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Abstract: The combination of biogeochemical methods and molecular techniques has the potential to
uncover the black-box of the nitrogen (N) cycle in bioturbated sediments. Advanced biogeochemical
methods allow the quantification of the process rates of different microbial processes, whereas
molecular tools allow the analysis of microbial diversity (16S rRNA metabarcoding) and activity
(marker genes and transcripts) in biogeochemical hot-spots such as the burrow wall or macrofauna
guts. By combining biogeochemical and molecular techniques, we analyzed the role of tube-dwelling
Chironomus plumosus (Insecta, Diptera) larvae on nitrification and nitrate reduction processes in
a laboratory experiment with reconstructed sediments. We hypothesized that chironomid larvae
stimulate these processes and host bacteria actively involved in N-cycling. Our results suggest that
chironomid larvae significantly enhance the recycling of ammonium (80.5 ± 48.7 µmol m−2 h−1) and
the production of dinitrogen (420.2 ± 21.4 µmol m−2 h−1) via coupled nitrification–denitrification and
the consumption of water column nitrates. Besides creating oxygen microniches in ammonium-rich
subsurface sediments via burrow digging and ventilation, chironomid larvae serve as hot-spots
of microbial communities involved in N-cycling. The quantification of functional genes showed a
significantly higher potential for microbial denitrification and nitrate ammonification in larvae as
compared to surrounding sediments. Future studies may further scrutinize N transformation rates
associated with intimate macrofaunal–bacteria associations.
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1. Introduction

Shallow estuarine systems are efficient coastal filters and biogeochemical reactors which regulate
organic matter and nutrient loads from land to the sea [1,2]. Their elevated retention of organic
sediment fuels high rates of benthic heterotrophic activity and primary production [3]. Such energy
and matter flows have positive feedbacks for benthic biodiversity and for the network of ecological
interactions that connect physical and biological compartments [3,4]. Thus, estuarine nitrogen (N)
cycling is a paradigmatic example of a set of biogeochemical transformations connecting micro- and
macro-organisms, modulated by physical environments and undergoing complex regulation and
feedbacks [5–7]. Within the estuarine N cycle, permanent N removal via dissimilative processes
such as denitrification is of particular interest, as well as undesired dissimilative nitrate reduction
to ammonium (DNRA)–N recycling, which is favoured under eutrophic conditions [8,9]. Processes
leading to permanent N removal counteract the excessive loads of reactive N to coastal areas, resulting
from anthropogenic activities such as agriculture and animal farming and inducing eutrophication,
loss of biodiversity and the deterioration of ecosystem health [10,11].

Microbially-mediated N transformations in estuarine sediments are supported and stimulated by a
range of macrofauna-related processes, collectively defined as bioturbation [3,12,13]. The multiple paths
by which metabolic or feeding strategies and behavioural features of macrofauna affect the physical
and biological environment and N-cycling have been scrutinized in many experimental studies. These
demonstrated that macrofauna may directly alter inorganic N concentrations as well as the quality and
quantity of organic N via respiration, excretion and biodeposition activities [14–21]. Biodeposits from
filter-feeding macrofauna, for example, may increase denitrification and ammonification rates [19,22].
Macrofauna are demonstrated to also produce indirect effects on N biogeochemistry via sediment
reworking and burrow construction, ventilation or bioirrigation, which may stimulate coupled
nitrification–denitrification [14,15,23,24].

Therefore, being involved in N-cycling, macrofauna may facilitate the growth of primary producers
or smooth their competition with bacteria for N, resulting in simultaneous high uptake and high
loss via denitrification [7,25,26]. Macrofauna may also locally affect microbial communities, creating
specific niches such as shallow or deep burrow lining, where peculiar microbiomes develop along
the chemical gradients [17,20,27]. Fascinating but less explored is the role of macrofauna as microbial
community elevators or transporters, as macrofauna continuously migrate vertically and horizontally
across sediments, exposing their associated microbiome to different chemical gradients (e.g., from
oxygen (O2) and nitrate (NO3

−)-rich to anoxic, ammonium (NH4
+)-rich). Even less is known about

microbial activities occurring within the guts, gills or intestines of macrofauna [28,29]. Substantial
densities of symbiotic microbes (e.g., N-fixers, sulphide oxidizers) were detected, for example, in
the gills of lucinid bivalves [30]. Even though intimate microbe–macrofauna interactions are likely
widespread, they are largely understudied due to methodological limitations or the oversimplification
of experimental approaches. Therefore, the cumulative effects of macrofauna and their associated
microbiomes are rarely accounted for in biogeochemical studies, and their actual magnitude may be
underestimated when assessing ecosystem-wide processes.

