilets, washing machines and outdoor irrigation
taps) are instead connected to recycled water from the on-site recycled MAR water treatment plant
designed to provide year-round supply. All five RRH systems were monitored for end-use water
consumption, including rainwater (supplying all non-potable hot water taps and showers), recycled
stormwater (supplying all outdoor/garden use and toilet flushing) and mains water (supplying all
indoor potable water consumption and cold water supply to taps and showers). Meters were installed
to record data at the rate of one pulse per litre of water flow in one-minute time intervals. The
selected systems were also retrofitted with pressure-based water level sensors to monitor water level
fluctuations in the rainwater tanks. A weather station was also installed onsite to record rainfall and
outdoor temperature. The RRH systems were monitored for a 12-month period between June 2015 and
May 2016. Figure 2 presents the water monitoring setup in a typical residence in this study.

Table 1 summarises the general system characteristics of each of the five RRH systems. The average
occupancy in the households was 2.4 persons per household (p/hh) (median = 2 p/hh). Rainwater tank
sizes ranged between 1500 L and 2500 L (median capacity = 1500 L). The minimum planar roof area
was 133.9 m2 (in RRH2) and the maximum was 184.8 m2 (RRH5), while the average and median planar
roof areas were 162.5 m2 and 164.5 m2, respectively. Based on the monitored data, the average and
median daily water demands obtained using monitored data are also shown in Table 1.
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Figure 2. Diagram of final water monitoring setup in a typical Lochiel Park residence installed
specifically for this research.

Table 1. Roof runoff harvesting (RR system characteristics.

System No. Occupancy
(p/hh)

Tank Size
(L)

Planar Roof
Area (m2)

Average Household
Daily Water Demand

(L/day)

Median Daily
Household Water
Demand (L/day)

RRH1 2 1500 151.7 98 103
RRH2 2 1500 133.9 273 289
RRH3 4 1500 177.5 554 566
RRH4 2 2500 164.5 208 223
RRH5 2 2000 184.8 340 343

2.1. Estimation of Effective Roof Catchment Areas

Although the planar roof areas were available for the study, the actual roof catchment areas
connected to the rainwater tanks were difficult to assess. The “effective roof catchment areas” were
estimated using monitored data including rainfall depths and runoff volumes collected in the tanks.
This eliminated the need to determine first flush volumes and losses (such as surface depression and
evaporative losses) associated with the RRH systems as the calculation method directly determined
the ‘effective’ roof catchment area based on the actual volume of runoff collected in the tank.

The changes in water levels within the rainwater tanks during isolated rainfall events were used
to determine the corresponding runoff volumes. The runoff volumes were then used to determine the
effective roof catchment areas for the individual households using corresponding rainfall data collected
from an on-site rain gauge over a 12-month period. Over this period, an average of 14 rainfall events per
RRH system of varying intensities was used in the analysis. Figure 3 shows typical water level changes
in the tanks obtained from the recorded pressure readings for absolute and atmospheric pressure
values. Sixty-nine tank level change events were used to estimate the effective roof catchment areas.
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Figure 3. Water level variation within RRH4 during rainfall events.

Daily rainfall (R) data from a weather station (Station number 23133, Greenacres, 34.87◦ S
138.64◦ E) in geographical proximity (1.36 km) to the study area was obtained from the Bureau of
Meteorology (BOM) to validate the onsite 0.2 mm tipping bucket pluviographic raingauge that recorded
in one-minute intervals. The daily rainfall data obtained from BOM and the aggregated daily rainfall
data extracted from the onsite rainguage showed a high correlation of 0.99. The calculations involved
in determining the roof runoff catchment areas eliminate the need to determine first flush volumes and
losses (such as surface depression and evaporative losses) associated with the RRH systems as the
calculation method directly determines the ‘effective’ roof catchment area based on the actual volume
of runoff collected in the tank. Table 2 summarises the data characteristcs used to estimate the effictive
roof catchment areas.

