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Abstract: Water management in arid basins often lacks sufficient hydro-climatological data because,
e.g., rain gauges are typically absent at high elevations and inflow to ungauged areas around large
closed lakes is difficult to estimate. We sought to improve precipitation and runoff estimation in
an arid basin (Lake Urmia, Iran) using methods involving assimilation of satellite-based data. We
estimated precipitation using interpolation of rain gauge data by kriging, downscaling the Tropical
Rainfall Measuring Mission (TRMM), and cokriging interpolation of in-situ records with Remote
Sensing (RS)-based data. Using RS-based data application in estimations gave more precise results,
by compensating for lack of data at high elevations. Cokriging interpolation of rain gauges by
TRMM and Digitized Elevation Model (DEM) gave 4–9 mm lower Root Mean Square Error (RMSE) in
different years compared with kriging. Downscaling TRMM improved its accuracy by 14 mm. Using
the most accurate precipitation result, we modeled annual direct runoff with Kennessey and Soil
Conservation Service Curve Number (SCS-CN) models. These models use land use, permeability,
and slope data. In runoff modeling, Kennessey gave higher accuracy. Calibrating Kennessey reduced
the Normalized RMSE (NRMSE) from 1 in the standard model to 0.44. Direct runoff coefficient map
by 1 km spatial resolution was generated by calibrated Kennessey. Validation by the closest gauges to
the lake gave a NRMSE of 0.41 which approved the accuracy of modeling.

Keywords: hydrological modeling; downscaling TRMM; direct runoff coefficient; water scarcity;
lakes; Urmia; desiccation; land use; ungauged basin; SCS-CN; Kennessey

1. Introduction

Mapping hydrological parameters such as runoff and precipitation requires a variety of approaches
and the most widely used tools are data-driven [1]. However, in most catchments around the world
runoff is not gauged [1] and, especially in developing countries, rain gauge networks have poor spatial
and temporal resolution [2]. A good example is Lake Urmia in north-west Iran, where water overuse
has led to lake desiccation [3] and where a marked lack of in-situ data for the basin is affecting lake
restoration policy.

In Lake Urmia basin, there are two main limitations in runoff estimation: (i) the lake is surrounded
by an ungauged buffer zone with a high concentration of agricultural activities, which has an important
effect on water reaching to the lake body [4]; and (ii) there is a lack of sufficient data on water withdrawal
by intensive irrigation in central sub-basins, as an overall survey is only performed every 10 years by
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the Iran Water Resource Management Company (WRM) to determine the amount of water withdrawal.
There are also problems in estimating precipitation, another important element of water resource
management in the basin, owing to lack of inadequate rain gauges, especially at high elevations where
a large proportion of precipitation in the basin occurs. A possible solution is use of satellite-based data
in estimating precipitation [2,5,6].

Global precipitation data sets, including gauge-based, satellite-based, and reanalysis data sets,
have proved useful across a wide range of fields of research [6]. The accuracy of these data sets has
been investigated in different case studies. [2,7–11]. Moazami et al. [11] studied the performance of
the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN), and the Tropical Rainfall Measuring Mission (TRMM) in Iran. They found that TRMM
gives better performance based on statistical measures. More specifically, Ghajania et al. [2] compared
six high resolution precipitation data sets (PERSIANN, CMORPH-RAW, CMORPH-CRT, TRMM 3B42,
TRMM 3B43 V7, and APHRODITE) in Lake Urmia Basin. They found that APHRODITE and TRMM
3B43 V7 present better estimations in this basin.

Due to a scarcity of in situ observations in Lake Victoria, the largest lake in Africa, Inne
Vanderkelen et al. [12] presented a water balance model for Lake Victoria, using state-of-the-art
remote sensing observations, high-resolution reanalysis downscaling, and outflow values to estimate
water balance of the lake. The computation of the individual water balance terms yields lake level
fluctuations that closely match the levels retrieved from satellite altimetry. Georgy Ayzel and Alexander
Izhitskiy [13], addressing discontinuous nature of hydrological regime of Aral Sea basin, have developed
a continuous prediction system for assessing freshwater inflow into the Small Aral Sea based on
coupling stack of hydrological and data-driven models. Their results show a good prediction of
water assessment tool which utilizes classical physically based and modern machine learning models.
Tilahun and Merkel [14] simulated groundwater recharge, surface runoff, and evapotranspiration in
Dire Dawa (Ethiopia) by WetSpass. WetSpass as a physically-based methodology is a distributed water
balance model.