The advances of in situ and laboratory approaches based on the use of isotopic tracers
have allowed more accurate quantitative assessment of multiple microbial N transformations and
their regulation, including ammonification, nitrification and nitrate reduction processes [7–9,16,21].
Integrating biogeochemical approaches with novel molecular tools (such as the metabarcoding of
microbial biodiversity or quantification of target functional genes) enables the detailed exploration of
macrofaunal–bacterial interactions and of their wider role in benthic ecosystem functioning [18,20,29].

In this study, we analysed the effects of sediment-dwelling Chironomus plumosus (Insecta, Diptera)
larvae on benthic N transformations combining biogeochemical and functional genomic measurements
under controlled conditions. We targeted chironomid larvae—an understudied group compared
to other macrofauna—for multiple reasons. They may attain large densities and dominate in
organic-rich, chemically reduced sediments, where they may create steep redox gradients across
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their burrows [12]. They are suspension feeders and pump large volumes of O2 and NO3
−-rich

water into sediments [31]. Therefore, we hypothesized a substantial stimulation of N-cycling in
sediments inhabited by chironomid larvae, as they may alter the sediment’s physical structure and
host bacteria that catalyse N transformations. To test this hypothesis, we measured inorganic N fluxes
in bioturbated sediments in combination with the 16S rRNA metabarcoding of bacterial communities
isolated from (1) subsurface, anoxic sediments, (2) burrow wall sediments, and (3) chironomid larvae.
We then quantified the representative marker genes involved in N-cycling and their transcripts to
better understand whether chironomid larvae and their associated microbiome may contribute to
nitrification and/or to NO3

− reduction.

2. Materials and Methods

2.1. Experimental Setup

In July 2018, muddy sediments with high organic carbon and total N contents (12% and 1.8%,
respectively; [2]), water, and chironomid larvae (C. plumosus) were collected in the Lithuanian part
of the Curonian Lagoon (55◦17′51.7” N, 21◦00′36.0” E) at a water depth of 3 m. In the laboratory,
approximately 15 L of sediment was sieved through a 0.5 mm mesh to remove large debris, chironomid
larvae and other occasional macrofauna, and gently mixed to a slurry. The homogenized sediment
(median grain size = 0.032 µm) was transferred into 10 bottom-capped Plexiglass liners (height = 30 cm,
inner diameter = 8 cm) to reconstruct a 10 cm sediment layer in each microcosm. Thereafter, all
microcosms were carefully filled with unfiltered water from the sampling site.

Two treatments (five replicates each) were applied to the microcosm cores: sediments without
macrofauna (control) and sediments with nine added chironomid larvae per core (corresponding to
1800 ind. m−2). All chironomid larvae added to the cores immediately burrowed in the sediment
down to 3–5 cm depth. In each core, a magnetic bar was fixed 10 cm above the sediment surface to stir
the water while avoiding sediment resuspension. Then, all the cores were submerged into a 200 L
tank, filled with aerated and well-mixed lagoon water (salinity = 0.2, pH = 8.3, dissolved inorganic
N conc. ~2 µmol L−1) maintained at ambient temperature (16 ± 0.2 ◦C). The tank was equipped
with two central magnets rotating at 40 rpm, driving the magnet bars inside the cores. Thus, water
exchange with the tank was ensured to avoid water column stratification inside the cores and regulate
oxygenation. The cores were pre–incubated in the dark for 14 days to attain (1) stable vertical and
horizontal chemical gradients after sediment sieving and homogenisation and chironomid larvae
addition, and (2) stable bacterial communities within the sediment and along the burrows’ walls [32].
During the pre-incubation period, all microcosms were regularly checked for the development of
light brown halos along chironomid larvae burrows. About 30% of the tank water was renewed
every 2 days to maintain suspended matter, nutrient concentrations and chemical gradients across the
sediment–water interface close to in situ conditions. A scheme of the experimental set up is provided
in Figure 1.
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2.2. Benthic Flux Measurement

After 14 days of pre-incubation, benthic fluxes of dissolved gas (O2, N2, N2O) and inorganic
N (NH4

+, NO2
− and NO3

−) were measured in all microcosms during 5 h incubation in dark [33].
Measurements were taken through a gas-tight top lid equipped with an optical sensor spots (PyroScience
GmbH, Aachen, Germany) and a sampling port. The incubation was restricted to 5 h to keep oxygen
within 20–30% of the initial concentration. At the beginning and at the end of the incubation, 40 mL
water samples were collected, with two aliquots immediately transferred into 12 mL exetainers (Labco
Limited, Lampeter, UK) and fixed with 7 M ZnCl2 for O2, N2, and N2O measurements. A 10 mL
aliquot was filtered (Frisanette GF/F filters), transferred into a plastic test tube and frozen immediately
(−20 ◦C) for later inorganic N analyses. The solute exchange at the sediment–water interface was
calculated as follows:

Fx =
(C f −Ci) ×V

A× t
(1)

where Fx (µmol m−2 h−1) is the flux of the chemical species x, Cf and Ci (µmol L−1) are the final and
initial concentrations of the chemical species x, respectively, V (L) is the water volume in a core, A (m2)
is the surface area of the core sediments, and t (h) is the incubation time.

