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Abstract: Distributed hydrological models play a vital role in water resources management. With the
rapid development of distributed hydrological models, research into model uncertainty has become a
very important field. When studying traditional hydrological model uncertainty, it is very common
to use multisite observation data to evaluate the performance of the model in the same watershed,
but there are few studies on uncertainty in watersheds with different characteristics. This study
is based on the Soil and Water Assessment Tool (SWAT) model, and uses two common methods:
Sequential Uncertainty Fitting Version 2 (SUFI-2) and Generalized Likelihood Uncertainty Estimation
(GLUE) for uncertainty analysis. We compared these methods in terms of parameter uncertainty,
model prediction uncertainty, and simulation effects. The Xiaoqing River basin and the Xinxue River
basin, which have different characteristics, including watershed geography and scale, were used for
the study areas. The results show that the GLUE method had better applicability in the Xiaoqing
River basin, and that the SUFI-2 method provided more reasonable and accurate analysis results
in the Xinxue River basin; thus, the applicability was higher. The uncertainty analysis method is
affected to some extent by the characteristics of the watershed.

Keywords: hydrological modeling; method comparison; SUFI-2; GLUE; calibration

1. Introduction

A hydrological model is an effective tool for exploring complex hydrological processes and solving
practical hydrological problems and is based on a combination of computer technology and system
theory [1]. As hydrological model research and application have developed, increasing attention
has been paid to the uncertainty of these models. The main sources of uncertainty are the structure
of the model itself [2], the input data of the model [3], and the uncertainty of model parameters [4].
The uncertainty caused by the model’s own structure needs to be solved inventively. The deviation and
absence of model input data are mainly limited by external factors [5]. Research into model uncertainty
at present mainly focuses on the uncertainty of model parameters.

The SWAT model is a distributed hydrological model that combines remote sensing (RS) and
geographical information system (GIS) technology [6], and takes into account underlying surface
conditions and meteorological factors on the basis of precipitation data [7]. It is widely used in the
simulation of water quantity, sediment, and non-point-source pollution [8–10]. It has many input
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parameters, and its model output is usually determined by multiple parameters. The uncertainty
analysis of model parameters is critical, therefore, to research into hydrological model uncertainty [11,12].

Traditionally, preferred watershed hydrological model parameters are typically manual (e.g., trial
and error) or are automatically optimized by computer. The manual optimization algorithm has
a certain subjectivity, which is related to the experience and training of the hydrologist and the
understanding of the structure of the model, and it is time consuming and laborious. To achieve efficient
exploration and analysis of model uncertainty, many uncertainty analysis methods have been developed
and validated worldwide over the past three decades, including Generalized Likelihood Uncertainty
Estimation (GLUE) [13,14], Monte Carlo (MC) [15], Markov Chain Monte Carlo (MCMC) [16], Sequential
Uncertainty Fitting Version 2 (SUFI-2) [17], and parameter solution [18]. Of these, SUFI-2 and GLUE
are the two most widely used methods for analyzing the uncertainty of hydrological models. SUFI-2 is
a comprehensive optimization and gradient search method. It not only can simultaneously determine
multiple parameters, but also has the function of overall search. It also considers the uncertainty
of input data, model structure, parameters, and measured data, and is suitable for models with
complex structures [19,20]. The GLUE method combines the random sampling method of MC and
the Bayesian framework. It can also comprehensively analyze model uncertainty caused by model
structure, parameter values, data errors, and other issues. The method is simple in principle, easy to
operate, and suitable for global analysis. It is a widely used method for studying uncertainty in water
environment models [21,22]. This study, therefore, uses the SUFI-2 and GLUE methods to study the
uncertainty of the SWAT model.

In recent years, research into the uncertainty of hydrological models represented by the SWAT
model has produced many results [23,24]. At the beginning of the study, the researchers used a single
uncertainty analysis method to conduct sensitivity analysis and uncertainty evaluation of hydrological
models [25,26]. Although the uncertainty method can analyze the uncertainty of the model, it cannot
guarantee evaluation efficiency. Comparison of the applicability of different types of uncertainty
analysis methods in the same watershed has, therefore, become popular [27,28]. Muleta [29] used the
uncertainty method GLUE to analyze the uncertainty of SWAT model parameters in the Big Creek
basin, Illinois, USA. The study showed that sediment load had a greater impact on the uncertainty
of the SWAT model than runoff uncertainty. Abbaspour [30] compared the five common uncertainty
methods (SUFI-2, GLUE, Parameter Solutions method, MCMC, and Importance Sampling) on the Thur
watershed, an area 1700 km2 situated in northeastern Switzerland. Abbaspour found that the GLUE
method based on a Bayesian algorithm was most suitable for model uncertainty analysis. Uniyal [31]
analyzed the uncertainty of river runoff simulation in eastern India by means of the SWAT model.
The SUFI-2 and GLUE methods are characterized by their own features and practicability. SUFI-2 is a
semiautomatic optimization technique, and it can greatly improve the operational efficiency of complex,
structured, and highly computational models. In contrast, GLUE is a fully automated and robust
optimization technique, and it is easy to implement. Therefore, for a model with complex structure,
SUFI-2 analysis is better, and for a simpler model, GLUE analysis is more efficient. Shivhare [32] and
Zhao [33] valued the SUFI-2, GLUE, and ParaSol methods in the Ganga River basin, India, and the
Jingchuan basin, China. The results proved that SUFI-2 had a better score in the uncertainty analysis of
the basin than the two other methods and was more suitable for complex structural models such as the
SWAT model.