Table 2. Characteristics used to estimate effective roof catchment area.

Characteristics Source

R (daily rainfall data) Bureau of Meteorology (BOM)
RI (rainfall intensity per event recorded in

one-minute intervals over a 1-h period) Monitored data

h1 (water level in tank before rainfall event) Monitored data
h2 (water level in tank after rainfall event) Monitored data

∆h (change in water level in tank) Calculated
V (tank volume) Tank audit
h (tank height) Tank audit

A (aerial planar roof area or Indoor floor area of
house) Household audit

The effective roof catchment areas were calculated using monitored data (Table 2) as follows. First,
days with recorded rainfall events (R > 0.2 mm) were shortlisted using daily rainfall data from the
BOM rainguage. Rainfall events on the shortlisted days were then identified and isolated using the
onsite raingauge data. All rainfall events (RI) were isolated in blocks of 1 h intervals (t = 60 min) to
maintain unifomity in the data and to observe the influence of rainfall intensity on the runoff efficiency
of the systems. Data were selected for rainfall events occurring between 10:00 PM and 7:00 AM to
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minimise the influence on tank water levels from indoor hot water usage by the householders. As
the study also monitored the hot water consumption in households, any rainfall events occurring
simultaneously with hot water usage events (within the household) were not taken into consideration
to avoid data discrepancies that may occur from the varying rainwater level in the tanks.

For selected days where R > 0.2 mm, change in tank water level,

∆hE = h2 − h1 (1)

Collected runoff volume (VR) for given rainfall event,

VR =
V
h

∆hE (2)

Estimated effective roof catchment area (AC),

AC =
VR

RI
(3)

where RI is the recorded rainfall during any given rainfall event occuring in time t (where t = 60 min).

2.2. Roof Rainwater Harvesting Systems Modelling

The modelling-based Life Cycle Costing (LCC) for this study was undertaken using a modified
Roof Runoff Harvesting Systems (RRHS) model (software) [22] based on the daily water balance
procedures described by Allen and Argue [23]. Previous research by Mitchell [24] has shown that
unless a high level of accuracy is required and the storage fraction (which is the ratio of storage capacity
to the annual mean inflow ranged from 0.005 to 0.4) is less than 0.015, the additional effort of sub-daily
analysis is not justified. The individual systems were analysed for yield capacities, costs, average
annual yield and the system reliability on rainfall. The LCC analysis of the systems was based on a
Capital Recovery Method (CRM) by taking into consideration the capital costs as well as ongoing costs
for maintenance, replacement and operation of the systems. Historical daily rainfall data for a 12-year
period from the Greenacres weather station were used in the model. The RRHS software is intended,
primarily, for sizing rainwater tanks for domestic use of water, including indoor as well as optional
outdoor use.

During the initial phases of the study, water balance models such as Aquacycle [25] were considered
with the intention of comparing the different components of water demand involving the various
water supply sources at Lochiel Park and eventually analysing them for their economic efficiencies
outside of the model. However, the RRHS model was eventually chosen over other integrated urban
water cycle models due to its ability to simultaneously assess the yield and economic performance of
the systems. The RRHS model also allowed for researchers to make modifications to meet research
needs such as the inclusion of additional cost parameters including costs associated with electricity
usage for pump operations.

2.2.1. Model Assumptions

There are two types of losses that are broadly associated with roof harvesting rainwater systems,
namely catchment losses and first flush losses. The model has recommended input values for first
flush as well as ‘initial losses’ (or catchment losses) resulting from rainfall capture for different roof
types (Iron, 0.5 mm; Terracotta, 1.0 mm; Concrete, 1.5 mm). However, any initial losses associated
with catchment areas in this study were assumed to be zero as the effective roof runoff catchment area
calculations are based on absolute volumes of rainwater collected in the tanks, hence eliminating the
need to incorporate catchment losses or losses from first flush devices in the RRH systems.
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2.2.2. Life Cycle Costing