Dissolved O2 and N2 were measured as O2:Ar and N2:Ar ratios by membrane inlet mass
spectrometry (MIMS, Bay Instruments, Maryland, USA) at Ferrara University, Ferrara, Italy [34].
Ratios were multiplied by theoretical Ar concentration at experimental water temperature and salinity.
Nitrous oxide (N2O) concentrations were determined by headspace analysis on a Thermo Scientific
Gas Bench-Precon-IRMS system at UC DAVIS the Stable Isotope Facility, California, USA. Dissolved
NH4

+, NO2
− and NO3

− were measured with a continuous flow analyzer (San++,Skalar Analitical B.V.,
Breda, The Netherlands ) using standard colorimetric methods [35].

2.3. Oxygen Consumption by Individual Chironomid Larvae

In parallel to sediment core incubations, individual chironomid larvae were incubated in 0.22 µm
filtered water to assess the O2 consumption associated with the animals alone. Briefly, three individuals
collected from the same location as above were placed in a Plexiglass chamber (total volume 227 mL)
which was partly filled (41 mL) with glass beads (diameter 200–300 µm), and the rest filled with water
(186 mL). For this experiment, five chambers with animals plus one chamber with filtered water only
(control) were set up.

The chambers were sealed without including any air bubbles and were incubated for approximately
16 h in the dark at in situ temperature. A stirring magnet was placed in each chamber, allowing
continuous water mixing during incubation. The concentrations of O2 in the water were monitored
before and after incubation by a pre-calibrated Clark-type oxygen microelectrode (OX-50, Unisense A/S,
Aarhus, Denmark). At the end of the incubation, larvae were recovered and weighed. In this experiment,
the chironomid larvae wet weight was 0.030 ± 0.003 g (mean ± st. dev.). Oxygen consumption was
then calculated as a function of animal wet weight (g WW), according to Bonaglia et al. [36]. The O2

consumption rates in the experimental chambers with chironomid larvae were corrected for the
minimal O2 consumption in the chamber with filtered water only.

2.4. Nucleic Acid Extraction

At the end of the incubation, sediments for molecular analyses were subsampled from the
two randomly selected bioturbated cores (see Figure 1) by collecting approximately 1.5–2 g of
subsurface (3–5 cm depth) anoxic sediment and sediments along the burrow wall with a sterile spatula.
Anoxic sediments and sediment around burrows were clearly distinguishable by their color, with a
light-brown-to-black transition from the oxidized burrow to the outer, chemically reduced sediment.
Then, 0.3 g (wet weight) of sediment from each zone was homogenized and equally split for DNA and
RNA extractions. Chironomid larvae (n = 6) were retrieved for molecular analyses from sediments
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and washed with sterile distilled water (three times). The three types of collected samples—(1) anoxic
sediments, (2) oxidized burrow walls, and (3) chironomid larvae—were immediately processed for
DNA and RNA extractions. Briefly, DNA was extracted and purified using the QIAamp Fast DNA
Stool Mini Kit (Qiagen, Germantown, USA) following the manufacturer’s protocol with an amended
lysis temperature (temperature was increased to 90 ◦C to improve bacterial cell rupture).

RNA was extracted with the RNA easy Mini Kit (Qiagen, Germantown, USA) applying additional
incubation with lysozyme (20 mg/mL) and mutanolysin (35 µL/1 mL for 90 min at 37 ◦C). After
incubation, 1 mL of Trizol was added and samples was subjected to four cycles of bead beating with
glass beads (for 2 min) and rested in the ice (for 3 min) followed by incubation at room temperature
(for 5 min). Sediment and cell debris were pelleted by centrifugation at 12,000 rpm for 15 min at
4 ◦C. The supernatant was transferred to a fresh tube and fixed with 0.2 mL of chloroform, mixed
by inversion and left at room temperature for 15 min prior to centrifugation, as described above.
The upper aqueous layer containing the RNA was transferred to a new sterile 1.5 mL tube, and RNA
cleaning was performed using the RNAeasy Mini Kit (Qiagen, Germantown, USA) according to
protocol instructions. The purified DNA and RNA was stored at −80 ◦C.