In studying the existing model uncertainty, most research has mainly focused on different kinds of
uncertainty analysis methods in the same basin. Little work has concentrated on different basins using
different methods of uncertainty analysis, ignoring the influence of geographical location, valley basin
scale, and different characteristics, which may confer advantages and disadvantages to the results of
uncertainty analysis. To enrich the results of this part of the research content, this paper uses two
different watersheds as its study areas: the mesoscale Xiaoqing River basin in the plain area and the
small-scale Xinxue River basin in the hilly area. First, ArcSWAT2012 was applied to simulate runoff

from the two river basins. Parameter sensitivity was then compared and analyzed with a sensitivity
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analysis module in the SWAT model. SWAT Calibration and Uncertainty Program(SWAT-CUP)
software (Swiss Federal Institute for Aquatic Science and Technology, Dübendorf ,Kastanienbaum,
Canton of Zurich, Switzerland.) was then applied, using the SUFI-2 and GLUE methods, on runoff

simulation calibration for the uncertainty analysis, to explore the applicability of the SWAT model
under different basin characteristics and the uncertainty in model simulation, and to obtain two
contrasting methods of uncertainty analysis on the different characteristics of the basin.

2. Materials

2.1. Overview of Research Area

The Xiaoqing River is located in the south of Shandong province, China, and its geographic
coordinates are 116◦50′–118◦45′ E, 36◦15′–37◦20′ N. The main cities in the Xiaoqing River basin are
Jinan, Zibo, Weifang, Dongying, and Binzhou, and there are 5 other prefecture-level cities, 18 counties,
and 182 towns in the basin. The basin topography is dominated by plains. The Xiaoqing River basin
covers an area of 10,572 km2, has an annual runoff of 1.27 billion m3, and the river length is 237 km2 [34].
The Xiaoqing River has a semi-arid continental climate [35], with an annual average temperature of
about 12–14 ◦C, annual average rainfall of 646.7 mm, and annual evaporation of 1020.8–2417.4 mm.
The vegetation types are mainly deciduous broad-leaved forest, mixed with warm coniferous forest.
The land use of the Xiaoqing River basin occupies about 63% of the entire basin, and urban land use
accounts for 18% of the total.

The Xinxue River basin is located in Shandong province in the southwest of the Nansi Lake water
system. Its geographical coordinates are 116◦34′–117◦2′ E, 34◦27′–35◦20′ N [36]. The topography of
the Xinxue River basin is mainly mountainous or hilly, and so differs from the Xiaoqing River basin.
The Xinxue River basin has an area of 686 km2 and the river length is 89.6 km. It has a semi-arid
continental climate, annual average temperature of about 13–14 ◦C, average annual rainfall of 821.5 mm,
and annual evaporation of 975.0–1439.9 mm. Land use in the Xinxue River basin is mainly farmland
and grassland, each accounting for 37% of the total; urban land use in the basin is less than 8%. The two
basins are shown in Figure 1.Water 2019, 11, 1177 4 of 18 
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2.2. Data Source

In this study, 30 m resolution digital elevation model (DEM) data and 1:100,000 national land
use data from 2010 were used in SWAT modeling, obtained from the Data Center of Resource and
Environmental Sciences, Chinese Academy of Sciences. The 1:100,000 soil type map and soil attribute
data were from the HWSD Chinese soil data set. There are five meteorological stations (Jinan station,
Huimin station, Kenli station, Weifang station, Yiyuan station) in the Xiaoqing River basin and two
meteorological stations (Xiji station, Shanting station) in the Xinxue River basin. The measured
data for daily precipitation, maximum and minimum temperature, relative humidity, solar radiation,
average wind speed, and so forth, from 1985 to 2015 were from the China Meteorological Data
Network (http://data.cma.cn/data/index.html). Monthly runoff data from 2006 to 2014, measured
at the Chahe hydrological station in the middle reaches of the Xiaoqing River basin and at the
Chaihudian hydrological station in the lower reaches of Xinxue River, came from Shandong Academy
for Environmental Planning. The model simulation took 2004 and 2005 as the preheating years of the
model, using existing basin data, and 2006–2011 as measured runoff data for the preheating years.
Using existing basin data, the model simulation took 2004 and 2005 as the warm-up years of the model,
2006–2011 as the rate period of the model, and 2012–2014 as the model validation period.

