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Abstract: Autonomous navigation for agricultural machinery has broad and promising development
prospects. Kalman filter technology, which can improve positioning accuracy, is widely used in
navigation systems in different fields. However, there has not been much research performed into
navigation for sprinkler irrigation machines (SIMs). In this paper, firstly, a self-developed SIM is
introduced. Secondly, the kinematics model is established on the platform of the self-developed
SIM, and the updated Sage-Husa adaptive Kalman filter, which is an accurate and real-time
self-adaptive filtering algorithm, is applied in the navigation of the SIM with the aim of improving
the positioning accuracy. Finally, experiment verifications were carried out, and the results show that
the self-developed SIM has good navigation performance. Besides this, the influence of abnormal
observations on the positioning accuracy of the system can be restrained by using the updated
Sage-Husa adaptive Kalman filter. After using the updated Sage-Husa adaptive Kalman filter for the
SIM, the maximum deviation between the SIM and the predetermined path is 0.18 m, and the average
deviation is 0.08 m; these deviations are within a reasonable range. This proves that the updated
Sage-Husa adaptive Kalman filter is applicable for the navigation of sprinkler irrigation machines.

Keywords: Kalman filter; navigation; sprinkler irrigation machine; positioning accuracy

1. Introduction

The autonomous navigation of agricultural machinery can not only solve the problem of insufficient
labor force, but also reduce energy consumption, reduce costs and improve agricultural production
efficiency. However, the accuracy and reliability of agricultural machinery navigation has been restricting
the level of autonomous operation of agricultural machinery. Therefore, agricultural machinery navigation
technology has become one of the hot topics in current agricultural machinery research.

At present, agricultural machinery navigation methods mainly include machine vision and satellite
positioning. Since machine vision is sensitive to the external environment, it is difficult to meet the
requirements of autonomous navigation in different environments [1,2]. Satellite positioning navigation has
become a research hotspot in recent years, but its navigation accuracy needs to be further improved [34].
Generally speaking, a single navigation mode is limited by a lack of effective information, and it is difficult
to continuously provide high-quality location information. Welch et al. [5] pointed out that, due in large
part to advances in digital computing, the Kalman filter has been the subject of extensive research and
application, particularly in the area of autonomous or assisted navigation. Kalman filter technology,
which can improve positioning accuracy, is widely used in navigation systems, and many attempts at the
application of the Kalman filter in navigation have been reported.

Water 2019, 11, 1269; d0i:10.3390/w11061269 www.mdpi.com/journal/water


http://www.mdpi.com/journal/water
http://www.mdpi.com
http://www.mdpi.com/2073-4441/11/6/1269?type=check_update&version=1
http://dx.doi.org/10.3390/w11061269
http://www.mdpi.com/journal/water

Water 2019, 11, 1269 2of 14

Regarding the application of the Kalman filter in the domain of navigation for vehicles, Gao et.al. [6]
proposed a federated Kalman filter algorithm to improve the positioning accuracy of vehicle altitude.
In the federated Kalman filter system, the sub-filter acts to improve the accuracy. Fan et al. [7] used
adaptive Kalman filtering for vehicle laser Doppler velocimetry (LDV). It was indicated that adaptive
Kalman filtering can improve the accuracy of vehicle LDV. Ko et al. [8] used an invariant extended
Kalman filter for the navigation of an unmanned aerial vehicle. Tradacete et al. [9] presented a global
positioning system for an autonomous electric vehicle. In this paper, two sub-systems are fused to
a single system by an extended Kalman filter (EKF), reaching centimeter accuracy.

