
water

Article

Hydrogeology of Volcanic Highlands Affects
Prioritization of Land Management Practices

Anwar A. Adem 1,2 , Gashaw G. Addis 3, Dessalew W. Aynalem 1, Seifu A. Tilahun 1,
Wolde Mekuria 4, Mulugeta Azeze 1 and Tammo S. Steenhuis 1,5,*

1 Faculty of Civil and Water Resources Engineering, Bahir Dar Institute of Technology, Bahir Dar University,
Bahir Dar 6000, Ethiopia; anwarasefa@gmail.com (A.A.A.); workudessu@gmail.com (D.W.A.);
sadadm86@gmail.com (S.A.T.); mulugetaazeze@gmail.com (M.A.)

2 Department of Natural Resource Management, College of Agriculture and Environmental Science,
Bahir Dar University, Bahir Dar 6000, Ethiopia

3 Amhara Design and Supervision Works Enterprise (ADSWE), Bahir Dar 6000, Ethiopia; gg6483@gmail.com
4 International Water Management Institute, Addis Ababa 2689, Ethiopia; W.Bori@cgiar.org
5 Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
* Correspondence: tss1@cornell.edu; Tel.: +1-607-255-2489

Received: 8 August 2020; Accepted: 22 September 2020; Published: 27 September 2020
����������
�������

Abstract: Volcanic highlands supply water to 40% of the world’s population. Soil degradation
threatens this water supply. Studies on geohydrology that affect the effectiveness of land and water
management (LWM) practices in reducing soil degradations are limited. To aid in the effectiveness
of LWM practices, we conducted a field experiment in the Gomit watershed in the semihumid
Ethiopian Highlands on the interaction of hydrogeology and LWM practices. We found that in a
watershed with strongly faulted tertiary basalt, 30% of the rainfall was drained through faults to
another basin. Consequently, the discharge at the outlet was less than half of that of other watersheds
with quaternary basalts. Despite the high sediment concentration, i.e., around 15 g L−1, in the Gomit
watershed, the sediment yield of less than 4 Mg ha−1 a−1 was below average for the agricultural
watershed in Ethiopia because of the low runoff response. While some faults facilitated drainage,
others acted as a barrier. Groundwater stored behind the barriers was used as a municipal potable
water source. Since the effectiveness of LWM practices depends on the amount of erosion that can be
prevented, considerations of country-wide prioritizing of investments in land and water management
practices should include the geology of the watersheds.

Keywords: erosion; Ethiopian Highlands; fault; geology; hydrology; land and water management;
soil and water conservation; watershed

1. Introduction

Mountainous volcanic highlands are complex hydrological systems that provide water to 40%
of the world’s population in lower-lying areas [1–4]. For example, the Blue Nile, originating in the
Ethiopian Highlands, is essential for the survival and well-being of the 130 million people living in
Sudan and Egypt [5]. Another example is the drainage basin of the Amazon river that starts in the
Andes Mountains and includes the greater part of Brazil and Peru, significant parts of Colombia,
Ecuador, and Bolivia, and a small area of Venezuela. While maintaining a water supply for low-lying
areas is important, the highlands themselves support the livelihood of millions of people. In Ethiopia
alone, 100 million people are living in the highlands.

Despite the critical role of mountainous volcanic highlands, a good understanding of their
hydrology is lacking [6]. Specifically, the water resources engineering practices that were developed in

Water 2020, 12, 2702; doi:10.3390/w12102702 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0001-6374-745X
https://orcid.org/0000-0003-0508-9350
http://dx.doi.org/10.3390/w12102702
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/10/2702?type=check_update&version=2


Water 2020, 12, 2702 2 of 32

nonvolcanic regions do not seem to apply to volcanic highlands. A good example is in Oregon’s central
the Cascade Range where, despite the use of sound engineering methods in building an irrigation
reservoir, the project failed because the water infiltrated through large sinkholes before it could be
stored behind the dam [7].

Geohydrological field research that has been carried out in volcanic regions shows that the water
movement in such regions is distinct from that in sedimentary basins. One of the differences is that
in volcanic highlands, discharge is affected, under otherwise similar conditions, by the age of the
geological formation, among other factors, as shown by Tague and Grant [8]. They found that in
Oregon’s Cascade Range, the summer baseflow was proportional to the percentage of volcanic rocks that
were younger than 2 million years. Muñoz-Villers and McDonnell [9] in Mexico and Iwagami et al. [10]
in Japan reported that runoff was directly related to the percentage of highly permeable, strongly
weathered, and fractured volcanic rocks. Another difference between volcanic derived andosols and
sediments is that despite the large percentage of clay particles in andosols, volcanic experimental
watershed studies in Ecuador [11,12], in Oregon’s Cascade Range [8], in Ethiopia [13–16], and in
Honduras [17] exhibited high hydraulic conductivities and water flows, mainly via the subsurface to
the valley bottoms where they surface. Finally, unlike most low lying watersheds, subsurface transfer
of flow from one surface basin to another has been reported in volcanic watersheds in the southern Rio
Grande Valley, USA [18], the Andean basins in Chile [3,19–21], a Costa Rican rainforest [22,23], and the
Ethiopian Highlands [24,25].