3. Method

3.1. Overview of SWAT Model

The SWAT model was developed by the United States Department of Agriculture—Agricultural
Research Center. It is mainly based on the Simulator for Water Resources in Rural Basins (SWRRB)
model [37] and draws on the main features of Groundwater Loading Effects on Agricultural
Management Systems (GLEAMS), Erosion–Productivity Impact Calculator (EP-IC), and Routing Output
To Outlet (ROTO) models [38–41]. The SWAT model is used to assist in water resource management by
predicting and assessing the impacts of water, sediment, and agrochemical management in untested
watersheds. It consists of seven components: hydrology, meteorology, sediment, temperature on
the upper soil, crop growth, nutrients, and agrochemicals. From the perspective of model structure,
the SWAT model belongs to the second type of distributed hydrological model, that is, applying a
traditional conceptual model to each grid unit (or subbasin) to estimate the net rain, then performing
the convergence calculation, and finally obtaining the exit section flow.

The SWAT model has been revised many times and produced many versions since it was officially
launched in the 1990s. In this study, the ArcGIS (10.2, Environmental Systems Research Institue, Inc.,
RedLands, CA, USA) interface of SWAT (version 2012, The Agricultural Research Service of United
States Department of Agriculture, Washington, DC, USA) has been used, which is popularly known
as SWAT. The water cycle simulated by SWAT is based on water balance, which is mathematically
expressed as follows [42]:

SWt = SW0 +
t∑

i=1

(
Rday −Qsur f − Ea −Wseep −Qgw

)
(1)

where SWt is the soil water content (mm) at time t, SW0 the initial soil water content (mm), t the
simulation period (days), Rday the amount of precipitation on the ith day (mm), Qsurf the amount of
surface runoff on the ith day (mm), Ea the amount of evapotranspiration on the ith day (mm), Wseep

the amount of water entering the vadose zone from the soil profile on the ith day (mm), and Qgw the
amount of baseflow on the ith day (mm).

The SWAT model has a strong physical foundation and is suitable for large and complex watersheds
with different soil types, different agrarian administration modes, and management conditions, and
can also be modeled in areas where there is a lack of data. As a result, it has been widely used all over
the world [43,44].

http://data.cma.cn/data/index.html
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3.2. Principles and Procedures of the SUFI-2 Method

SUFI-2 is an uncertainty analysis method invented by the Swiss Federal Research Institute of
Water Science and Technology [17] for model development. According to this method, parameter
values of the model are chosen with the Latin Hypercube (LH) random sampling method within
the preset parameter range. The selected parameters are then substituted back into the model, and
the value of the objective function is calculated according to the selected objective function. At the
same time, the confidence interval 95PPU (95% prediction uncertainty) is calculated by the cumulative
distribution of simulation results of 2.5% and 97.5% [45]. The parameter range is the optimal one of
the model until the simulation results reach the expected standard; the minimum confidence interval
95PPU includes the most measured data through multiple iterations. This method first determines
the objective function, and then gives the initial value range of the given parameters. It then uses LH
sampling to obtain n groups of parameter combinations and calculates the objective function of each
simulation, then evaluates the simulation effect of each round of sampling with a series of methods,
and finally carries out uncertainty analysis [46].

3.3. Principles and Procedures of the GLUE Method

The GLUE method was proposed by Beven to evaluate the phenomenon of “isopararism” in
model parameters [13,14] and is widely used in the calibration and uncertainty analysis of hydrological
models and in other fields. It is important to be aware that the GLUE method, as an analysis of
uncertainty, is not a certain parameter in the model but a set of parameters that influences the results
of model simulation. Within the preset initial parameter value interval, the Monte Carlo method [47] is
adopted to randomly sample the parameter value of the model, and the extracted parameter value
combination is substituted back into the model and operated. The likelihood objective function is
selected, the value of the likelihood function between the simulated value and the measured value
of the model is calculated, and then the weight of these function values is calculated to obtain the
likelihood value of each parameter combination. Among all the likelihood values, a critical value is set.
The parameter group below the critical value cannot represent the functional characteristics of the
model, and the likelihood value of these parameter groups is assigned to zero [48]. The likelihood
value of the parameter set higher than the critical value is renormalized. According to the size of the
processed likelihood value, the uncertainty range of the model prediction under a certain confidence
degree is obtained [47,49].

3.4. Evaluation Criteria for Calibration and Uncertainty Analysis Results

For parameter calibration and verification, this study takes the certainty coefficient of determination
(R2) and Nash–Sutcliffe efficiency coefficient (ENS) for the objective function of the fitting effect and
accuracy between the simulated value and the observed value of the two-period model [50,51].
The theoretical value range of ENS and R2 is 0–1, and ENS < 0, indicating that the reliability of the
simulated value is lower than the real value. The closer ENS and R2 are to 1, indicating the higher the
coincidence between the simulated value and the observed value, the better the simulation fitting
result [52,53]. Generally, when ENS is greater than or equal to 0.5 and R2 is greater than or equal
to 0.6, it is considered that the model can accurately describe the hydrological process in the basin
being studied.