2.5. Synthesis of cDNA

Extracted RNA were treated with TURBO DNase (Invitrogen, Carlsbad, USA) according to
the manufacturer’s instructions. To check whether the RNA sample was free of DNA, a control
polymerase chain reaction (PCR) was carried out using universal bacterial primers of 16S rRNA [37].
PCR amplification was undertaken in a total volume of 22 µL using 11 µL of Platinum Green Hot
Start 2X Master Mix (Invitrogen, Carlsbad, USA), 0.3 µM of each primer, 1.25 µg µL−1 of bovine serum
albumin (BSA) and 2 µL of template. Thermocycling conditions were 95 ◦C for 3 min, followed by 30
cycles of 95 ◦C for 30 s, 54 ◦C for 30 s, 72 ◦C for 45 s, and a final extension of 72 ◦C for 10 min.

Reverse transcription (RT) was performed with a SuperScript III Reverse Transcriptase (Invitrogen,
Carlsbad, USA) following the manufacturer’s instructions. Two negative controls lacking either reverse
transcriptase or RNA were included. Control PCRs (same as above) were performed to confirm the
transcription to complementary DNA (cDNA) and the negative controls using the product of the RT
reaction as a template.

2.6. Amplification and Sequencing of 16S rRNA Gene and Bioinformatics

Partial 16S rRNA gene sequences were amplified from extracted DNA using the primer pair
Probio Uni/Probio Rev, targeting the V3 region of the 16S rRNA gene sequence [37]. The amplification
of the 16S rRNA gene was verified as previously described by Milani et al. [37]. High-throughput
sequencing was performed at the DNA sequencing facility of GenProbio srl (Parma University, Parma,
Italy) on an Illumina™MiSeq according to the protocol previously reported in [37]. Metabarcoding
reads recovered by paired-end sequencing were merged using the Illumina MiSeq analysis software
under the default settings.

Following sequencing, the fastq files were processed using a custom script based on the QIIME
software suite [38]. Paired-end read pairs were assembled to reconstruct the complete Probio
Uni/Probio_Rev amplicons. Quality filtering retained sequences had a length between 140 and
400 bp and a mean sequence quality score > 20, while sequences with homopolymers > 7 bp and
mismatched primers were discarded. Operational taxonomic units (OTUs) were defined at ≥99%
sequence homology using uclust [39], and OTUs with less than 10 sequences across datasets were
filtered out. All reads were classified to the lowest possible taxonomic rank using QIIME [38] and a
reference dataset from the SILVA 132 database [40].

2.7. Quantitative PCR Analyses

Quantitative polymerase chain reactions (qPCR) were used to quantify the abundance and activity
of functional genes involved in N-cycling: (1) genes of haem-containing nitrite reductase (nirS),
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(2) Cu-containing nitrite reductase (nirK), (3) ammonia monooxygenase (amoA), and (4) cytochrome C
nitrite reductase (nrfA) (Table 1).

Table 1. List of primers, strains and annealing temperatures used in this study. AOA—ammonia
oxidizing archaea, AOB—ammonia oxidizing bacteria.

Gene Primer Primer Sequence Ann. Temp. Reference Strain

nirS
F3nir SCCGCACCCGGGBCGYGG

60 ◦C Pseudomonas stutzeri
(DSM 4166)R4bcd CGTTGAAYTTRCCGGTSGG

nirK
F1aCu ATCATGGTSCTGCCGCG

60 ◦C Achromobcter sp.
(DSM 30128)R3Cu GCCTCGATCAGRTTGTGGTT

AOA-amoA
AOA-amoA-f CTGAYTGGGCYTGGACATC

54–60 ◦C Nitrosopumilus maritimus
(NCIMB 15022)AOA-amoA-r TTCTTCTTTGTTGCCCAGTA

AOB-amoA
amoA-1F GGGGHTTYTACTGGTGGT

63 ◦C Nitrosomonas europaea
(DSM 28437)amoA-2R CCCCTCKGSAAAGCCTTCTTC

nrfA nrfA-F2aw CARTGYCAYGTBGARTA
60 ◦C Citrobacter freundii

(DSM 30039)nrfA-R1 TWNGGCATRTGRCARTC

Genomic DNA from reference organisms was used to make standard curves and positive controls.
Standard curves were constructed using PCR products of the nirS/K, nrfA and amoA genes from the
corresponding reference strains (Table 1). For this, the PCR products were purified with the commercial
kit (PureLink PCR Purification Kit, Invitrogen, Carlsbad, USA) and their concentration was measured
by Qubit 3.0 (Invitrogen, Carlsbad, USA). Obtained products were sequenced at BaseClear B.V (Leiden,
The Netherlands) to confirm their identity. Then, serial dilutions were applied to verified products
within the range of 103–107 copies of a gene per reaction and used to calibrate the quantification of
target genes in samples.