Regarding the application of the Kalman filter in the domain of object tracking, Kim et al. [10]
presented a multiple-object tracking system whose design is based on multiple Kalman filters dealing
with observations from two different kinds of physical sensors (radar and a charge-coupled device
camera). Chen etal. [11] presented an efficient method to integrate various spatial-temporal constraints
to regularize the contour tracking. In this paper, an unscented Kalman filter (UKF) is applied to estimate
object parameters based on the non-linear observation model and the object dynamics. Li et al. [12]
presented a cost-effective approach to track moving objects around vehicles using linearly arrayed
ultrasonic sensors. Two types of tracking algorithms for the sensor array, including an extended
Kalman filter (EKF) and an unscented Kalman filter (UKF), were designed for dynamic object tracking;
the results showed that both EKF and UKF gave a precise tracking position. Shantaiya et al. [13]
presented the tracking of multiple objects from a given video dataset. Multiple objects can be tracked
simultaneously using the Kalman filter and optical flow algorithm.

Regarding the application of the Kalman filter in the domain of inertial navigation systems (INS)
and global positioning systems (GPS), Narasimhappa et al. [14] modified the Sage-Husa adaptive
Kalman filter to denoise the fiber optic gyroscope signal in an inertial navigation system (INS). In this
work, the random error of the fiber optic gyroscope is modeled using a first order auto regressive
model, and the coefficients of the model were used to initialize the transition matrix of the Sage-Husa
adaptive Kalman filter. Chen et al. [15] proposed an adaptive extended Kalman filter on an INS/wireless
sensor network (WSN) integration system for mobile robot indoors. Zhao et al. [16] analyzed the
suitable case for the robust Kalman filter in GPS/INS systems, and the filter characteristics including
parameter setting, parameter meaning, and filter convergence condition are discussed simultaneously.
Liu et al. [17] proposed an information fusion method based on the adaptive Kalman filter for integrated
INS/GPS navigation, and the proposed adaptive Kalman filter with an attenuation factor can restrain
the measurement noise and process noise. Chen et al. [18] proposed a novel model combined with
strong tracking Kalman filter and wavelet neural network algorithms for INS error compensation.

As mentioned above, the Kalman filter is widely used in different fields. However, not much
research has been performed into navigation for sprinkler irrigation machines (SIMs). Besides this,
Kalman filtering results usually are not optimal due to the uncertainty of the noise characteristics in
the practical system [19]. The system and observation noise characteristics can reduce the estimation
accuracy, and result in the reduction of the reliability and real-time performance of the filter. In order to
solve these problems, the Sage-Husa adaptive filter is updated on the basis of covariance matching
technology with the aim of applying it in the navigation of a translational sprinkler irrigation machine.

The rest of this paper is organized as follows. In Section 2, the self-developed SIM is introduced,
and the kinematic model for the SIM is established. In Section 3, the updated Sage-Husa adaptive
Kalman filter is derived and presented. In Section 4, the design of the Kalman filter for the SIM
is presented. In Section 5, the application of the updated Sage-Husa adaptive Kalman filter in the
navigation of the self-developed SIM is illustrated. Conclusions are drawn in Section 6.

2. Kinematic Model of the Sprinkler Irrigation Machine

In order to achieve accurate navigation, it is necessary to establish a precise kinematic model.
In this section, the kinematic model for a self-developed translational sprinkler irrigation machine
is established.
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2.1. The Self-Developed SIM

In this paper, the self-developed translational SIM is taken as the research platform, as shown in
Figure 1.

Solar photovoltaic module

Walking motor reducer

Steering motor Control cabinet

High-clearance chassis Main water pipe
Figure 1. Structural diagrams of the self-developed translational sprinkler irrigation machine (SIM).

The self-developed SIM is composed of a solar photovoltaic power supply part, mechanical
structure part and control system part. It is illustrated in Figure 1 that the self-developed SIM
mainly includes a solar photovoltaic module, battery, main water pipe, water pump, steering motor,
high-clearance chassis, control cabinet, walking motor reducer, nozzle and so on.