With respect to uncertainty of simulation results, this study takes P-factor and R-factor as two
measurement criteria. For P-factor, the theoretical value is between 0 and 1, indicating the percentage of
simulated data in the observed data within the confidence interval of 95PPU (95% prediction uncertainty,
calculated by removing parts less than 2.5% and greater than 97.5% of the cumulative distribution of
simulation results). For R-factor, the theoretical value is between 0 and infinity, indicating the average
thickness of the 95PPU strip divided by the standard deviation of the observed data. Theoretically,
when the P-factor is equal to 1 and the R-factor is equal to 0, the simulated value of the model is exactly
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the same as the observed value, while the actual situation is usually that the larger the P-factor value,
the larger the corresponding R-factor value, so the value of the two needs to be balanced [54,55].

4. Results Analysis

4.1. Uncertainty Analysis of Xiaoqing River Basin

4.1.1. Parameter Selection and Range Determination

The value range of sensitivity parameters has a great impact on the results of runoff simulation [56].
The smaller the parameter range, the narrower the uncertainty interval that can be obtained, which
improves the confidence level. At the same time, however, it reduces the sensitivity of parameters,
making more observation values fall outside the uncertainty interval. In contrast, a larger parameter
range widens the uncertainty interval, which can reflect the influence of parameters on simulation
results in more detail, but will lead to a decrease in confidence level. Parameter sensitivity analysis and
the actual situation in the Xiaoqing River basin allowed us to obtain the sensitivity parameters and
value range (Table 1). SUFI-2 was iterated four times and 500 simulations were performed for each
iteration. In GLUE, the objective function ENS was set as 0.6, and was iterated twice; 3000 simulations
were performed for each iteration. The relevant uncertainty analysis was carried out on this basis.

Table 1. Sensitivity parameters and value range of the Xiaoqing River basin.

Parameter Parameter Meaning Initial Value
Interval

Affected Object and
Process

CN2 SCS runoff curve coefficient 35–98 Surface runoff
ALPHA_BF Base flow alpha coefficient 0–1 groundwater

ESCO Soil evaporation compensation coefficient 0.01–1 Soil evaporation
RCHRG_DP Permeability coefficient of deep aquifer 0–1 Groundwater process

GWQMN Runoff coefficient of deep groundwater 0–5000 Soil moisture
SOL_AWC Available soil water 0–1 Soil moisture

4.1.2. Parameter Uncertainty Analysis of the Two Methods in the Xiaoqing River Basin

SUFI-2 was applied to parametric uncertainty analysis in the Xiaoqing River basin (Figure 2).
By comparing the degree of each parameter uncertainty and the distribution of the values, it was
found that there was an obvious distribution law of ENS value at the scatterpoint that changed with
the parameter value, in which the ENS value gradually increased with the overall increase in CN2.
ENS is an indicator used to evaluate the results of hydrological model simulations. The greater the
ENS value is, the greater the match between the measured value and the analog value is. Therefore,
as ENS increased, the uncertainty of parameter CN2 decreased. As ALPHA_BF increased, there was
a trend of first increasing and then decreasing; when the parameter value was around 0.5, the ENS
value was relatively stable, and the parameter uncertainty was the smallest. As RCHRG_DP increased,
the uncertainty increased from uniform distribution to low dispersion, part of the ENS value dropped,
and uncertainty increased. The values of the other three parameters were evenly distributed without
obvious changes, meaning that these three parameters were more stable and less uncertain. These
results show that CN2, ALPHA_BF, and RCHRG_DP had greater uncertainty, and their value change
resulted in a great impact on the simulation effect of the model. When the value of CN2 was close to 60,
the value of ALPHA_BF was around 0.5, and the value of RCHRG_DP was between 0.07 and 0.08,
allowing model simulations to be good.

The GLUE method was applied to uncertain analysis of the SWAT model in the Xiaoqing River
basin. The threshold value of target ENS was set at 0.6. Monte Carlo was used to randomly select
3000 groups of samples, and a scatter diagram of parameter values and objective function distribution
was obtained (Figure 3). Figure 3 shows that ENS value increased as the values of the three parameters
CN2, GWQMN, and SOL_AWC increased. The value of ENS increased and tended to be stable which
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means that the uncertainty of these parameters was reduced. As the ALPHA_BF parameter increased,
the overall ENS was reduced overall and the degree of dispersion was increased, which led to an
increase in parameter uncertainty. The ENS value fluctuated significantly with the change of these
parameters, meaning that these four parameters had great influence on the uncertainty of the simulation
results. The parameters ESCO and RCHRG_DP were evenly distributed, indicating that the uncertainty
was small.Water 2019, 11, 1177 8 of 18 
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4.1.3. Analysis of Uncertainty of Model Simulation

After calibration by SUFI-2, the P-factor and R-factor of evaluation coefficient of runoff were 0.77
and 0.75, respectively, during calibration periods, and 0.73 and 0.73, respectively, during validation
periods (Figure 4, Table 2). The P-factor in calibration periods was more than that in validation periods,
demonstrating that the measured value in calibration periods had more standard deviation than that in
validation periods. On average, P-factor was less than 1 and R-factor was close to 0. In calibration and
validation periods, ENS was 0.71 and 0.74, respectively, while R2 was 0.72 and 0.76, respectively. These
values indicated that SUFI-2 permitted a satisfactory runoff simulation and analysis of uncertainty of
the Xiaoqing River basin.