Quantitative PCR was performed with the StepOnePlus Real Time PCR system (ABI 7900 HT
Sequence Detection System, PE Biosystems, Waltham, USA) using optical grade 96-well plates. The PCR
reaction was run in the final volume of 20 µL containing 10 µL of SYBR Green master mix, 0.2 µM
of forward and reverse primers, 2 mM of MgCl2 (25 mM) and 2 µL of DNA sample (diluted 1/10).
The thermocycling conditions were as follows: 50◦ C for 2 min; initial denaturation at 94 ◦C for 10 min;
40 cycles at 94 ◦C (1 min), 60 ◦C (1 min), 72 ◦C (1.5 min); and final elongation at 72 ◦C (5 min). To assess
the specificity of amplifications, a melting curve analysis was performed. Each sample was analyzed
in triplicate. Triplicate no-template controls were included in each qPCR assay. The abundance and
expression of target genes (DNA and RNA samples respectively) were recalculated to copies per g wet
weight of a sample (sediment or chironomid larvae).

2.8. Statistical Analysis

The D3 JavaScript library [41] was used to visualize the taxonomic composition of metabarcoding
data. Venn diagrams were generated using R package VennDiagram [42] to visualize the proportion of
overlapping and unique OTUs within each dataset (anoxic sediments, burrow wall sediments, and
chironomid larvae).

Quantitative data (benthic fluxes and abundance and expression of target genes) were visualized
using boxplots. Non-parametric Kruskal–Wallis tests were applied to determine the significant
difference in benthic net fluxes derived from experimental treatments (control and chironomid larvae
microcosms) as well as the difference in the abundance and expression of target genes in anoxic
sediments, burrow wall sediments and chironomid larvae. Where relevant, the post-hoc pairwise
comparisons were performed using Dunn’s test with Bonferroni alpha-correction implemented in the
Pairwise Multiple Comparison of Mean Ranks package (PMCMRC, [43]). All analyses were performed
in R v3 software [44].
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3. Results

3.1. Benthic Fluxes at the Sediment–Water Interface and Animal O2 Consumption

The presence of chironomid larvae significantly increased benthic metabolism (Kruskal–Wallis test,
p < 0.01, for O2 and N2), reduced NO3

− efflux and stimulated NH4
+ recycling (Figure 2). The uptake

of O2 varied from −45.3 to −3125 µmol m−2 h−1 with 72% higher respiration in the chironomid larvae
treatment. The O2 uptake associated with chironomid larvae was −269 ± 21 µmol g−1 WW d−1

(range between −329 and −216 µmol g−1 WW d−1). When extrapolated to a square meter of sediment
containing 1800 individuals, this resulted in a chironomid–associated O2 uptake of −598 µmol m−2 h−1.
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oxide (E) and nitrate (F) at the sediment–water interface measured in the control and the chironomid
larvae microcosms. Each boxplot (n = 5) represents the data range (whiskers), upper and lower quartiles
(edges), the median (horizontal line), and the mean (black diamond).

Similar to O2, net production of N2 was also higher in the chironomid treatment
(420.2 ± 21.4 µmol m−2 h−1). We measured N2O efflux in both treatments, but due to high variability,
the difference between the control and the chironomid treatment was not significant (Kruskal–Wallis
test, p > 0.05; Figure 2). The net flux of N2O being two orders of magnitude lower than N2 suggests
that complete denitrification was the dominant process.

Chironomid larvae had a significant (Kruskal–Wallis test, p < 0.01) effect on nutrient exchange
at the sediment–water interface (Figure 2). In the presence of larvae, sediments shifted from a sink
(−73.5 ± 14.9 µmol m−2 h−1) to source of NH4

+ (80.5 ± 48.7 µmol m−2 h−1). Conversely, the efflux of
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the oxidized form of inorganic N decreased when sediments were bioturbated by chironomid larvae.
The net fluxes of NO2

− and NO3
− were 4 and 2 times lower in the chironomid treatment compared to

the control.

3.2. Bacterial Community Composition

An overview of the bacterial community composition using 16S rRNA metabarcoding revealed a
prominent difference between sediment samples and chironomid larvae (Figure 3). Of the 35 bacterial
phyla detected across all samples, Proteobacteria was the most dominant in sediment samples, followed
by Nitrospirae and Chloroflexi. In chironomid larvae, the bacterial community was dominated by three
phyla: Firmicutes (40.1%), Proteobacteria (27.6%) and Bacteroidetes (24.4%). No Archea sequences
were detected in the samples.Water 2019, 11, 0 4 of 17

Figure 1. Scheme of the experimental set up.