The solar photovoltaic module of the sprinkler irrigation machine converts solar radiation energy
into electric energy through the photoelectric effect and stores the electric energy in its battery. Part
of the stored energy is converted into mechanical energy through the stepping motor. The output
torque of the motor is transferred to the power that drives the wheels to move, steered by the planetary
gear reducer with a deceleration ratio i of 10 and worm gear reducer with a transmission ratio of 80:1.
The other part of the electric energy is converted into the pressure energy of the pump through the
horizontal centrifugal pump, which is used to draw water from the water source. The stepper motors
used in the sprinkler irrigation machine are equipped with driving controllers to control the speed of
the driving wheels. Considering the structure of the sprinkler, the efficiency of the driving system and
the convenience of control, the wheel drive is chosen as the driving mode of the sprinkler irrigation
machine. The driving mode of the wheel drive is shown in Figure 2.

Wheel

(>

Figure 2. Driving mode of the wheel drive.
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The main technical parameters of the self-developed SIM are shown in Table 1.

Table 1. Main performance parameters of the self-developed SIM.

Parameters Value
Dimension (length X width X height)/mm 70,000 x 4200 x 5000
Weight/kg 3500
Spray range/m 72-76
Nozzle type Nelson D3000
Speed/(m/min) <1.0
Rate of flow/(m3/h) <48
Nozzle number 24
Nozzle spacing/m 3
Inlet pressure/MPa 0.1
Clearance from the ground/mm 1800

2.2. Establishment of Kinematic Model

40f 14

Considering that the longitudinal speed of the SIM is small and constant during operations, and
the guiding path for the navigation of the SIM is generally a straight line, the kinematic model of the

self-developed SIM depicted in Figure 3 is employed for analysis.

Y A

~Y

Figure 3. Kinematic model of the SIM.

As shown in Figure 3, the self-developed SIM adopts four-wheel drive. The path tracking of the
SIM is realized by adjusting the wheel speed on both sides. In Figure 3, the X-Y coordinate system
uses the world coordinate system: O’ is the center of sprinkler irrigation machine (SIM), O is the
instantaneous center of rotation, the distance between O” and O is the turning circle of SIM, the speed
at point O’—i.e., vp,—can be regarded as the moving speed of the SIM, f is the angle between the
longitudinal axis of the SIM body and the X-axis of the world coordinate system, and L is the distance
between the front and rear wheels. Let the coordinates of O’—i.e., (x, y)—be the location of the SIM.
Then, the state of the sprinkler irrigation machine at any time can be expressed by the state variables

x(t), y(t) and ().

According to Figure 3, the following equation can be obtained, expressed as

Uy = vp, COs f3
vy = Vo, sin

U1—7;
w = lBr

)
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where vy and vy, are the velocity components along the X and Y direction, v; is the speed of the left
wheel, v, is the speed of the right wheel, and B is the distance between left wheel and right wheel.

Generally, the moving speed of the SIM is slow. In this study, it is assumed that the sprinkler
irrigation machine only moves in the plane—i.e., two-dimensional motion in the X and Y directions—and
the influence of the undulating ground and lateral slip of wheels are ignored. When the SIM moves in
a plane, the speed of the SIM vy, and the steering angular velocity wcan be expressed as

v +o
vo, = 5 @)
U] — Uy
= 3
5 3)

The path tracking of the sprinkler irrigation machine is realized by adjusting the wheel speed on
both sides. When the SIM moves in a straight line, the speeds of the left and right wheel are equal; i.e.,
v = v;. When SIM corrects deviation by adjusting the wheel speed on both sides, the speeds of the left
and right wheel are unequal; i.e., v; # v;.

According to Equations (1)—(3), the kinematic model of the SIM can be obtained and expressed as

X = Uy = Vo, COS B
Y = vy = vp, sin (4)
ﬁ = = _ZJZ;Uy

3. Updated Kalman Filter Algorithm

3.1. Conventional Kalman Filter

In extensive engineering applications, the actual value of the state variables of a system usually
cannot be obtained directly; they can be extracted from observations which have random noise.
The Kalman filter is an effective method to obtain the actual value of the system state variables by
analyzing the observations of the system. Generally, the Kalman filter is a linear minimum-variance
filter, which can be used to estimate and correct the system state by using an iterative algorithm.