The current study was carried out in the Ethiopian Highlands, which are similar to volcanic
highlands elsewhere with highly conductive topsoil, subsurface interbasin transfers of water, and a
large population that depends on the natural resource base for ecological services, both in the highlands
and downstream. The land in the highlands is becoming increasingly degraded with the shift to
continuous cultivation of crops to feed the rapidly increasing population, resulting in a loss of organic
matter and subsequent hardpan formation affecting the recharge and surface runoff processes [26–28].
This, in turn, is threatening the natural resources base and the associated ecological services [29–33].
The severe famine between 1983–1985 was caused partly by the degraded resource base [34]. To prevent
further degradation, the government began implementing land and water management (LWM)
practices [35–38]. The structural practices include bunds, hillside terraces, check dams, infiltration
furrows, and biological measures including enclosures preventing the grazing of animals.

To better understand the effect on soil loss of the degrading resource base, researchers have
carried out studies at several scales: research at the plot scale was carried out by Shiferaw and
Holden [39], Welle et al. [40], Araya et al. [41], and Araya et al. [42], and at watershed-scale by
Bewket and Sterk [43], Taye et al. [44], Alemu et al. [45], and Adimassu et al. [46]. To reduce
soil erosion and enhance ecosystem services, the effect of soil and water conservation was studied
by Dagnew et al. [31], Yitbarek et al. [35], Nyssen et al. [47], Nyssen et al. [48]. These studies
showed that the effectiveness of the various LWM practices was dependent on the amount of rainfall.
In the semiarid Ethiopian Highlands, LWM efforts have been effective at maintaining the ecosystem
services by increasing the moisture content in the soil by reducing the amount of runoff, mainly
with infiltration furrows or stone bunds. [30,48–51]. In subhumid and humid highlands, where
precipitation exceeds potential evaporation during the rainy monsoon phase, excess rainfall is drained
by farmers so that fields remain unsaturated [31,37,52,53]. In these highlands, the effect of land use
on runoff generation was studied by Mekuria et al. [33], Girmay et al. [51], Bewket and Sterk [54],
Gebresamuel et al. [55], and Taye et al. [56], and the interaction of slope and runoff generation was
researched by Descheemaeker et al. [50], Taye et al. [56], Engda et al. [57], and Tilahun et al. [58].
None of these studies addressed the underlying hydrogeology of the region to explain differences in
runoff and erosion between the various experimental sites and LWM practices [59,60].

Thus, despite the implementation of government-imposed water conservation practices, the land
has become more degraded in humid and subhumid highlands [26,61], and sediment concentrations
in streams have been increasing [62,63]. Annual soil losses equivalent to 1–8 mm per year are not
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uncommon in small watersheds, with the upper end of the sediment losses being from watersheds that
have active gully formations [64,65]. Restoring natural resource bases before soils are fully degraded is
important because the harm caused in one year cannot be repaired in a human lifetime [66].

Despite many studies worldwide that have shown the importance of geology on the hydrological
responses of volcanic highlands, none of the watershed studies on the Ethiopian Highlands has
considered this and its impact on LWM practices. The objective of this study is therefore to investigate
the effect of geology on both on watershed runoff response and the effectiveness of LWM practices in
the volcanic highland in general and specifically in Ethiopia.

We selected the Gomit watershed in the Rib watershed because, over the last ten years,
land and water management (LWM) practices were implemented. In addition, its unique subsurface
hydrogeology allowed water to bypass the gauge and only a small portion of the rainfall was recorded
at the outlet. We investigated surface and subsurface transport and erosion. Since land and water
management practices will be most effective for hydrogeological conditions that promote surface
runoff and associated high soil losses, this study links sediment loss with geological features, and
will aid in prioritizing the regions for the implementation of LWM practices for maximum benefit.
Since the Ethiopian Highlands are like other volcanic highlands, the results are valid more widely.

2. Materials and Methods

2.1. Gomit Watershed

The 359-ha Gomit watershed (12◦6′9.2” to 12◦8′23” N and 37◦53′16.5” to 37◦54′0.3” E) is in
the headwaters of the Rib River in the Lake Tana basin in the headwaters of the Blue Nile on the
Northwestern Ethiopian Plateau. The location of the outlet is 12◦6′8.6” N and 37◦53′36.3” E with an
elevation of 1974 m (Figure 1). The highest point in the watershed is 2612 m. The mean annual rainfall
from 1997 to 2015 is 1265 mm and annual potential evaporation is 1428 mm [67]. Finger millet, tef,
bean, maize, and niger seed are the primary crops.