To overcome the lack of runoff data in the ungauged buffer zone around Lake Urmia and
precipitation records in high elevations, we present a novel data assimilation and modeling approach.
First, precipitation is estimated by coupling TRMM, NDVI, and Digitized Elevation Model (DEM), as
satellite-based data sets, with station data. Next, direct runoff is estimated using the Kennessey [15]
and Soil Conservation Service Curve Number (SCS-CN) [16] models. The spatial variation in models’
parameters is estimated from GIS layers covering slope, land use, and soil permeability. The approach
maps precipitation and direct runoff coefficient (RC) as gridded outputs by 1 km spatial resolution.

2. Datasets and Study Area

2.1. Study Area

The study was carried out using the case of Lake Urmia basin (35◦40′–38◦30′ N, 44◦07′–47◦53′ E),
one of six main basins in Iran. Mean annual precipitation in the basin is 340 mm and mean annual
temperature is 12 ◦C. The area of the basin is about 52,000 km2, consisting of around 34,000 km2 of
mountainous terrain and 13,000 km2 of flat land supporting around 6000 km2 of farms or orchards.
The remaining 5000 km2 of the basin are occupied by Lake Urmia (Figure 1a). This lake is mainly fed
by the Zarinehroud, Siminehroud, Ajichay, Gadarchay, Brandooz, Shahrchay, Nazluchay, Mahabad,
Rozechay, Ghalechay, and Zulachay rivers, but mean annual inflow has declined from 12 to 2.4 billion
cubic meters (BCM) over the past five decades [17]. Due to unrecorded water withdrawal by farmers in
the basin, for runoff modeling we used sub-areas of the basin that are less affected by human activities
(hereafter called ‘marginal sub-basins’), which were well distributed over the basin (Figure 1b).
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Figure 1. Map of the Lake Urmia basin showing the location of (a) rain gauges and (b) the ungauged
buffer zone and marginal sub-basins designated in this study.

Lake Urmia is the second most hypersaline (about 300 P.S.U) lake in the world and the largest
lake in Iran. However, the lake has lost more than 90% of its water volume in the past 25 years [18].
This is because farmers in the basin use as much water as possible during the irrigation season [19]
which means consumption of 70% of the basin’s renewable water resources [18,20]. This lake has been
designated a protected area by UNESCO and is recognized as a Biosphere Reserve and Ramsar site in
the Ramsar Convention [18]. One of the most important concerns raised by the desiccation of Lake
Urmia is its transformation into an active center of salty dust and there have been warnings that Lake
Urmia could become similar to the Aral Sea over time [21,22]. This is problematic since the population
around Lake Urmia is much denser than that around the Aral Sea [23].

2.2. Data Sources

Monthly records of temperature were taken from 18 synoptic stations of Meteorological
Organization (IMO) in Lake Urmia basin. Additionally, 157 rain gauges (Figure 1a) monthly values
were obtained from WRM and IMO. Daily runoff values, measured in 27 gauges of marginal sub-basins,
were obtained from WRM and used for calibration (Figure 1b). In addition, 10 gauges on main rivers
of the basin (Figure 2d) were used for validation of the calibrated direct runoff model. Additionally,
the most recent data on water withdrawal in Lake Urmia basin is available for 2008 which is published
by WRM and utilized in this study. This data is updated each 10 years for all major basins in Iran.

TRMM Multi Satellite Precipitation Analysis [5], product 3B43 V7 which had monthly temporal
resolution and 0.25◦ (about 25 km) of spatial resolution was used for estimation of precipitation.
In TRMM 3B43 V7, Global Precipitation Climatology Project (GPCP) monthly rain gauge data are
used for bias reduction [9]. In this study, monthly TRMM data from 2006 to 2011 were utilized.
In addition, satellite-based Digitized Elevation Model (DEM) from Shuttle Radar Topography Mission
(SRTM) initiated by NGA and NASA, which provide high quality DEM at global scale with 30 m
spatial resolution [24], was used in precipitation estimation and generating the slope map of the basin
(Figure 2c).