Life cycle costing (LCC) can be used to estimate the total cost of a system over its entire life cycle or
over the period during which its service is provided [26,27]. An LCC method takes into consideration
all costs associated with the analysis period, including initial expenditure during the commencement
of a project (capital costs), the ongoing costs for the operation and maintenance of a system and any
replacement costs that would be incurred for purchase of components at the end of their useful life [26].
The analysis used in this study was based on the Capital Recovery Method wherein the Net Present
Value (NPV) of the system having a life cycle of ‘n’ years can be expressed based on equations by
Newnan et al. [28]:

NPV = P ∗ (1 + i)−n (4)

where, P = capital cost, i = discount rate, and n = life span of a component.
The present and future costs of a system component are often considered to be the same due

to uncertainties in predicting future costs. However, the future cost can be calculated considering
predicted future annual inflation on the present cost. Generally, different system components have
different life spans (n) requiring replacements at few times over an LCC analysis period m. In such
cases, Equation (4) can be modified as follows

NPV = P + P ∗ (1 + i)−n + P ∗ (1 + i)−2n . . . . . .P ∗ (1 + i)−(m−n) (5)

The capital recovery cost is the annual equivalent of the capital cost of the system. The Capital
Recovery Factor (CRF) can be interpreted as a multiplicative factor which is used in determining the
amount of equal annual expenditure to be incurred by the RRH system for ‘m’ number of years so that
the total present value of all the expenses combined is equivalent to a payment of one dollar at present,
at a given discount rate, ‘i’. The CRF can be determined as

CRF =

[
i(1 + i)m

(1 + i)m
− 1

]
(6)

where i = discount rate and m = analysis period (in years).
The value of equal annualised expenditure (A) for maintenance and operation, made in each of

the n periods, is given by:
A = NPV ∗CRF (7)

where NPV is the Net Present Value of the RRH system determined using Equation (4) or Equation (5).
The replacement time periods (life span) for different components considered in this study were

based on previous studies [29], Hall [30] and Gurung and Sharma [26], plumbing costs from local
businesses and retailers, as well as first-hand information received from the study participants on
the performance of their RRH systems. The assumptions for replacement periods (life cycle) for all
components are shown in Table 3.

The capital costs taken into consideration for the modelling analysis for each system included
costs for the rainwater tank, pipe work and labour, plumbing, support structures for the tank and
pump housing and rainwater pump (with float diverters). The ongoing cost inputs were maintenance
costs and operational costs. Maintenance costs included periodic tank cleaning, sediment checking,
gutter clearance, cleaning of leaf filters and first flush devices, and maintenance of pumps. Operational
costs were those associated with energy for running the rainwater pumps.

A discount rate (i) of 7% was applied to the model to calculate the CRF, NPV and the annualized
costs for the systems based on the recommended Australian Government’s Best Practice Regulation
Handbook [32]. The annualised costs were estimated for a 25-year tank replacement period and
a 10-year pump replacement period. Since their installation in 2009, 40% (two out of five) of the
households had replaced their rainwater pumps once while the rest have reported to have had no
problem with their pumping systems. Hence, for this study, the pump replacement period was taken
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to be 10 years which is a commonly assumed service life for rainwater pumps. The annualized tank
costs, which include the capital and operation/maintenance costs (Figure 4), were generally found to
increase with increasing tank size. Although the capital costs and maintenance costs of the systems
was the main determining factor in RRH systems design, the modelled outputs also included analysis
of yield capacities, the average annual yield for the systems and their reliability on local rainfall.

Table 3. Components and input assumptions for life cycle costing using the capital recovery method
(all costs in Australian Dollars).

