

Article

Au/ZnO Hybrid Nanostructures on Electrospun Polymeric Mats for Improved Photocatalytic Degradation of Organic Pollutants

Laura Campagnolo 1.2, Simone Lauciello 3, Athanassia Athanassiou 1 and Despina Fragouli 1.*

- ¹ Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- ² Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale, Via Balbi 5, 16126, Genova, Italy
- ³ Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- * Correspondence: despina.fragouli@iit.it; Tel.: +39-010-2896878 (D.F.)

Crystallite size approximation by Debye-Scherrer equation

The crystallite size was estimated by using the Debye-Scherrer equation (S1),

$$D_{hkl} = \frac{K\lambda}{\beta \cos\theta_{hkl}} \tag{S1}$$

where D_{hkl} is the crystallite size (nm), K is a dimensionless factor referred to the crystallite shape, λ is the wavelength of the target (0.15406 nm for Cu), β is the Full-Width-Half-Maximum (FWHM) of the diffraction peak (rad) and θ_{hkl} is the diffraction peak angle. The presented crystallite sizes is the mean value obtained by the D_{hkl} values calculated from the three main diffraction peaks of the ZnO wurtzite phase at 31.8°, 34.3° and 36.1°.

Band gap energy extrapolation by Kubelka-Munk method

The band gap energy (E_g) was deduced from the diffuse reflectance spectra through the Kubelka-Munk (KM) function (S2),

$$F(R_{\infty}) = \frac{(1-R_{\infty})^2}{2R_{\infty}} = \frac{K}{S}$$
(S2)

where $F(R_{\infty})$ is the KM function, R_{∞} is the absolute reflectance of the sample obtained by the ratio between the diffuse reflectance of the sample and the diffuse reflectance of the standard (MgO), K and S are the absorption and scattering coefficient respectively. Considering that E_g can be approximated from K as a function of the photon energy (hv) as shown in Equation S3,

$$K \propto \frac{\left(h\nu - E_g\right)^n}{h\nu} \tag{S3}$$

in which n is related to the type of optical transition, it is possible to determine E_g by plotting $(F(R_{\infty})\cdot h\nu)^{1/n}$ as a function of hv and extrapolating the value from a linear regression of the straight part at $F(R_{\infty}) = 0$. In our case, the n value is defined to be $\frac{1}{2}$, which is the value for a direct allowed transition, since it is well known that ZnO is a direct band gap semiconductor. The specific allowed or forbidden transition is experimentally determined from the best linear fit.

Figure S1. Photos of the (a) PMMA/ZnO, (b) PMMA/ZnO-Au1, (c) PMMA/ZnO-Au3 and (d) PMMA/ZnO-Au6.

Figure S2. SEM images and size distribution analysis of the diameter of the fibers of the (a,b) PMMA and (c,d) PMMA/Zn(CH₃CO₂)₂ mats.

Figure S3. (a) HRSEM image of PMMA/ZnO with the cross-section detail. (b) Diameter size distribution of the PMMA/ZnO composite mat.

Figure S3. TEM images of the (a) smaller ZnO NPs formed in the bulk of the polymeric fibers and of the (b) ZnO/Au hybrid structure in the PMMA/ZnO-Au1 composite mat.

Figure S4. Dark field TEM image of the (a) ZnO-Au hybrid structure and EDS mapping of (b) Au, (c) Zn and (d) O.

Figure S5. Kubelka-Munk plots of the composite mats. The energy band gap is extrapolate from a linear regression.

Raman shift (cm-1)	Assignment				
482	C-C skeletal deformation of CC ₄				
559	O-C=O deformation				
603	O-C=O deformation				
735	O-C=O deformation coupled with CH ₂ rocking				
812	symmetric CC4 stretching				
838	C=O deformation coupled with CH2 rocking				
968	main chain C-C stretching				
987	main chain C-C stretching				
1059	CH ₂ wagging				
1122	C-O stretching coupled with CH2 rocking				
1158	C-O stretching coupled with CH2 rocking				
1185	C-C degenerate stretching of CC ₄				
1240	C-C degenerate stretching of CC ₄				
1391	CH ₃ symmetric bending				
1451	CH ₂ deformation				
1484	CH₃ asymmetric bending				

Table S1. Assignment of the Raman modes of the PMMA[1]

Figure S6. Raman spectra of PMMA/ZnO-Au3 and PMMA/ZnO-Au6

Figure S7. Evolution of the normalized concentration of (a) MB and (b) BPA solutions in presence of the developed mats in dark.

Table S 2. Degradation and mineralization values obtained from the photocatalytic degradation of the MB and BPA aqueous solution in presence of the mats after 20 h under UV light irradiation.

Samples	MB		BPA	
	%degradation	%mineralization	%degradation	%mineralization
PMMA/ZnO	77	45.5	34	-
PMMA/ZnO-	88	60	63.5	15
Au1				

Figure S8. The pseudo-first-order reaction kinetics for (a) MB and (b) BPA, applied on the experimental data obtained in the first 5 hours of reaction.

Table S 3. Photo-degradation rate constants and linear regression coefficients obtained from the linear fitting of the experimental data by using the pseudo-first order model.

Samples -	MB		BPA		
	10 ⁻³ k ₁ (min ⁻¹)	\mathbb{R}^2	10 ⁻³ k ₁ (min ⁻¹)	\mathbb{R}^2	
PMMA/ZnO	1.44	0.9979	0.69	0.9820	
PMMA/ZnO-Au1	2.33	0.9982	1.12	0.9895	
PMMA/ZnO-Au3	1.71	0.9887	0.96	0.9923	
PMMA/ZnO-Au6	0.63	0.9958	0.82	0.9478	

Figure S 9. Photocatalytic degradation activity of (a) MB and (b) BPA under UV light irradiation for three cycles using the PMMA/ZnO composite mat.

References

 Akira, M.; Yanzhi, R.; Kimihiro, M.; Hiroshi, I.; Yukio, M.; Isao, N.; Yukihiro, O. Two-dimensional Fouriertransform Raman and near-infrared correlation spectroscopy studies of poly(methyl methacrylate) blends:
1. Immiscible blends of poly(methyl methacrylate) and atactic polystyrene. Vib. Spectrosc. 2000, 24, 171– 180.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Water 2019, 11, 1787