Table 2. Comparison of simulation results from the two methods.

Method Simulation P-factor R-factor ENS R2

SUFI-2
calibration period 0.77 0.75 0.71 0.72
validation period 0.73 0.73 0.74 0.76

GLUE
calibration period 0.84 0.80 0.71 0.75
validation period 0.81 0.75 0.71 0.76

In this research, we chose 0.6 as the critical value to decide whether the parameter was “useful”
for the GLUE method. The parameter and likelihood values were considered to be 0 or normalized by
comparing ENS and 0.6. During calibration and validation periods, the P-factor was 0.84 and 0.81,
respectively, and the R-factor was 0.80 and 0.75, respectively (Figure 5, Table 2). The uncertainty was
acceptable. ENS and R2 were 0.71 and 0.75, and 0.71 and 0.76 during calibration and validation periods,
respectively, demonstrating that the GLUE method can be used for runoff simulation and uncertainty
analysis of the Xiaoqing River.

Water 2019, 11, 1177 9 of 18 

 

validation periods, demonstrating that the measured value in calibration periods had more 
standard deviation than that in validation periods. On average, P-factor was less than 1 and 
R-factor was close to 0. In calibration and validation periods, ENS was 0.71 and 0.74, respectively, 
while R2 was 0.72 and 0.76, respectively. These values indicated that SUFI-2 permitted a satisfactory 
runoff simulation and analysis of uncertainty of the Xiaoqing River basin. 

Table 2. Comparison of simulation results from the two methods. 

Method Simulation P-factor R-factor ENS R2 

SUFI-2 

calibration 
period 

0.77 0.75 0.71 0.72 

validation 
period 0.73 0.73 0.74 0.76 

GLUE 

calibration 
period 0.84 0.80 0.71 0.75 

validation 
period 

0.81 0.75 0.71 0.76 

In this research, we chose 0.6 as the critical value to decide whether the parameter was “useful” 
for the GLUE method. The parameter and likelihood values were considered to be 0 or normalized 
by comparing ENS and 0.6. During calibration and validation periods, the P-factor was 0.84 and 
0.81, respectively, and the R-factor was 0.80 and 0.75, respectively (Figure 5, Table 2). The 
uncertainty was acceptable. ENS and R2 were 0.71 and 0.75, and 0.71 and 0.76 during calibration 
and validation periods, respectively, demonstrating that the GLUE method can be used for runoff 
simulation and uncertainty analysis of the Xiaoqing River. 

 

Figure 4. Runoff simulation of the Xiaoqing River basin in calibration and validation periods 95PPU 
based on SUFI-2. 

Figure 4. Runoffsimulationof theXiaoqingRiverbasin incalibrationandvalidationperiods95PPUbasedonSUFI-2.
Water 2019, 11, 1177 10 of 18 

 

  

Figure 5. Runoff simulation of Xiaoqing River basin in calibration and validation periods 95PPU 
based on GLUE. 

4.2. Uncertainty Analysis of the Xinxue River 

4.2.1. Parameter Selection and Scale Determination 

Six parameters were chosen, based on the analysis of sensitivity of the model and extensive 
practical research, together with the real circumstances of the Xinxue River (Table 3). SUFI-2 was 
iterated three times and 500 simulations were performed for each iteration. In GLUE, the objective 
function ENS was set as 0.6 with 3000 simulations. Further research and parameter uncertainty 
analysis were based on the last value range. 

Table 3. Sensitivity parameter and value range of the Xinxue River drainage basin. 

Parameter Parameter Meaning Range of Initial 
Value 

Influenced Object & 
Process 

CN2 SCS Runoff Coefficient 35–98 Surface Runoff 
ALPHA_BF Base Flow Coefficient α 0–1 Subterranean Water 

GW_DELAY Subterranean Water Lag 
Coefficient 0–500 Process of 

Subterranean Water 

ESCO 
Soil Evaporation 

Compensation Coefficient 0.01–1 Soil Evaporation 

SOL_AWC Available Water in Soil 0–1 Soil Moisture 

CH_N2 Drainage Line Manning 
Coefficient 

−0.01–0.3 Concentration of 
Channel 

4.2.2. Uncertainty Analysis of Model Parameter 

When SUFI-2 was applied to the uncertainty analysis of the Xinxue River drainage basin, the 
scattered distribution patterns of ENS of CN2, ESCO, and CH_N2 became obvious. When CN2 
increased, ENS first grew and then reduced (Figure 6). As ESCO rose, the uncertainty increased. 
When CH_N2 was added, the uncertainty reduced. The results indicated that the parameters CN2, 
ESCO, and CH_N had a great impact on the uncertainty of model simulation results, while the 
parameters ALPHA_BF, GW_DELAY, and SOL_AWC (which were well distributed) had little 
influence on it.  