Tank Size

Component Replacement Period
(Life Cycle in Years)

500 L 1000 L 2000 L 3000 L 4000 L 5000 L

Cost in Australian Dollars

Rainwater tank 25 $600 $800 $1000 $1500 $1600 $1800
Pipework and labour 50 $200 $200 $250 $250 $300 $300

Plumbing to house 50 $900
Support structure 50 $100 $150 $200 $250 $300 $350

Pump and float diverters 10 $1000
Maintenance (per 5-year period) 5 $150 $150 $200 $200 $250 $250

Pump operation costs * n/a $0.36 per kL of water pumped (energy cost)

* Research on Adelaide’s water supply related energy use and greenhouse gas emissions reported that for a 2 kL
rainwater tank storing and supplying 22 kL/year for indoor and outdoor uses, the operational cost was $0.36/kL for
an operational energy intensity of 1.45 Wh/L [31].
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2.2.3. Scenario Testing

Six modelling scenarios (Scenario A to F) were developed for five RRH systems incorporating
different combinations of roof catchment area size and household water usages (Figure 5). As depicted
in Figure 5, for example, Scenario D is based on 80% of total planner roof catchment area for rainwater
collection and the rainwater is used for hot water system.Water 2019, 11, 783 9 of 17 
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The descriptions of all the six scenarios are provided in the following.
For scenarios A, B and C the model analysed the performance of RRH systems assuming

that the collected rainwater would be used to meet all daily household end-use demands (potable
and non-potable water demands including mains water demand) for three roof catchment area
configurations (effective roof area, 80% planar roof area and 100% planar roof area). The remaining
scenarios (Scenario D, E and F) analysed the performance of the RRH systems for the same three roof
area configurations, assuming that the collected rainwater would be used to meet daily demands for
hot water end-uses alone.

The results indicated a suitable tank capacity (based on the diminishing/increasing benefit of tank
storage volume) for the corresponding input configurations of the RRH system being tested. Graphs
for individual systems were generated for:

• Supply (‘Average annual yield’ and ‘Percentage of water supplied’ vs. ‘Tank size’)
• Cost (‘Average annual yield’ and ‘Cost per kilolitre supplied’ vs. ‘Tank size’)
• Security (‘Average annual yield’ and ‘Days with zero supply’ vs. ‘Tank Size’)

An example of these graphs can be viewed in the Supplementary Files (Figure S3). The tank sizes
for optimized supply, cost and security correspond closely to each other, as shown by Outputs A, B and
C in the Supplementary Files. A compilation of the results from the model for the different scenarios is
shown in supplementary tables, Tables S4–S9.

The model was validated against recorded data obtained from water use monitoring. This was
achieved by replacing the ‘daily household water demand’ by the monitored rainwater yield in the
individual households (Table 4).

Table 4. Actual tank sizes and average water demand characteristics based on monitored data.

System No. Tank Size
(L)

Daily Water
Demand
(L/day)

Hot Water
Demand
(L/day)

Rainwater
Available

(L/day)

Percentage of
Water Demand to

Be Met by RRH (%)

Percentage of Water
Demand Actually
Met by RRH (%)

RRH1 1500 103 53.3 36.5 51.7% 35.4%
RRH2 1500 289 122.2 42.7 42.3% 15.8%
RRH3 1500 566 233.6 75.4 41.3% 13.3%
RRH4 2500 223 69.3 67.5 31.1% 30.3%
RRH5 2000 343 159.4 132.7 46.5% 39.7%

Six scenarios were executed for each of the five RRH systems. Table 4 shows the actual tank sizes
in the RRH systems and their corresponding daily water demands (total, hot water and rainwater
demands) obtained using monitored data. The table is used as a reference for comparison of actual
consumptions with model-based predictions.