2.2. Benthic Flux Measurement

After 14 days of pre-incubation, benthic fluxes of dissolved gas (O2, N2, N2O) and inorganic
N (NH4

+, NO2
− and NO3

−) were measured in all microcosms during 5 h incubation in dark [33].
Measurements were taken through a gas-tight top lid equipped with an optical sensor spots (PyroScience
GmbH, Aachen, Germany) and a sampling port. The incubation was restricted to 5 h to keep oxygen
within 20–30% of the initial concentration. At the beginning and at the end of the incubation, 40 mL
water samples were collected, with two aliquots immediately transferred into 12 mL exetainers (Labco
Limited, Lampeter, UK) and fixed with 7 M ZnCl2 for O2, N2, and N2O measurements. A 10 mL aliquot
was filtered (Frisanette GF/F filters), transferred into a plastic test tube and frozen immediately (−20
◦C) for later inorganic N analyses. The solute exchange at the sediment–water interface was calculated
as follows:

Fx =
(C f −Ci) ×V

A× t
(1)

where Fx (µmol m−2 h−1) is the flux of the chemical species x, Cf and Ci (µmol L−1) are the final and
initial concentrations of the chemical species x, respectively, V (L) is the water volume in a core, A (m2)
is the surface area of the core sediments, and t (h) is the incubation time.

Dissolved O2 and N2 were measured as O2:Ar and N2:Ar ratios by membrane inlet mass
spectrometry (MIMS, Bay Instruments, Maryland, USA) at Ferrara University, Ferrara, Italy [34].
Ratios were multiplied by theoretical Ar concentration at experimental water temperature and salinity.
Nitrous oxide (N2O) concentrations were determined by headspace analysis on a Thermo Scientific
Gas Bench-Precon-IRMS system at UC DAVIS the Stable Isotope Facility, California, USA. Dissolved

Figure 3. Overview of the bacterial community composition detected using the 16S rRNA marker
gene in anoxic sediments, burrow wall sediments and chironomid larvae. The charts show the relative
abundance of sequences at different taxonomic levels. To aid in visualization, taxa contributing
<0.1% are not shown. The inner circle demonstrates the percentage of taxa assigned at the highest
level (Bacteria).

Out of 4841 OTUs detected across three samples, 17.8% were shared between sediments (anoxic
sediment and burrow walls) and larvae (Figure 4). These OTUs represented 187 families and 24 phyla.
Most of the shared OTUs present in chironomid larvae belonged to Firmicutes (41.4%), Proteobacteria
(27.6%), and Bacteroidetes (24.4%). The OTUs detected exclusively in chironomid samples (326 OTUs
assigned to 14 families) were dominated by Tenericutes (59.3% of reads), followed by Firmicutes
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(15.6%), Saccharibacteria (10.4%), Cyanobacteria and Elusimicrobia (3.8% each), Actinobacteria (3.6%)
and Bacteroidetes (1.4%).Water 2019, 11, x FOR PEER REVIEW 9 of 16 
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Figure 4. Venn diagram showing the numbers of unique and shared operational taxonomic units
(OTUs) in anoxic sediment, burrow wall sediment and chironomid larvae samples (OTU numbers are
indicated in the corresponding cross-sections of the diagram).

3.3. Abunadance and Activity of Nitrifying and Denitrifying Genes

Quantitative PCR assays used to quantify the abundance and transcriptional activity of the targeted
functional genes associated with the oxidation of NH4

+ to NO2
− (amoA) and its reduction to nitric

oxide (NO; nirS/nirK) or to NH4
+ (nrfA) showed that bacterial amoA genes were present in all samples,

whereas archaeal amoA genes were not detected. Significant differences (p < 0.05, Kruskal–Wallis test
followed by pairwise Dunn’s test) were detected only for nirS and nrfA gene abundance between the
anoxic sediment and chironomid larvae samples (Figure 5A,D). Gene transcripts of nitrite reductase
genes nirS and nrfA were detected in significantly lower copy numbers than their relative genes copy
numbers (p < 0.001, Kruskal–Wallis test). Gene transcripts of bacterial amoA genes were detected and
quantified from all types of samples at rather consistent rates, similar to DNA copy numbers detected
for this gene (Figure 5C), whereas no nirK gene transcripts were detected in any type of samples
(Figure 5B).
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Figure 5. Abundance (DNA) and transcriptional activity (RNA) of the four analyzed target genes—nirS
(A), nirK (B), amoA (C) and nrfA (D)—assessed in the anoxic sediment, burrow wall sediment and
chironomid larvae samples. Each boxplot represents the data range (whiskers), upper and lower
quartiles (edges), median (horizontal line) and group mean (black diamond). The square brackets
indicate significant pairwise difference between treatments (Kruskal–Wallis test followed by pairwise
Dunn’s test).