As for a general linear system, the state equation after discretization can be expressed as follow [20]:

Xy = Apg—1Xp-1 + W1 5)

where Xj and Xj_, are the state vector at time k and time k — 1, respectively, Ay x_; is the one-step state
transition matrix from time k — 1 to time k, and the system noise wy, is the Gaussian white noise with
an average value of zero. The expectation values of system noise can be expressed as

Efwe] =0 (6)
E[wew] = Qidy )
where 0y is the Dirac delta function.
1, ifk=1
Okt = { 0, otherwise ®)

where Q) is the process noise covariance matrix.
The observation equation of the system can be written as

Zy = HX) + ¢, )
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where Z; is the observation at time k, H is the observation matrix, X} is the state vector at time k, and
the observation noise ¢ is the Gaussian white noise with zero mean.
The expectation values of observation noise can also be expressed as

Elee] =0 (10)

Elexe;] = Ry (11)

where 0y is the Dirac delta function, and R is the observation noise covariance.

In the Kalman filter algorithm, if the state estimation and covariance matrix at the initial time
X(0) and P(0)—namely X and Py—are given, the state estimation and its covariance matrix at time
k—i.e., X(k) and P(k), namely Xj and Py, (k=1,2, ... )—can be obtained recursively according to the
observation Z(k), namely Zj, at time k. The implementation steps of the Kalman filter are given below:

(1) Estimate the process state:

Xik—1 = Akk-1Xk-1 (12)

(2) Calculate the covariance matrix of state estimation:
Py-1 = Ak,k—lpk—lA;{,k_l + Qk-1 (13)
(3) Compute the Kalman gain:
Ki = PygyHT (HiPg 1 HT +R) (14)
(4) Update the state estimation with observation:
Xie = Xyt + Ki( Zi = HXjopm1) (15)
(5) Update the error covariance:
Py = (I - K¢Hy) P (16)

3.2. Sage-Husa Adaptive Kalman Filter

The Sage-Husa adaptive filter is one of variants of the conventional Kalman filter; that is,
the Sage-Husa adaptive filter algorithm is proposed based on the conventional Kalman filter algorithm.
The calculation flow for the Sage-Husa adaptive filter algorithm can be described as follows [21]:

Kih-1 = Apk-1Xk-1 (17)
Py = Ak,k—lpk—lA]z,k_l + Qg k-1 (18)
-1
Ki = Pyt H} (HPrg—1HY + Ry) (19)
Vi = Zx — Hi Xy k1 (20)
X = Xpk-1 + Ki Vi (21)
Py = (I = KxHy)Prrq (22)
Ri = (1= )Ry + d(ViVi = HiPpoyr HY ) (23)

where
de = (1-D)/(1- V) (24)
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dy. is the amnestic factor and b is the forgetting factor in the range of 0 and 1, Py is the covariance matrix
of state estimation, Py _; is the one-step estimation variance matrix, Kj is the filter gain, Vj is the
remainder vector, and Ry is the observation noise covariance.

According to Equations (17)—(23), it is demonstrated that the variance matrix of the observation
noise Ry should be calculated in the filtering process for every parameter k through the Sage-Husa
adaptive filter algorithm, which leads to increasing filtering complexity and an extra amount of
computation. Therefore, it is difficult to guarantee the real-time performance of the Sage-Husa
adaptive filter algorithm in practical application. In order to apply the Sage-Husa adaptive filter to
a practical situation, its real-time performance should be updated.

3.3. Updated Sage—Husa Adaptive Kalman Filter

The Sage-Husa adaptive Kalman filter and conventional Kalman filter both have advantages and
disadvantages. The Sage-Husa adaptive Kalman filter has higher estimation accuracy; however, it has
increased filter complexity, caused by large amount of computation. On the other hand, the conventional
Kalman filter has higher computational efficiency, but its estimation accuracy is low. On the basis of
the covariance matching method, the Sage-Husa adaptive Kalman filter algorithm can be updated
in order to reduce the amount of computation and improve the real-time performance of the algorithm.