3. Results and Discussion

3.1. Effective Roof Area Calculations

Evocative roof area calculations were based on the method described in Section 2.1. Roof runoff

volumes were found to increase with higher rainfall intensities. The effective roof areas remained
within a certain range unique to each system. The results show that higher rainfall intensities did not
necessarily lead to higher volumes of rainwater collection. A closer look at the relationships between
the effective catchment area values and their corresponding rainfall intensities showed that, in many
cases, the collected runoff volumes did not exponentially increase when rainfall intensities exceeded
5 mm/h rainfall (event circled in green, Figure 6). The lower runoff volumes resulting from higher
rainfall intensities also underestimated the calculated values for effective roof catchment areas, as
shown in Figure 6b,c (events circled in red). An example of the estimated effective roof catchment
area for one of the five RRH systems (RRH4) is shown in Figure 6a. The corresponding areas for the
remaining systems can be viewed in the Supplementary Files (Figures S1 and S2).
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A comparison of the derived effective roof catchment areas with the planar roof areas of the
studied RRH systems is shown in Table 5. A total of 69 rainfall events were analysed (14 events per
households on average) to predict the mean and median values for effective roof catchment areas.
Table 5 also shows the percentage of connected roof areas in each system. Based on the median
values for predicted roof catchment areas, the results showed that although the RRH systems met
the minimum SA building requirement of 50 m2 of roof area allocated for rainwater collection, only
RRH1 satisfied the design guidelines of the housing development, which required rainwater runoff

catchment areas to cover a minimum of 80% of the roof surface area. This could be due to alterations
in connected catchment areas, guttering or downpipe configurations during the construction of the
households. The average connected roof catchment area was 68% for the five systems.

Table 5. Planar and estimated roof areas.

System No. Planar Roof
Area (m2)

80% of Planar
Roof Area (m2)

Estimated
Catchment Area (m2) Percentage of Planar Roof Area (%)

Mean Median Based on Mean
Values

Based on
Median Values

RRH1 151.7 121.3 127.7 138.6 84% 91%
RRH2 133.9 107.1 71.5 72.2 53% 54%
RRH3 177.5 142 126.1 130.5 71% 74%
RRH4 164.5 131.6 90.6 94.1 55% 57%
RRH5 184.8 147.8 106.9 113.8 58% 62%

Mean 162.5 130.0 104.6 109.9 64% 68%
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3.2. RRHS Modellling

3.2.1. Estimation of Annual Yield

The annual yield capacities for the six modelling scenarios are shown in Figure 7. Scenario C
produced the highest average annual rainwater yield, which was estimated to supply 50.6 kL per
household. The higher yield from Scenario C is attributed to the larger roof catchment area (100% of
planar roof area). However, the high efficiency arising from this scenario can only be supported by
larger tank sizes (3000 kL on average) (refer to Table S5 for individual tank size recommendations).
Additionally, the higher yield from the Scenario C tank configurations is mainly due to a higher
household water demand. For the same RRH system configurations, Scenario F, with only hot water
demands being met by the RRH systems, yielded 18.5 kL less rainwater than Scenario C, which equates
to 36% lower yield than that of Scenario C.Water 2019, 11, 783 12 of 17 
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The least efficient scenario for yield efficiency was found to be Scenario D, with an average annual
yield of just 27.1 kL. Scenario D is closest in configuration to the actual setup in the studied RRH
systems as the results are based on the calculated effective roof areas and the actual (monitored) hot
water demand in the households. The recommended median tank size from the model was 1500 L
(refer Table S6 for individual tank size recommendations), which equals the actual tank size (Table 1)
in the systems. The results from Scenario D can be compared with those from Scenario A, which only
differs from Scenario D in its daily water use, requiring the system to meet the total daily demand in
the household, as opposed to just hot water use in Scenario D. This comparison shows that with a small
increase in median tank size from 1500 L in Scenario D to 2000 L in Scenario A, the annual yield in the
systems can increase from 27.1 kL to 36.1 kL. The results suggest that significant increases in yield can
only be supported by an increase in daily water demands in the household. Hence, an augmentation
of the current end-uses (meeting only hot water demands) to include additional uses, such as toilet
flushing, laundry and outdoor irrigation, may in fact increase the yield in the systems by almost 25%.