4. Discussion

Benthic macrofauna affect the distribution and quality of organic matter and the availability of
electron acceptors by burrowing, ventilating and feeding, thus altering microbial communities and
their metabolic activity [23,45]. In soft-sediment estuarine environments, it is generally expected that
the cumulative effect of burrowing infauna on solute fluxes results in an overall increase of NH4

+ and
N2 efflux and a decrease of NO3

− efflux [12,16,29]. The present study aimed at a better understanding
of how sediment-dwelling chironomid larvae facilitate solute transport, including electron acceptors
(O2 and NO3

−), from the overlaying water column to the deep sediment, or vice versa. Furthermore,
we were interested in how changes in solute transport in turn may stimulate microbial communities
involved in nitrification and NO3

− reduction processes within the sediment.
Higher N2 production in the presence of chironomid larvae confirms their stimulatory effect

on denitrification, while N2O production did not change significantly between treatments and was
considerably lower than N2 production. Our results are in line with those of a previous study indicating
that with high O2 availability and low NO3

− concentrations in the water, the overall N2O flux from
both bioturbated and non-bioturbated sediments is minimal [36]. Stief et al. [46] described higher
sedimentary N2O fluxes associated with the activity of C. plumosus, resulting from incomplete microbial
denitrification in the larval gut. It was suggested that these N2O emissions were mainly constrained
by the temperature and NO3

− concentrations [47]. A recent study by Sun et al. [48] revealed that with
the presence of nutritional food such as planktonic cyanobacteria, N2O production in the larval gut
can significantly decrease. Cyanobacterial blooms, a common phenomenon in the Curonian Lagoon,
may explain why we observed low N2O production in our study. Alternatively, a large portion of N2O
possibly produced by the larvae [46,47] was likely consumed by sediment-denitrifying bacteria before
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reaching the overlying water. However, to confirm these hypotheses, additional measures of N2O and
analyses of functional genes encoding N2O reduction to N2 (i.e., nosZ) are needed.

As indicated by metabarcoding, the diversity of the bacterial community (numbers of OTUs) was
slightly higher in sediment samples (both anoxic and burrow walls) compared to chironomid larvae.
The latter had a peculiar composition and was dominated by bacterial groups (Firmicutes/Clostridiales)
typical for animals’ intestinal microbiota. These bacterial taxa during their fermentative growth,
using reduced nicotinamide adenine dinucleotide (NADH) and NO2

− or NO3
− as substrates [49], can

contribute to the production of NH4
+ [50]. However, some overlap was present in the composition of

the microbial community associated with chironomid larvae and that of the surrounding sediments,
which primarily comprised Proteobacteria. This abundant and diverse group includes microbial taxa
capable of multiple N transformations, including anammox denitrification, DNRA and N-fixation [51].

Burrow ventilation, including the pumping of NO3
− through the burrow, is considered one of

the main mechanisms by which denitrification is stimulated in sediments reworked by chironomid
larvae [14,21,52,53]. However, the degree of stimulation depends on NO3

− concentration in the
overlaying water [14]. In the Curonian Lagoon, NO3

− concentration varies seasonally, and therefore
the effect of chironomid larvae can differ among the seasons. The current study was carried out in
summertime, when NO3

− concentrations were generally low (1.4 µmol L−1 on average). In a previous
similar incubation experiment performed by Benelli et al. [12], N2 production was 2.6-fold higher than
reported here, likely due to higher dissolved NO3

− concentrations in spring (109 µmol L−1).
Simple calculations, assuming that two moles of NO3

− are required to produce one mole of N2,
suggest that the increased uptake of NO3

− in bioturbated sediment could only explain 41% of the
measured N2 production. This indicates the potential relevance of coupled nitrification–denitrification
in sediments bioturbated by chironomid larvae. By constructing burrows and pumping O2 through
them, chironomid larvae create new niches for nitrifiers within the sediments [6,10,15]. Since bacteria
require O2 for NH4

+ oxidation, respiration (O2 uptake) is expected to increase alongside nitrification.
In the present study, chironomid larvae stimulated respiration by 3.8-fold in comparison to the
controls—a stronger effect than that reported earlier by Benelli et al. [12] and by Svensson and
Leonardsson [14]. Our extrapolations showed that approximately 28% of the total O2 consumption was
taken up directly by chironomid larvae and 24% by the sediment surface, which leaves approximately
48% of the O2 consumption related to newly oxidized burrow structures (for example, see the substantial
volume of oxidized sediment around larvae borrows in Figure 6). Our estimated 28% of oxygen
consumption by larvae is consistent with that reported by Svensson and Leonardsson [14].
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light-brown oxidized surface and burrow sediment, and black chemically reduced subsurface sediment
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However, the degree of stimulation of nitrifiers might be species-specific, as chironomid larvae
vary in size, bioturbation mode or grazing pressure on bacteria. Small chironomid species such
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as Chironomus riparius construct burrows in the upper 1 cm layer where they directly (grazing) or
indirectly (burrow ventilation) affect nitrification processes [15]. Larger species, such as C. plumosus or
Chironomus sp., can construct burrows down to 10 cm, significantly extending the niche for nitrifiers
and consequently enhancing N-cycling rates [21,54]. Therefore, our findings cannot be generalized for
all chironomid species or other macrobenthic invertebrates.