MOD13-Gridded Vegetation Indices by 1 km spatial resolution and 16-day temporal resolution [25]
was used as required Normalized Difference Vegetation Index (NDVI) in the TRMM downscaling
process. Additionally, the utilized land use map, produced in supervised classification with field survey
data by Iran Water Research Institute (WRI) [26], has 30 m spatial resolution (Figure 2a). Soil texture
data was taken from the Harmonized World Soil Database [27]. Additionally, a permeability map
(Figure 2b) generated by the Remote Sensing Research Center of Sharif University of Technology [28]
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by 1 km spatial resolution was used as required data for the Kennessey model. In this research, all
gridded data were upscaled to 1 km to homogenize spatial resolution for all inputs of the models.

Figure 2. Lake Urmia basin data: (a) land use, (b) permeability, (c) slope, and (d) validation gauges.

3. Methodology

The work comprised two main steps (Figure 3):
1. Estimation of precipitation: observed precipitation data statistically examined in terms of data

quality by Ghajarnia et al. [29] were utilized. These data were randomly selected and split, with 70%
(110 rain gauges) used for precipitation estimation and 30% (47 rain gauges) for validation of the
applied methods (using 50% for validation would have left too few rain gauges in the 52,000 km2 basin
for estimation). We did not involve 30% of rain gauges as validation dataset in the estimation process
to prevent affectability of estimated precipitation from the validation dataset. Using 70% of rain gauge
data and satellite images of TRMM, NDVI, and DEM for whole of the basin, annual precipitation
was estimated by 1 km spatial resolution. The best method was then defined by Root Mean Square
Error (RMSE), based on other pristine 30% of rain gauge data. The methods applied for estimating
precipitation were geostatistical interpolation and downscaling. In a first estimation of the accuracy
of each method, the year 2007 was selected. Then, to consider the effect of wet or dry years on the
results of precipitation estimation, the most accurate method determined in 2007 was applied for the
three water years (September–August) 2006–2007, 2007–2008, and 2010–2011, which were wet, dry,
and normal years, respectively.

2. Direct runoff modeling: first, direct RC modeling was performed using the SCS-CN and
Kennessey models in 2006. The results of these models were compared to marginal sub-basins gauge
data (Figure 1b) because these sub-basins had a suitable situation in terms of data continuity and low
impact of human activities on their observed gauges’ data. Having specified the most accurate runoff

model among Kennessey and SCS-CN in their standard format, we tried to calibrate it. Only marginal
sub-basins were chosen for calibration because in these areas water withdrawal from surface resources,
based on WRM data, is less than 5% of observed runoff in gauges. Furthermore, less than 5% of
these sub-basins are covered by farm lands. Finally, the annual direct RC map was generated for
the whole basin as gridded data by 1 km spatial resolution. We chose the closest flow gauges to the
lake, which had continuous data during 2006–2011 and cover more than 45% of the basin. As shown
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in Figure 2a, in validation sub-basins water withdrawal is high because of the wide area covered
by farm lands. Since water withdrawal data is only available for 2008, the validation was done by
using five-year means of annual estimated direct RC and observed values in the validation gauges
(Figure 2d). Upstream withdrawal was deducted from the mean five-year hydrograph base flow of
validation stations. Logically, if withdrawal is higher than base flow, the extra amount should be
provided by direct runoff. Thus, the withdrawal value remaining after deduction from the base flow
was added to the observed direct runoff, which resulted in naturalized direct runoff. The validation
process was then completed by comparing naturalized observed RC and modeled values.

3.1. Estimation of Precipitation

3.1.1. Geostatistical Interpolation

Ordinary kriging [30] was used for interpolation. Kriging weights the surrounding measured
values to derive an estimation for an unmeasured location. The general formula for interpolators is
formed as a weighted sum of the data:

Z(x0) =
N∑

i=1

λiZ(xi), (1)

where Z(xi) is the measured value at the ith location; λi is an unknown weight for the measured value
at the ith location; x0 is the estimation location, and N is the number of measured values. In the kriging
method, λi depends on the distance between the measured points and the estimation location, and
also on the spatial autocorrelation of the measured points.

Additionally, cokriging interpolation was utilized in this study to estimate the precipitation
because this method can explore more than two variables and data from auxiliary variables to make
estimations. Cokriging is commonly applied in environmental studies [31]:

S(d) = µ(d) + δ(d), (2)

where µ(d) is an average vector with fixed effects and δ(d) is a random vector with a zero mean. S(d) is
set as data {S(d1), . . . , S(dn)} detected at locations {d1, . . . , dn}. For m different variables:

S1

. . .
Sm

=

(EV)1 · · · 0

...
. . .