In contrast, when scenarios with the same end-use demands but different roof connectivity were
compared, it was found that increasing roof area increased the rainwater consumption (availability).
The yield from the tanks for an average effective roof area of 109.9 m2 (Scenario A) was 19.5% lower
than for an average planar roof area of 130 m2 (Scenario B). When the roof area was increased to 100%
of the planar area (roof area of 162.5 m2, Scenario C) the yield increased by a further 11.5%, resulting
in a total difference of 29.5% in yield between the effective roof area and 100% roof area connectivity.
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Details of the planar and effective roof areas can be viewed in Table 3. Scenarios A, B and C were all
simulated to meet total daily household demands. Similarly, when meeting only hot water demands,
their yields increased by 11% from Scenarios D (effective roof area = 109.9 m2) to E (80% planar roof
area = 130 m2), and a further 5.3% increase in yield for Scenario F (100% planar roof area = 162.5 m2).
The difference in yield between the effective roof area (Scenario D) and 100% roof area connectivity
(Scenario F) was 15.5%. This contrasts with the percentage increase observed in scenarios designed for
total household water consumption, which noticeably yielded almost double the rainwater savings for
the same increase in roof areas. Scenario E only differs from Scenario D (being closest to the actual
configurations in the studied households) in its increased roof runoff catchment area and the results
indicate that if the RRH systems had 80% roof connection, they could be expected to yield an average
of 3.3 kL of additional rainwater supply annually without having to increase their tank sizes and at the
same time, maintaining their end-use supply to hot water connections alone.

3.2.2. Estimation of Annualised Costs

The annualised costs (Figure 8) for the six scenarios indicate that Scenario C is the most efficient
in terms of cost per kilolitre of rainwater use, at an average of 5.1 AUD$/kL, with Scenario D being
the least efficient (8.9 AUD$/kL). As discussed previously, the annualised costs associated with the
modelled RRH systems showed high correlation to the yields from the systems. Hence, cost efficiency
in RRH systems can be directly attributed to higher rainwater yield, which is not only dependent on
the roof and tank sizing, but also on the end-use demand in the households. However, even the most
cost-efficient scenario (C) has higher costs than centralized mains water use, which is currently 2.32
AUD$/kL in Adelaide. For Scenario D (Figure 8), which is similar to the installed setup in the studied
households, the average cost per kilolitre of rainwater was 8.9 AUD$/kL, which is 3.5 times greater
than the cost of current mains water supply in Adelaide.Water 2019, 11, 783 13 of 17 
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For all scenarios, the average yields were found to have strong inverse linear correlation (0.96)
to the NPV of installation and operation of the RRH systems. Hence, an increase in the NPV of the
systems did not indicate an improvement in yields. The effect of augmentation of end-uses on the
NPV was evident from the scenario analyses. On average, increasing the end-use demands from daily
hot water to total household water demands showed significant cost reductions of 28%, 32% and 36%
when Scenarios A, B and C were augmented to Scenarios D, E and F, respectively (Figure 8).

Similarly, a mean cost reduction per kilolitre from an increase in roof area was also evident.
Whilst maintaining the end-use demand (total household water) constant, an increase in roof area
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from Scenario A (average effective roof area of 109.9 m2) to Scenario B (80% roof connectivity with
an average roof area of 130 m2) showed a cost reduction of 12.5%. Similarly, an increase of roof area
from Scenario B to Scenario C (100% roof connectivity with an average area of 162.5 m2) showed a 9%
decrease in cost per kL. For scenarios with hot water end-use only, increases in roof area showed only
moderate cost reductions. For example, moving from Scenario D to E showed a reduction of 6.7%,
while moving from Scenario E to F showed a reduction of 3.6% due to lower water demand.