Figure 5. Runoff simulation of Xiaoqing River basin in calibration and validation periods 95PPU based on GLUE.



Water 2019, 11, 1177 9 of 16

4.2. Uncertainty Analysis of the Xinxue River

4.2.1. Parameter Selection and Scale Determination

Six parameters were chosen, based on the analysis of sensitivity of the model and extensive
practical research, together with the real circumstances of the Xinxue River (Table 3). SUFI-2 was
iterated three times and 500 simulations were performed for each iteration. In GLUE, the objective
function ENS was set as 0.6 with 3000 simulations. Further research and parameter uncertainty analysis
were based on the last value range.

Table 3. Sensitivity parameter and value range of the Xinxue River drainage basin.

Parameter Parameter Meaning Range of Initial Value Influenced Object & Process

CN2 SCS Runoff Coefficient 35–98 Surface Runoff
ALPHA_BF Base Flow Coefficient α 0–1 Subterranean Water
GW_DELAY Subterranean Water Lag Coefficient 0–500 Process of Subterranean Water

ESCO Soil Evaporation Compensation Coefficient 0.01–1 Soil Evaporation
SOL_AWC Available Water in Soil 0–1 Soil Moisture

CH_N2 Drainage Line Manning Coefficient −0.01–0.3 Concentration of Channel

4.2.2. Uncertainty Analysis of Model Parameter

When SUFI-2 was applied to the uncertainty analysis of the Xinxue River drainage basin,
the scattered distribution patterns of ENS of CN2, ESCO, and CH_N2 became obvious. When CN2
increased, ENS first grew and then reduced (Figure 6). As ESCO rose, the uncertainty increased. When
CH_N2 was added, the uncertainty reduced. The results indicated that the parameters CN2, ESCO,
and CH_N had a great impact on the uncertainty of model simulation results, while the parameters
ALPHA_BF, GW_DELAY, and SOL_AWC (which were well distributed) had little influence on it.
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When GLUE was applied to the uncertainty analysis of the Xinxue River drainage basin,
the scattered ENS distribution patterns of V_CN2 and V_ALPHA_BF became obvious (Figure 7).
As V_ALPHA_BF increased, the entirety first grew and then reduced. As V_CN2 increased, the entirety
grew constantly and the uncertainty reduced. At the same time, uncertainty over the value of
parameters V_GW_DELAY, V_ECSO, R_SOL_AWC, and V_CH_N2 was well distributed and there
was no obvious change. This indicated that these four parameters had little influence on the results of
model simulation.Water 2019, 11, 1177 12 of 18 

 

 
Figure 7. Parameter combination and distribution of Nash–Sutcliffe efficiency coefficient of Xinxue 
River basin based on GLUE. 

4.2.3. Uncertainty Analysis of Model Simulation 

The simulation results of the P-factor were 0.74 and 0.73 in calibration and validation periods, 
respectively, based on SUFI-2 (Figure 8, Table 4). Most measured values of the drainage basin were 
in the range of 95PPU. The R-factor was 0.87 and 0.75 in the calibration and validation periods, 
respectively, that is, values less than 1. ENS and R2 were 0.71 and 0.73 in the calibration period, 
respectively, and 0.73 and 0.75 in the validation period, respectively. The results showed that 
SUFI-2 had a great effect on the verification and uncertainty analysis in the Xinxue River basin. 

Table 4. Comparison of simulation results from the two methods. 

Method Simulation P-factor R-factor ENS R2 

SUFI-2 

calibration 
period 

0.74 0.87 0.71 0.73 

validation 
period 0.73 0.75 0.73 0.75 

GLUE 

calibration 
period 

0.76 0.90 0.72 0.72 

validation 
period 

0.73 0.83 0.73 0.74 

The simulation results of the P-factor were 0.76 and 0.73 in the calibration and validation 
periods, respectively, based on GLUE (Figure 9, Table 4). Most measured values in the drainage 
basin were in the range of 95PPU. The R-factor was 0.90 and 0.83 in the calibration and validation 
periods, respectively, that is, values less than 1. The results show that SUFI-2 had a great effect on 
verification and uncertainty analysis in the Xinxue River basin. ENS and R2 were 0.72 and 0.72 in the 
calibration period, respectively, and 0.73 and 0.74 in the validation period, respectively, which was 
satisfactory. 

Figure 7. Parameter combination and distribution of Nash–Sutcliffe efficiency coefficient of Xinxue
River basin based on GLUE.