...
0 · · · (EV)m



θ1

. . .
θm

+

δ1

. . .
δm

, (3)

where (EV)i is a matrix in which kth row is (ev)i(d)k; k = 1, . . . , n; i= 1, . . . , m. [(ev)(d)] represents
explanatory variables for the ith variable to be predicted and θi is a vector of unknown regression
parameters [31].

3.1.2. Downscaling

To enhance the spatial resolution of the satellite precipitation product, we downscaled TRMM
3B43 V7 using an approach developed by Agam [32] and a method proposed by Immerzeel [33] that
involves finding an exponential relationship between TRMM as a low resolution (LR) data (0.25o

which is about 25 km) and NDVI as a high resolution (HR) data (1 km). We also tested use of DEM for
downscaling TRMM instead of NDVI.
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Figure 3. Flowchart showing steps followed in estimation and mapping of annual precipitation and direct runoff coefficient for Lake Urmia basin.
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For downscaling: (1) the spatial resolution of DEM and NDVI were decreased to 0.25o to
produce DEMLR and NDVILR; (2) two exponential relationships achieved between DEMLR-TRMM and
NDVILR-TRMM which had 0.25o spatial resolution; (3) we applied obtained exponential relationships
on DEMLR and NDVILR; (4) the product of step 3 was deduced from TRMM. The obtained value was
called ResLR; (5) through spline interpolation, spatial resolution of ResLR was enhanced from 0.25o to
1 km to produce ResHR; (6) eventually, the exponential relationships obtained from step 2 was applied
on original high resolution DEM and NDVI; (7) by summing up ResHR and the product of step 6,
downscaled TRMM was finally produced.

3.2. Direct RunoffModeling

3.2.1. Baseflow Subtraction

To model direct runoff, first the base flow should be subtracted from observed runoff. In this study,
baseflow was subtracted by Base Flow Index (BFI) method with the USGS-GW-Toolbox [34]. The BFI
program [35] is based on a set of procedures developed by the Institute of Hydrology in which the
streamflow record is partitioned into intervals of length N-days. The minimum streamflow during each
N-day interval then is identified and compared to adjacent minimums to determine “turning points”.
If 90% of a given minimum (the “turning point test factor”) is less than both adjacent minimums, then
that minimum is a turning point. The base-flow hydrograph is completed by connecting the turning
points [34].

3.2.2. SCS-CN

For estimation of direct runoff, we used the SCS-CN method, which has been applied and modified
by several authors [36–41]. The SCS-CN consists of the water balance equation and two fundamental
hypotheses expressed, respectively, as:

P = Ia + F + Q, (4)

Q
P− Ia

=
F
S

, (5)

Ia = λS, (6)

where P is total precipitation (mm); Ia is initial abstraction (mm); F is cumulative infiltration (mm); Q
is direct runoff (mm); S is potential maximum retention (mm); and λ is initial abstraction coefficient.
Potential maximum retention can be transformed to CN scale using the following empirical relationship:

CN = 25400/(S + 254), (7)

where S is in mm and CN is a non-dimensional parameter. Furthermore, CN of a region can be
determined by Curve Number tables [16]. A sample of these tables is presented in Table 1. To model
SCS-CN in the present study, we derived soil texture from the Harmonized World Soil Database to
determine soil group map. Soil group can be A, B, C, and D which represent the runoff potential of the
soil according to its soil texture (Table 1). By CN, direct runoff can be calculated using above equations.

Table 1. Curve number for different land uses in the Soil Conservation Service Curve Number
(SCS-CN) model.

Land Use
Curve Number

A (Low Runoff Potential) B (Moderate Infiltration) C (Slow Infiltration) D (High Runoff Potential)

Arid land 77 86 91 94
Meadow 30 58 71 78

Forest 35 56 70 77
Crop 74 83 88 90
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3.2.3. Kennessey

We used the Kennessey model in our study, which has also been applied in other studies [42–45].
According to this model, three major factors influence runoff: slope, land use, and soil permeability.
Later, Tardi and Vittorini [46] added a climatic parameter, Ia, which represents the extent of wetness of
the water year in this model:

Ia =

P
(T+10) +

12p
(t+10)

2
, (8)

where P is mean annual precipitation (mm); T is mean annual temperature (◦C); p is precipitation in
the driest month of the year (mm); and t is temperature of the driest month of the year (◦C). The partial
coefficients of the model are categorized in three different classes according to Ia.