3.2.3. Security of Supply

For this study, water security of the systems is defined in terms of the number of days with no
rainwater supply. Figure 9 shows that because of its smaller roof catchment area and higher daily
household water demand, Scenario A had the lowest security of supply, despite its high cost efficiency
and relatively higher yield capacity, with an average of 176 days in a year with zero rainwater supply.
However, Scenario F is less susceptible to failure days due to lower demand, where the average
number of days with zero supply was 83.5 days. The modelling generally showed that the smaller
roof runoff catchment areas decreased the reliability of the systems in terms of continuous year-round
water supply.Water 2019, 11, 783 14 of 17 
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4. Conclusions

Several RRH studies in the past have based their research on historical rainfall records to estimate
water savings and economic efficiencies [33–35]. The findings from this study highlight the influence
of intensity of rainfall events in determining the realistic efficiency of RRH systems. In summary,
the study found that higher rainfall intensities did not necessarily lead to higher volumes of rainfall
collection in the rainwater tanks due to limitations of the catchment configurations in the systems, such
as limited gutter capacities. When rainfall intensities exceeded 5 mm/h, most cases showed a reduced
(collected) runoff volume. Thus, a rainfall intensity upper limit may be beneficial in calculations and
modelling based analyses where recorded rainfall values over a short time period are involved in order
to avoid overestimating the volume of roof runoff. Further research to improve the estimation methods
for roof catchment area predications is also recommended.

The modelling results showed that by maintaining the current RRH configurations (68% roof
connectivity) and augmenting the end-uses to meet additional water demands in the household,
the annual yield in the systems can be increased by 25% with a reduction in annualised cost of
28%, albeit with an increase in median tank size from 1500 L to 2000 L. Hence, an augmentation of
the current end-uses (meeting only hot water demands) to additional uses such as toilet flushing,
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laundry and outdoor irrigation may significantly increase the yield in the systems. An increase in
roof catchment area to 80% connectivity together with end-use augmentation to meet more household
end-uses could further increase yield by 39.5% and decrease annualised costs by 37%. Similarly, an
increase in roof catchment to 100% of the roof planar area together with end-use augmentation to
meet additional household demands would increase the current yield by 46.4% and decrease costs
by 42%. The results showed that although mains water supply is more economical than rainwater
tank usage in Adelaide, the maximum benefit from rainwater tanks can be achieved not only by
increasing roof area connectivity and tank sizes, but also by augmenting household demand to include
additional fit-for-purpose end-uses. Greater consideration needs to be given to developing and
testing different household RRH systems’ configurations aiming towards improve economic and
environmental efficiency.

Over the years, studies have shown that although rainwater harvesting is one of the most
promising alternative water sources, their economic viability is not always assured owing to variability
in user habits, climactic regions and local regulations [36,37]. Nevertheless, the environmental
benefits of domestic rainwater tanks are enormous. Existing RWH systems are commonly focussed
on the objective of conserving water without considering other potential benefits associated with
them [14]. RRH systems no only assist in reducing the dependence on main water supply but also
contribute towards drought preparedness in urban environments that are susceptible to dry climatic
conditions. RRH systems also eliminate the need for water treatment at the end-use level by adopting
a fit-for-purpose approach to water use, where the need for high quality water is not necessary for low
health risk end-uses such as toilet flushing and gardening [38]. Urban development has dramatically
changed the course of stormwater runoff during rainfall events. Urban domestic rainwater tank
systems significantly reduce the stormwater runoff into nearby waterways [39], thereby moderating
stormwater runoff impacts such as erosion of creeks and pollution of waterways. Further research
based on other RRH system scenarios (with combinations of different end-use demands, roof area
connectivity and tank sizes) may be beneficial for optimizing their configurations in future applications.
This study has attempted to contribute towards improving the lack of high quality datasets associated
with the multiple objectives of RRH systems, including water saving, stormwater management, energy
consumption and greenhouse gas emissions that were identified by Campisano et al. [14] as needing
further improved modelling studies.
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Table S2: Scenario B results summary (80% planar roof area vs. daily total water use in household), Table S3:
Scenario C results summary (100% planar roof area vs. daily total water use in household), Table S4: Scenario D
results summary (Effective roof catchment area vs. daily hot water use in household), Table S5: Scenario E results
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roof area vs. daily hot water use in household).
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