The basic idea of the covariance matching method is as follows. The actual remainder vector Vi is
verified while filtering in order to determine whether it is compatible; that is, Vi is verified in order to
determine whether abnormal filtering occurs. When the actual remainder is incompatible under the
null hypothesis Q(k — 1) and R(k — 1)—i.e., Qx—1 and Ry_1—then Q(k) and R(k)—i.e., Qr and Ry—are
estimated to replace the original assumptions Qy_1 and Ry_1 [22].

The criterion for judging filter anomaly is

ViV > ytr(E[Viv]]) (25)

where y is the reserve coefficient, y > 1; tr represents the trace of the matrix, and Vj is the
remainder vector.
If Equation (25) is true, this indicates that the actual error will exceed the theoretical prediction value
by y times, and the filter is divergent. When y is equal to 1, this is the strictest convergence criterion.
Assuming that R(k) = R(k — 1), Equation (26) can be given theoretically as follows:

E[ViV]| = HiPrjrHY + Ry (26)
Therefore, the criterion for judging filter anomaly can be rewritten as follows:
ViVl > HiPyr_1H] + Ry (27)

In the filtering process, Equation (27) can be used to judge the filtering state. If Equation (27) is
true, which means the filtering process is abnormal, then Ry should be estimated in order to adapt it to
the current filtering; otherwise, Equation (27) is not true, which means the filtering process is normal,
and Ry does not need to be estimated [23]. That is, in the k-th filtering process, the remainder term V is
used to verify Ry. If Equation (27) is true, which means that the actual remainder is incompatible with
the null hypothesis Ry = Rj_1, then Ry can be calculated by Equation (23) to replace Ry_1; otherwise,
if Equation (27) is not true, the calculation of Equation (23) is not required, and Ry is equal to Rx_;. Thus,
the amount of computation can be reduced, and the self-adaptive estimation of Ry can be realized.

4. Design of Kalman Filter for Navigation of SIM

In order to establish the Kalman filter model, the recursive relationship among the system states
should first be obtained. In this study, the recursive relationship among the system states is established
based on the method of dead reckoning.
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4.1. Calculation of Navigation Position Based on Dead Reckoning

Dead reckoning is a commonly used positioning method for autonomous navigation. In the dead
reckoning method, the recursive method is employed to accumulate the moving distance of the vehicle
and the direction relative to the known points, and then the position and direction of the vehicle
are calculated in real time according to a certain reference position. The schematic diagram of dead
reckoning is shown in Figure 4.

Y A

SR/

Figure 4. Schematic diagram of dead reckoning.

Assume that the heading angle g of the sprinkler irrigation machine is unchanged during one
sampling period T. If the initial position of the SIM is (xg, o), the position of the next moment of the
SIM—i.e., (x1, y1)—can be calculated by using the sampling time, the speed and heading angle of the
SIM, where the speed and heading angle of the SIM are obtained by the speed sensor and electronic
compass, respectively. Then, the known position (x3, ¥1) can be used to calculate the position of the
next moment of the SIM; i.e., (x2, ¥2). The real time position during the movement of SIM can be
deduced by analogy. The recurrence formula of navigation position can be written as

X = Xk—1 + 0o, T cos Br_1 (18)

Yk = Yk—1 + 00, T sin f_4 (19)

where x; and y; are the coordinate position of the SIM at time k, x;_; and y,_; are the coordinate
position of the SIM at time k — 1, vp, is the longitudinal speed of the SIM, T is the sampling period, and
k-1 is the heading angle of the SIM at time k — 1.

4.2. Design of Kalman Filter

In this study, the Kalman filter uses the information from the speed sensor and electronic
compass—i.e., the longitudinal speed v and the heading angle f of the SIM—to estimate the process
state of the SIM at some time according to Equations (28) and (29). The Kalman filter uses the
information from the GPS receiver and speed sensor of the SIM—i.e., the longitudinal speed v and the
position (values of variable x and y)—to obtain feedback in the form of measurements.
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4.2.1. Establishment of State-Transition Matrix

In the study of navigation for the self-developed SIM, the positional variables x, y and the speed
variable v are chosen as the system state variables; then, the state vector X can be expressed as

(30)

>
I
SIS

where x and y are the variable values corresponding to the X-coordinate and Y-coordinate in the
Gauss plane rectangular coordinate system which is converted from the WGS84 coordinate system by
Gaussian projection, and v is the longitudinal moving speed of the SIM; i.e., v = v,.