Direct RC is quantified by partial coefficients of the Kennessey (Table 2). By this model and
gridded inputs (shown in Figure 2a–c), each grid, according to Ia of the year, gets three specific partial
coefficients representing its slope, permeability, and land use. Finally, annual direct RC of each grid is
calculated by summing up these three partial coefficients.

Table 2. Partial runoff coefficient values for the four different parameter classes used in the Kennessey.

Classes
Aridity Index (Ia)

Ia < 25 25 < Ia < 40 Ia > 40

Slope

>35% 0.22 0.26 0.30
10%–35% 0.12 0.16 0.20
3.5%–10% 0.01 0.03 0.05

<3.5% 0.00 0.01 0.03

Land cover

Arid land 0.26 0.28 0.30
Meadow 0.17 0.21 0.25

Farm 0.07 0.11 0.15
Forests 0.03 0.04 0.05

Permeability

Very low 0.21 0.26 0.30
Low 0.16 0.21 0.25

Medium 0.12 0.16 0.20
Good 0.06 0.08 0.10
High 0.03 0.04 0.05

3.2.4. Calibration of Kennessey

Having specified the most accurate runoff model by RMSE in 2006, we calibrated it only in
marginal sub-basins for the studied time span from 2006–2007 to 2010–2011. To assess the accuracy of
calibrated model, the weighted average (Equation (9)) of modeled direct RC in each marginal sub-basin
were compared against the observed values in gauges shown in Figure 1b, from which base flow was
first subtracted by the BFI method. To calibrate the Kennessey model, we estimated direct RC in each
marginal sub-basin:

R̂Cik =
∑n

j=1αik, jC j, (9)

where R̂Cik is modeled direct RC of the ith marginal sub-basins in year k; C j is partial coefficients of the
model (Table 3); αik, j is the percent of marginal sub-basin i covered by C j in year k. αik, j is calculated
according to gridded inputs of the Kennessey model (Figure 2a–c) classified in Table 3 by Ia; n is equal
to 39, the number of partial coefficients in Kennessey. For example, if Ia of the ith sub-basin in year k is
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in class I (Table 3), αik, js for C js when j ≥ 14 will get zero values. Furthermore, if C j does not exist in
the ith sub-basin, corresponding αik, j will be zero as well.

Table 3. Parameters of optimization for calibration of the Kennessey model.

Classes
Aridity Index (Ia)

Class I of Ia Class II of Ia Class III of Ia

Slope

>35% C1 C14 C27
10%–35% C2 C15 C28
3.5%–10% C3 C16 C29

<3.5% C4 C17 C30

Land cover

Arid land C5 C18 C31
Meadow C6 C19 C32

Farm C7 C20 C33
Forests C8 C21 C34

Permeability

Very low C9 C22 C35
Low C10 C23 C36

Medium C11 C24 C37
Good C12 C25 C38
High C13 C26 C39

The objective and constraints of calibration are:

Objective : min f
(
C j

)
=

∑M
k=1

∑N
i=1(R̂Cik −RCik)

2, (10)

s.t. C j ≤ C j+13; 1 ≤ j ≤ 26,

where RCik is the observed direct RC of the ith marginal sub-basins in year k; N is equal to 27, the
number of marginal sub-basins. M is equal to 5 as the number of investigated water years from
2006–2007 to 2010–2011. The parameters of optimization (Table 3) are 39 partial coefficients of the
Kennessey model. The constraint of the optimization is based on Ia role in the Kennessey model.
This is because when Ia increases, it means that wetness of the year has increased. Each class of Ia can
be separated by j + 13 while j is less than 26.

For calibration, we tried to minimize the square difference between estimated and observed
values of direct RC using the fmincon function of MATLAB optimization toolbox [47]. fmincon uses
a sequential quadratic programming (SQP) method. In this method, the function solves a quadratic
programming (QP) subproblem at each iteration. fmincon updates an estimate of the Hessian of the
Lagrangian at each iteration using the BFGS formula [48].