Despite denitrification increasing with the presence of chironomid larvae, its efficiency, expressed
as the ratio between the N2 flux and the sum of N2 + DIN fluxes, decreased by 20% in bioturbated
sediments (from 84% to 65%). The increased NH4

+ efflux in bioturbated sediments can explain this
pattern. Deep-burrowing chironomids are able to increase the upward flux of NH4

+ from deeper layers
(where its pool is considerably higher due to the limited oxidation through nitrification) [12,21,55].
The assumed main source of NH4

+ in deep sediment pore water is the mineralization of organic matter,
as the excretion of NH4

+ by chironomid larvae rarely exceeds 20% of the immobilized ammonium
pool [11,14].

It has never been questioned whether NH4
+ excretion by chironomid larvae is solely a physiological

process or if it could also be attributed to larvae–bacteria associations (e.g., gut microbiomes).
Poulsen et al. [29] showed that the C. plumosus gut can host NO3

− reducing microbes, but their targeted
functional gene (nar) did not allow them to distinguish between nitrite denitrifiers or ammonifiers.
Here, we show that the larvae-associated microbial community exhibited transcriptional activity of the
nrfA gene, which encodes DNRA. This process is strictly anaerobic and may thus potentially occur in
the anoxic larvae gut [28]. Therefore, active NO3

−-respiring intestinal bacteria of infauna can act as an
alternative source of NH4

+ in soft-bottom environment.
This was also supported by our functional gene quantification that showed a higher potential for

denitrification and DNRA in chironomid larvae rather than in the surrounding sediments. Although
nirS and nrfA genes, encoding NO2

− reduction to NO and to NH4
+, respectively, were abundant in

anoxic sediment and on the burrow walls, their expression was comparatively low. This indicates that
chironomid larvae can provide favourable conditions for bacteria harbouring these genes, facilitating
their activity. The expression of nirS and nrfA genes can be affected by a number of environmental
variables, including O2, temperature, and organic matter availability [56]. This notwithstanding,
there is numerous evidence that ingested bacteria can remain active in the larvae gut and carry out
NO3

− reduction [29,46]. In addition, an anoxic gut environment might stimulate NO3
− reduction by

facultative aerobic bacteria [28,29]. A higher nirS gene copy number points at denitrification as the
dominating pathway of NO3

− reduction. The differences in the expression of nirS or nrfA genes can
be explained by different bacterial affinity to labile carbon, NO3

− and sulphide concentration, and
temperature [57,58].

The quantification of amoA, which encodes the ammonia monooxygenase for the oxidation of NH4
+

to NO2
−, revealed that its abundance and activity was primarily associated with ammonium oxidizing

bacteria (AOB) in burrows and chironomid larvae. This is likely due to the simultaneous availability
of O2 and NH4

+, which is favourable for AOB. Surprisingly, relatively high copy numbers of amoA
were associated with the larval body. Since nitrification is an aerobic process and is unexpected in the
anoxic environment of larvae gut and intestine, the active nitrifying bacteria might have been located
on the external biofilm of the chironomid body, thus having direct access to NH4

+ and O2-enriched
pore water, within the larvae-ventilated burrow.

5. Conclusions

The present study confirms that tube-dwelling invertebrates such as C. plumosus may have
a considerable influence on N-cycling in estuarine sediments. Combining biogeochemical (flux
measurements) and molecular (metabarcoding, functional gene analysis) approaches allowed the precise
identification of N transformation hot-spots (burrow lining, macrofauna gut) and the quantification
of their contribution to in-sediment N-cycling processes. Chironomid larvae stimulated nitrification,
denitrification and NH4

+ production, while increased N recycling reduced denitrification efficiency.
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Chironomid larvae produced visible, direct effects on the volume of oxidized sediments, creating
new suboxic niches via burrowing and ventilation. They harboured a unique and active array of
bacteria compared to those found in the surrounding environment. Interestingly, active functional
genes involved in contrasting processes such as nitrification and NO3

− reduction were detected both in
sediments and the larvae microbiome, suggesting the co-occurrence of adjacent oxic and anoxic niches
also within the larvae. Our study suggests that overlooked invertebrate–bacteria associations could be
a significant component of N-cycling in benthic environments. Future studies should further scrutinize
microbially mediated N processes in isolated macrofauna to partition nitrification and denitrification
processes associated with intimate animal–bacteria interactions.
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