4.2.3. Uncertainty Analysis of Model Simulation

The simulation results of the P-factor were 0.74 and 0.73 in calibration and validation periods,
respectively, based on SUFI-2 (Figure 8, Table 4). Most measured values of the drainage basin were in
the range of 95PPU. The R-factor was 0.87 and 0.75 in the calibration and validation periods, respectively,
that is, values less than 1. ENS and R2 were 0.71 and 0.73 in the calibration period, respectively, and
0.73 and 0.75 in the validation period, respectively. The results showed that SUFI-2 had a great effect
on the verification and uncertainty analysis in the Xinxue River basin.

Table 4. Comparison of simulation results from the two methods.

Method Simulation P-factor R-factor ENS R2

SUFI-2
calibration period 0.74 0.87 0.71 0.73
validation period 0.73 0.75 0.73 0.75

GLUE
calibration period 0.76 0.90 0.72 0.72
validation period 0.73 0.83 0.73 0.74
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The simulation results of the P-factor were 0.76 and 0.73 in the calibration and validation periods,
respectively, based on GLUE (Figure 9, Table 4). Most measured values in the drainage basin were in the
range of 95PPU. The R-factor was 0.90 and 0.83 in the calibration and validation periods, respectively,
that is, values less than 1. The results show that SUFI-2 had a great effect on verification and uncertainty
analysis in the Xinxue River basin. ENS and R2 were 0.72 and 0.72 in the calibration period, respectively,
and 0.73 and 0.74 in the validation period, respectively, which was satisfactory.Water 2019, 11, 1177 13 of 18 
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5. Discussion

In simulations of the Xiaoqing River Basin, parameters CN2, ALPHA_BF, RCHRG_DP,
V_GWQMN, and V_SOL_AWC had little influence on results. The parameter CN2 represents
the runoff curves number of soil retention service (SCS) and defines the potential capacity of maximum
soil moisture retention. The parameter ALPHA_BF refers to the base flow alpha factor, which defines
the splitting factor of the base stream. The parameters CHRG_DP and V_GWQM represent the deep
aquifer percolation fraction and threshold depth of water in the shallow aquifer required for return flow
to occur, respectively. The parameter SOL_AWC is the effective water content of the soil. Narsimlu [26]
used the SWAT model to perform simulation and uncertainty analysis on the Upper Sind River basin
in the central plains of India. That study found that the parameters of CN2, SOL_AWC, ALPHA_BF,
GWQMN, GW_REVAP, and others are highly uncertain; this also applies to the Xiaoqing River basin
where the basin topography is dominated by plains. Therefore, we believe that the uncertainty of
SWAT model parameters is affected by the geographical location of the basin. In addition, ENS varied
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by parameter; this might have been because of the constant iterative optimization of parameter range
by SUFI-2. That is why the GLUE method is better in reflecting the uncertainty of a single parameter.
Most measured values were included in the 95PPU interval in the calibration and validation periods.
In this sense, the GLUE method was better than the SUFI-2 method. With respect to the simulation
effect, the R2 of GLUE was 0.75 and 0.76 in the calibration and validation periods, respectively, values
which were more than those of SUFI-2. Therefore, GLUE was better than SUFI-2 overall. In terms of
calculation efficiency, the best simulation appeared when simulating for the 178th time using SUFI-2,
while the best result appeared after simulating for 2364 times using GLUE. In this sense, the calculation
efficiency of SUFI-2 was higher than that of GLUE. This was because LH random sampling was applied
with SUFI-2 and there were fewer calculations. With respect to GLUE, however, Monte Carlo random
sampling was applied and so there must be enough samples to get similar results. In this sense, GLUE
needed longer to make its calculations.

In the simulation of the Xinxue River basin, parameters CN2, ESCO, CH_N2, and ALPHA_BF had a
great influence on the model. The parameters ESCO and CH_N2 represent the compensation coefficient
of soil evaporation and Manning’s “n” value for the main channel, respectively. Narsimlu [57] uses
the SWAT model and SUFI-2 method to perform simulation and uncertainty analysis on the Kunwari
River basin, a small agricultural watershed in the hilly region of central India. The results show that
the most uncertain parameters are CN2, ALPHA_BNK, ESCO, and CH_N2, and this agrees with
the conclusion of our study. What differed was that the uncertainty of ESCO was greater, while the
uncertainty of ALPHA_BF was less with SUFI-2 than with GLUE. Of the measured values in calibration
and validation periods by SUFI-2 and GLUE, respectively, 70% were in the 95PPU interval. When
comparing P-factor and R-factor in differing periods with SUFI-2 and GLUE, the uncertainty analysis
of GLUE was slightly better than that of SUFI-2. With respect to the simulation effect, the R2 of GLUE
was 0.72 and 0.74 in the calibration and validation periods, respectively, less than those of SUFI-2 (0.73
and 0.75, respectively) (Table 4). Hence, the effects of SUFI-2 were better than those of GLUE. In terms
of calculation efficiency, the best simulation was obtained when simulating for the 347th time. The best
result was obtained after simulating 1789 times using GLUE, which demonstrates that the calculation
efficiency of SUFI-2 was far higher than that of GLUE.