3.3. Statistical Metrics

The error of the different methods used for estimation of precipitation was determined as RMSE.
Additionally, the error of direct runoff modeling is reported by Normalized RMSE (NRMSE). Lower
values of these statistical metrics indicated higher accuracy of the method investigated.

RMSE =

√√√ N∑
i=1

(Zobs
i −Zmod

i )2

N
, (11)
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NRMSE =
RMSE

(
∑N

i=1 Zobs
i /N)

, (12)

where Zobs
i is the value of observations in the ith record and Zmod

i is the value of model; N is the number
of observations. Actually, NRMSE is normalized by dividing RMSE by the mean of observed values.
If NRMSE is less than 1, the error is less than 100%. NRMSE can be reported in percentage.

In this study, the precipitation and direct RC were estimated using the procedure within GIS
(ESRI ArcGIS 10.3(Environmental Systems Research Institute, Inc, Redlands, CA, USA)), where
each information layer was converted to raster format and then processed by the methodology
described above.

4. Results and Discussion

4.1. Spatiotemporal Precipitation Maps

Cokriging interpolation of rain gauge values with DEM and TRMM 3B43 V7 gave the best method
accuracy, with RMSE of 81 mm for 2007 (Table 4). This was 4 mm less than the RMSE of kriging
interpolation of station data. The best method was also confirmed for 2010–2011, a normal water year
in terms of rainfall, for which RMSE was reduced by 9 mm (Table 5). The benefit of using satellite data
was that RMSE was reduced by 4–9 mm across different years compared with kriging interpolation.
Further, downscaled TRMM 3B43 V7 by finding an exponential relationship with DEM reduced its
RMSE by 14 mm. Additionally, there was no significant relationship between NDVI and TRMM in the
studied area, which can attribute to the high concentration of agricultural activities as an anthropogenic
effect on NDVI.

Table 4. Root Mean Square Error (RMSE) of different methods for precipitation estimation in Lake
Urmia basin in 2007.

Method Mean (mm) RMSE (mm)

TRMM raw images 361 100
Kriging interpolation of 70% of station records 297 85

Downscaling TRMM with DEM 372 86
Cokriging interpolation of station records with DEM and TRMM 290 81
Cokriging interpolation of station data with Aspect and TRMM 290 86

Table 5. RMSE of the best method for estimation of precipitation in dry, wet, and normal years.

Normal
year
2010

Estimation
Method

Wet
year
2006

Estimation
Method

Dry
year
2007

Estimation
Method

Cokrig Krig Cokrig Krig. Cokrig Krig.

Mean 315 337 Mean 390 392 Mean 170 173

RMSE 97 106 RMSE 147 152 RMSE 81 85

The precipitation layers for 2006–2011 obtained by cokriging interpolation of rain gauge values with
DEM and TRMM 3B43 V7, as the best method, revealed high values of precipitation in marginal areas of
the basin (Figure 4). As can be seen from Figure 1a, these marginal areas have high elevation and use of
DEM in the estimation process resulted in higher values of precipitation for these mountainous regions.

4.2. Annual Direct Runoff Coefficient Map

The NRMSEs obtained for the SCS-CN and Kennessey models in 2006 were 3 and 1, respectively.
Therefore, Kennessey was chosen as the more accurate model for calibration. In this model, Ia is an
important parameter because, as described in Section 3.2.3, this index as a climatic parameter is defined
in Kennessey to reflect the dryness or wetness of each water year. However, applying Equation (8)
from 2006 to 2011 in Lake Urmia basin gave a maximum Ia value equal to 18. If Ia is lower than 25, the
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partial coefficients lie in the same category (see Table 2). Therefore, in the studied basin, all years from
2006 to 2011 were categorized in the same class in terms of runoff production by the default intervals
of Ia regardless of its precipitation or temperature variability. In reality, wet, dry and normal years
have occurred (see Figure 4) from 2006–2007 to 2010–2011. As novelty of this study, attempts were
made to identify new intervals for Ia to make Kennessey flexible to wetness or dryness of investigated
years in Lake Urmia basin as a semi-arid region.

Figure 4. Precipitation (mm) in Lake Urmia basin in five investigated water years (September–August)
from 2006–2007 to 2010–2011, based on cokriging interpolation of in-situ records, the Tropical Rainfall
Measuring Mission (TRMM), and Digitized Elevation Model (DEM).