According to the basic state-transition equation—i.e., Equations (5), (28), (29) and (30)—the
state-transition matrix is obtained as

10
A=|0 1 Tsinpey 31)
00

where T is the sampling period, and f,_; is the angular components in the planar coordinates of the
Gauss projection at time k — 1.

4.2.2. Establishment of Observation Matrix

In the present study, the position variable x, y and the speed variable v are chosen as observation
variables. The positional information x and y can be measured by the GPS receiver, and the speed
information can be measured by speed sensors. Then, the observation vector Z can be expressed as

(32)

N
Il
Q< R

Combining the basic observation equations—i.e., Equations (9), (30) and (32)—the observation
matrix can be expressed as

1 00
H=|0 1 0 (33)
0 01
The covariance matrix of the observation noise Rj is written as
r% 0 0
Re=| 0 13 0 (34)
0 0 13

where r1, o and r3 are the standard deviation of the observation for variables x, y and v, respectively.

5. Application in the Navigation of the Self-Developed SIM

In practice, the established mathematical model has difficulty reflecting the real physical process.
When the mathematical model does not match the observations, the application of the Kalman filtering
algorithm can lead to filter divergence. In the updated Sage-Husa adaptive Kalman filter algorithm,
the self-adaptive filtering process can be realized by correcting the covariance matrix of the observation
noise of the system. Therefore, the updated Sage-Husa adaptive Kalman filter algorithm has the
advantages of more flexibility and reliability, and it can be used to reduce estimation error.



Water 2019, 11, 1269 10 of 14

In this study, the self-developed translational SIM is taken as the experimental platform.
The navigation control system of the self-developed SIM is composed of a navigation controller,
GPS receiver, electronic compass, speed sensor, speed controller and so on. The navigation controller
is used to implement the navigation control algorithms, generate and output the control commands;
the GPS receiver is employed to obtain the position information (values of X-coordinate and Y-coordinate);
the electronic compass is used to measure the angular components in the planar coordinates of the Gauss
projection; and the speed sensor is used to obtained the longitudinal moving speed of the SIM.

The self-developed SIM is a kind of continuous straight-line moving machine. Therefore, the experimental
verification is conducted by taking linear motion as an example. In this part, the updated Sage-Husa adaptive
Kalman filter algorithm is applied in the navigation.

In order to verify the navigation performance of the self-developed SIM and test the positioning
accuracy of the SIM by using the updated Sage-Husa adaptive Kalman filter algorithm in navigation,
the navigation tracking experiment is conducted. The experimental scenario is shown in Figure 5.

(a) Picture of predetermined path. (b) Picture of navigation tracking.

Figure 5. Experimental verification scenario.

In the experiment, the SIM tracks along the predetermined path. A straight path is planned on
the cement road for the verification experiment: the initial coordinates of the path are (3800970.522,
782548.0014), and the destination coordinates of the path are (3800967.693, 782516.8791). In order to
facilitate the analysis and calculation, the relative coordinates, which are the difference between the
collected coordinate data and initial coordinates, are used.

The initial value of the process noise covariance matrix Q can be written as Q(0) =
0.4

0.4 ; the initial matrix for the observation noise covariance matrix R can be written

0.5

30
asR(0) = 30 . Besides this, the initial matrix for the covariance matrix of state estimation

0.3
0.4
P can be written as P(0) = 0.4 . The filtering results for the navigation of the SIM are
0.1

shown in Figure 6.
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(a) Path of conventional Kalman filter
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(b) Path of updated algorithm
Figure 6. Path tracking for the conventional Kalman filter and updated algorithm.