This research applied SUFI-2 and GLUE to do separate uncertainty analyses of the mesoscale
Xiaoqing River basin in the plain, and the small-scale Xinxue River basin in the mountain area, and
compared the two methods with regard to uncertainty of parameter, model prediction, and simulation
effect. The results demonstrate that, in the parameters uncertainty analysis of the Xiaoqing River
basin, the parameters CN2, ALPHA_BF, and RCHRG_DP had greater uncertainty with SUFI-2. CN2,
GWQMN, and SOL_AWC had greater uncertainty with GLUE, which basically matches the conclusions
of Narsimlu on the plain area. This is because the CN2, GWQMN, and SOL_AWC parameters are
closely related to the properties of the underlying soil [58–60]. However, studies by Wilcke [61] and
Ließ [62] show that the property of soil is greatly influenced by changes in terrain. We believe, therefore,
that the parameter values of CN2, GWQMN, and SOL_AWC are closely related to the change in terrain.
The Xiaoqing River basin has the typical topographical features of a plain basin, and so we felt it
was more appropriate to apply GLUE in the Xiaoqing River basin. In terms of uncertainty of model
prediction, GLUE can contain more measured values (large P value) as the confidence interval of
uncertainty of the model is close (close in R value); this allows GLUE to have a better effect. In terms of
simulation effect, the ENS values of SUFI-2 and GLUE are almost the same, although GLUE is better
than SUFI-2. In this sense, we considered that GLUE is more satisfactory with regard to model
simulation effect. We conclude that GLUE is more applicable in the Xiaoqing River basin; however,
CN2, ESCO, and CH_N2 had greater uncertainty according to SUFI-2 while CN2 and ALPHA_BF had
greater uncertainty according to GLUE. Our SUFI-2 results are close to those of Briak [63], who was
studying a mountainous and hilly area. The Xinxue River basin is a small watershed in a mountain
region with a relatively small drainage area, large river channel, high runoff convergence speed, and
sudden changes in amounts of water. The parameters of CH_N are affected by watershed features and
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have greater uncertainty, but the parameters of CN2 and ESCO have greater uncertainty because the
terrain features of the Xinxue River basin had more influence. We consider that SUFI-2 analyzed the
uncertainty of parameters more precisely. With respect to model prediction (R value and P value) and
simulation effect (ENS and R2), the results from SUFI-2 are all better than those of GLUE. So, overall,
SUFI-2 is better than GLUE in the Xinxue River basin.

The results from the two methods in different basins lead us to consider that the analytical methods
of uncertainty are influenced by basin features. This is because, as a method to further analyze the
value range and distribution of model parameters, the analytical method of uncertainty is mainly
influenced by parameters. Our analysis has proven that the uncertainty of parameters in the two basins
is closely related to topography. In this sense, we believe that the analytical methods are connected to
the terrain features.

6. Conclusions

In this study, two uncertainty analysis methods, SUFI-2 and GLUE, were studied by a distributed
hydrological model to test their performance in model parameter uncertainty analysis. We studied
their applicability in two watersheds with different characteristics. The SWAT model was used to
conduct case studies in the Xiaoqing River basin and the Xinxue River basin in Shandong Province,
China. The research results showed that the ENS of the monthly runoff simulation rate in the Xiaoqing
River basin model was 0.71 and 0.74 in the periodic and verification periods, respectively, and R2

was 0.72 and 0.76, respectively. In the Xinxue River basin model, ENS and R2 were 0.71 and 0.73
in the periodic and verification periods, respectively, and the verification period was 0.73 and 0.75,
respectively. The model had good applicability in both research areas.

In addition, GLUE and SUFI-2 were used to comprehensively analyze the parameter uncertainty,
model prediction uncertainty, and model simulation effect of the SWAT model. The results show that
GLUE was more suitable for the Xiaoqing River basin in the plain watershed. Compared with SUFI-2,
GLUE had better simulation accuracy (ENS and R2), and P-factor (the best coverage of measurement)
value performed better when the R-factor (reasonably small uncertainty impacts) values were similar.
In contrast, SUFI-2 was more suitable for the Xinxue River basin in the mountains. Compared with
GLUE, SUFI-2 had better simulation accuracy (ENS and R2), and the R-factor value of SUFI-2 was
smaller when P-factor values were similar. In summary, we believe that the performance of the
uncertainty analysis method was affected to some extent by the watershed characteristics. In the plain
watershed, the GLUE method is more highly recommended, but in hilly areas, SUFI-2 is more suitable.
In the future, we hope to carry out extended research, comparing and studying more uncertainty
analysis methods in other watersheds with different characteristics, and therefore to contribute to
research on the applicability of other uncertainty methods.
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