The values obtained indicated that in the dry year 2007–2008, Ia ranged between 3 and 6, and thus
Ia < 6 can represent dryness. In normal years (2008–2009 and 2010–2011), Ia was on average 7–9 so
6 < Ia < 9 was presumed to represent the normal year. In the wet years (2006–2007 and 2009–2010), Ia
was more than 9, so Ia > 9 suggested a wet year in the studied basin.

The partial coefficients of the calibrated Kennessey model are shown in Table 6. Using the results
of the calibration, a scatter plot of modeled coefficients and observed RC was created after convergence
of estimated and observed values (Figure 5). There was observable agreement between modeled and
observed values, such that the correlation coefficient obtained 80%. The calibrated Kennessey reduced
the NRMSE from 1 to 0.44. The map of the five year mean of annual direct RC for Lake Urmia basin
from 2006–2007 to 2010–2011 produced by calibrated Kennessey by 1 km spatial resolution is shown in
Figure 6.

As can be seen from Figure 5, when the observed direct RC was lower than 0.2, most of the values
less than 0.2 were above the 1:1 line in the first quadrant, i.e., the model overestimated direct RC in this
range. At values greater than 0.2, the model underestimated direct RC.

The direct RC map generated for Lake Urmia basin (Figure 6) was validated using observed
values in gauges on the main rivers of the basin. Since the water withdrawal is high in validation
sub-basins by intensive farm lands (Figure 2d), we must consider it in observation of validation gauges.
The water withdrawal of the basin, published by WRM, is only available for year 2008 so we validated
direct RC map of calibrated Kennessey by averaging estimated values from 2006–2007 to 2010–2011
and then compared them to the five-year mean annual observed direct runoff in validation gauges
which were naturalized by considering water withdrawal in observed value of gauges (see step 2
described in Section 3 ‘Methodology’).
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Table 6. Calibrated partial runoff coefficient of the Kennessey model.

Classes
Aridity Index (Ia)

Ia < 6 6 < Ia < 9 Ia > 9

Slope

>35% C1 = 0.221 C14 = 0.249 C27 = 0.282
10%–35% C2 = 0.000 C15 = 0.001 C28 = 0.001
3.5%–10% C3 = 0.000 C16 = 0.001 C29 = 0.001

<3.5% C4 = 0.000 C17 = 0.001 C30 = 0.001

Land cover

Arid land C5 = 0.000 C18 = 0.001 C31 = 0.015
Meadow C6 = 0.000 C19 = 0.000 C32 = 0.000

Farm C7 = 0.002 C20 = 0.205 C33 = 0.206
Forests C8 = NA∗ C21 = NA∗ C34 = NA∗

Permeability

Very low C9 = 0.379 C22 = 0.475 C35 = 0.476
low C10 = 0.030 C23 = 0.030 C36 = 0.060

Medium C11 = 0.008 C24 = 0.023 C37 = 0.060
Good C12 = 0.008 C25 = 0.021 C38 = 0.053
High C13 = 0.000 C26 = 0.000 C39 = 0.050

* NA means that the class does not exist in Lake Urmia basin.

Figure 5. Scatter plot of modeled and observed direct runoff coefficient (RC) values in marginal sub-basins.

By pristine validation gauges data which were not involved in the calibration process, the NRMSE
of validation obtained 0.41, which is close to the calibration error, indicating success of the calibration
process. In Table 7, the main rivers in Lake Urmia basin are listed in descending order of observed
runoff. The last column on the right shows the difference between the observed and modeled values
divided by the observed value. As can be seen, for most of the rivers providing higher discharge
to the lake, the error was less than 50%. For the major rivers, Gadarchay, Mahabad, Rozechay, and
Simineroud, the accuracy is higher. The highest error was found for the Zulachay river basin, which was
due to lower value of observed direct runoff (smaller fraction denominator). The mean of validation
gauges for modeled values obtained 0.19 and that of the observation was 0.16 and correlation between
observed and modeled values obtained 79%.
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Figure 6. Mean of annual direct RC map in Lake Urmia basin from 2006–2007 to 2010–2011 produced
by calibrated Kennessey.

Table 7. Gauge river discharge values used in validation of the calibrated Kennessey model.