It is seen from Figure 6 that the tracking path of the updated Sage-Husa adaptive Kalman filter and
conventional Kalman filter are close. This is because, during most of the path tracking time, the filtering
process of the updated Sage-Husa adaptive Kalman filter is normal—that is, Ry is adaptive to the current
filtering—thus, Ry does not need to be estimated. Therefore, there are no great differences between the
filtering results of the updated Sage-Husa adaptive Kalman filter and conventional Kalman filter.

From Figure 6a, it can be seen that when the observations have large deviations, the data obtained
by the conventional Kalman filter also have large deviations. It is seen in Figure 6b that the data obtained
by the updated Sage-Husa adaptive Kalman filter also have deviations; however, the deviations are
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smaller than that of the conventional Kalman filter. For a more intuitive comparison, the deviations
between the predetermined path and the observation points, the path obtained by using the conventional
Kalman filter (CKF) and the path obtained by using the updated algorithm (UA) are depicted in Figure 7.

— 7T T T T T 1T T T T 1T T T T T T T T
0.30 | —=— Deviation between predetermined path and the observation points -
—se— Deviation between predetermined path and the path obtained by CKF
[ | —— Deviation between predetermined path and the path obtained by UA i
0.25 - -
— a 4
g f
% 0.20 -
g ,
k= PVt
5 015
3 J
o]
= 0.10 \
< . =
> \.\
0.05 \
0.00 -
Ly 1
90 100

Relative distance (m)

Figure 7. Deviations between the predetermined path and the observation points, the path obtained by
using the conventional Kalman filter (CKF) and the updated algorithm (UA).

It is indicated in Figure 7 that the filtering precision of the updated Sage-Husa adaptive Kalman
filter is higher than that of conventional Kalman filter. This is because when the filtering process is
abnormal, Ry is not adaptive to the current filtering. Thus, Ry is estimated by using Equation (23)
in order to adapt it to the current filtering process. The influence of abnormal observations on the
positioning accuracy of the system can be restrained by the updated Sage-Husa adaptive Kalman filter.
Accordingly, the accuracy and stability of the filter can be improved effectively.

To sum up, the self-developed SIM has good navigation performance, and the updated Sage-Husa
adaptive Kalman filter can be applied in the navigation of the SIM. The average deviation, maximum
deviation and deviation variance of position for the SIM, which are obtained before and after the
filtering process through the updated Sage-Husa adaptive Kalman filter, are shown in Table 2.

Table 2. Error statistics before and after the filtering process.

Items Maximum Deviation/m  Average Deviation/m  Deviation Variance
Before filtering 0.28 0.1 0.004
After filtering 0.18 0.08 0.003

It is indicated in Table 2 that the average deviation, maximum deviation and deviation variance
become smaller after filtering through the updated Sage-Husa adaptive Kalman filter, which means the
positioning accuracy of the system is improved. After using the updated Sage-Husa adaptive Kalman
filter, the maximum deviation between the SIM and the predetermined path is 0.18 m, and the average
deviation is 0.08 m; these deviations are within a reasonable range. This proves that the updated
Sage-Husa adaptive Kalman filter is applicable for the navigation of sprinkler irrigation machines.
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6. Conclusions

The focus of this paper is to develop a translational sprinkler irrigation machine and apply the
updated Sage-Husa adaptive Kalman filter to the navigation of the SIM. The following conclusions
can be drawn.

1. On the platform of the self-developed translational sprinkler irrigation machine, the kinematic
model for the SIM is established.

2. Theupdated Sage-Husa adaptive Kalman filter is applied to the navigation of the SIM. Experiment
verifications were carried out, and the results show that the self-developed SIM has good
navigation performance. Besides this, the influence of abnormal observations on the positioning
accuracy of the system can be restrained by using the updated Sage-Husa adaptive Kalman filter.

3. The maximum deviation between the sprinkler irrigation machine and the predetermined
path is 0.18 m and the average deviation is 0.08 m after using the updated filtering algorithm;
the deviations are within a reasonable range. This indicates that the updated Sage-Husa adaptive
Kalman filter is suitable for sprinkler irrigation machine signal processing.
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