River Basin Area
(km2)

Withdrawal
(mm) Robs (mm) P (mm) RCobs RCmod Diff. (%)

Gadarchay 2074 152 115 331 0.35 0.34 3%
Mahabad 1370 87 73 328 0.22 0.22 1%
Rozechay 313 82 68 338 0.2 0.17 13%

Siminehroud 3186 40 54 335 0.16 0.15 9%
Brandooz 1143 94 43 334 0.13 0.16 −24%
Ghalechay 481 35 43 305 0.14 0.2 −45%
Shahrchay 579 27 42 339 0.12 0.25 −108%

Ajichay 10,052 37 35 310 0.11 0.16 −43%
Nazluchay 1966 40 28 340 0.08 0.15 −91%
Zulachay 1892 25 15 330 0.05 0.15 −196%

Robs: naturalized observed direct runoff, P: precipitation, RCobs: naturalized observed direct runoff coefficient,
RCmod: modeled direct runoff coefficient, Di f f . = 100(RCobs −RCmod)/RCobs.

4.3. Limitations in Data, Modeling, and Assessment

The present study was based on data from 2006 to 2011. These years capture well the interannual
variation in weather, including wet (e.g., 2006–2007, 2009–2010), dry (e.g., 2007–2008), and normal
(e.g., 2008–2009, 2010–2011) water years. Additionally, the most recent data on water withdrawal
and the land use map of the basin are for year 2008 which is in the middle of the studied time span.
As described above, water withdrawal data were essential for validation of the calibrated direct runoff

model. Under strategies approved by central government, the hydrological status of Lake Urmia
basin has stabilized in recent years. These strategies prohibit any kind of additional withdrawal
from the basin water resources or any new development, especially in the agricultural sector, prevent
unpermitted withdrawal from surface waters, and stop all dam construction projects under study and
under operation [18]. Due to these measures, it can be concluded that 2006–2011 was representative of
the hydrological status in Lake Urmia basin. By calibrating the model for this period, it was possible to
apply the results to the whole basin in recent years.

Expanding the time span of the assessment after solving the problem of data availability would
provide more observations for calibration of the direct runoff model, increasing the accuracy of the
results. Considering new intervals for Ia or generating another index to replace Ia could help the
Kennessey model distinguish between wet, dry, and normal years in semi-arid basins like Lake Urmia.
Another limitation in the present study was that the Zarinehroud, one of the most important rivers
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in Lake Urmia basin, was not covered in the validation process because of its gauge data problem.
Additionally, enhancing the quality of withdrawal data in terms of spatial and temporal resolution can
help measure the validity of the calibrated model. Finally, it should be noted that water withdrawal
data, available only for 2008, did not permit to validate the direct RC map annually and we had to
compare the model and observed direct RC values by averaging them for five years from 2006–2007
to 2010–2011.

5. Conclusions

Assimilation of satellite-based data in in-situ observations successfully improved the accuracy of
hydrological modeling for Lake Urmia basin by covering data gaps. The most important difference
between the kriging and cokriging methods was use of RS-based datasets, including TRMM 3B43 V7
and DEM, in cokriging. By covering data gaps at high altitudes, cokriging allowed the high amount
of precipitation observed in rain gauges located in mountainous areas to be modeled. Downscaling
TRMM 3B43 V7 with the DEM of Lake Urmia basin proved as accurate as kriging interpolation of rain
gauge observations and provided a real-time estimate of precipitation in the basin because rain gauge
data for the basin are available after a lag of some years.

For annual direct RC modeling, Kennessey performed better than SCS-CN only in the case of
the run with default parameters. Since the error was high (more than 100%), the Kennessey model
required calibration. As a novel approach in modeling by Kennessey in a semi-arid basin, changing Ia
intervals for classification of partial coefficients of the model resulted in a more accurately calibrated
Kennessey. Calibration reduced the NRMSE of the model from 1 in standard format to 0.44 (correlation
80%). The results of validation (correlation 79% and NRMSE 0.41) approved the model accuracy.
The calibration sub-basins represented all default classes of the Kennessey model, so the calibrated form
was generalizable to the entire basin to produce a gridded direct RC map by 1 km spatial resolution and
1-year temporal resolution. Direct runoff in the ungauged buffer zone was thereby modeled without
data on water use or gauge runoff data. The outputs and novel approach of this study can help water
balance or aquifer recharge mapping at a grid scale.
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