The Gomit watershed was divided into two sections (Figure 1): the 196 ha watershed located
upstream that was largely forested, with 85% of slopes greater than 15 degrees, and the 163 ha
downstream area with mainly agricultural activities, with 30% of slopes less than 15 degrees (Figure 1).
Leptosols (49%) and Luvisols (39%) are the major soil types in the upper forested area. Luvisols (44%)
and Nitosols (26%) are the main soils in the agricultural downstream area. Further detail is provided
in Appendix A, Table A1.

Geologically, the Northwestern Ethiopian Plateau is comprised of Cenozoic rocks of dominantly
Tertiary trap (plateau) volcanics, minor Quaternary volcanics, and associated sediments. Flood basalts
and associated rhyolites erupted between 31 and 29 Ma [68–70], roughly coeval with the initiation
of the NE-directed extension in the southern Red Sea [71–73]. The Lake Tana basin is located in low
tholeiitic Miocene-Pliocene basalt, with lesser amounts of felsites and nonmarine sedimentary rocks,
and locally restricted basalt cinder cones and flows [70,74,75]. The eastern and northeastern parts of
the Lake Tana basin, including the study area, are dominantly covered by Tarmaber Guassa formation;
the thickness varies from approximately 500 m in the south to 1500 m in the north of Lake Tana.
The landscape of the Tarmaber formation is characterized by hills, ridges, and mountains forming
domical shapes and plugs [76,77]. The trachyte plugs in the northeast part of the Gomit watershed,
visible in Figure 1, are typical features of this formation. The agricultural downstream area consists of
alluvial deposits with clay, silt, sand, and gravel lenses (Figure 1).

The normal fault in an east-west direction, visible in the forested upstream watershed in Figure 1,
is the major unit of Debre Tabor graben, which is one of the three grabens of the Lake Tana basin
(Gondar, Debre Tabor, and Dengel Ber) [78]. The fault passes through the trachyte plug and connects
shallow and deep geological environments [79] with rocks dipping perpendicular to the hillside
(Figure 1).
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Figure 1. The Gomit watershed situated in (a) Ethiopia, (b) Lake Tana basin with Rib and (c) the 
locations in the Gomit watershed of streamflow gauging (Wier-1 and Weir-2), rain gauge, 
piezometers, arc-weirs, gabion check dams, and lithology. The approximate location of the main 
normal fault line (orange line) based on information of the Ministry of Water and Energy is shown. 
The yellow filled circles are wells that contained water during the growing season. 

Figure 1. The Gomit watershed situated in (a) Ethiopia, (b) Lake Tana basin with Rib and (c) the
locations in the Gomit watershed of streamflow gauging (Wier-1 and Weir-2), rain gauge, piezometers,
arc-weirs, gabion check dams, and lithology. The approximate location of the main normal fault line
(orange line) based on information of the Ministry of Water and Energy is shown. The yellow filled
circles are wells that contained water during the growing season.
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2.2. Land and Water Management (LWM) Practices

Starting in 2006, LWM practices were incrementally implemented in the entire watershed (Table 1).
The practices consisted of stone bunds, 50-cm-deep infiltration furrows with soil bunds downhill,
improved river courses with arc weirs and check dams, and enclosures preventing animals from
grazing (Figure 2, Table 1 and Figure A1 in Appendix A). In addition to natural generation, starting in
2006, several species of trees were planted mainly in the forested area and grasses on the bunds in
both the forest and agricultural parts of the watershed (Figure 2d). Arc weirs were locally adapted
conservation structures constructed across the river from masonry (Figure 2b). In Table 1, only the arc
weirs and check dams are reported that were functional in 2015. The physical conservation practices
and biological plantings were generally sustained except where free-grazing was permitted.
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Figure 2. Physical and biological conservation practices in Gomit watershed: (a) bunds with trachyte
plug in the background, (b) arc-weir, (c) gabion check dam, and (d) protected forested land.

The areal extent of conservation practices increased from year to year up to the current values
listed in Table 1 and Figure A1 in the Appendix A. In 2015, the downstream area consisted of 45%
cropped agricultural lands, of which over 90% were conserved with a combination of 50-cm-deep
infiltration furrows, soil bunds, and stone bunds; just under 20% was bush and shrubland, two thirds
with conservation practices; 8% was grassland located on areas with a high water table in rain phase;
the remaining quarter of the downstream part consisted of a village with widely spaced houses and
farmsteads with a few eucalyptus trees (Table 1).

In 2015, the upper part of the watershed was 77% bush and shrubland, mainly regenerated by
excluding cattle from grazing and replanting trees (Figure 2d, Table 1). A small portion had structural
conservation practices to promote infiltration; 11% was natural forest, and 11% was agricultural land.
Our 2015 survey indicated that the vegetation in the forested part of the watershed consisted of Sesbania
grandiflora, Pigeon pea, Gravilia robusta, Jacaranda mimosifolia, Elephant grass, and Vetiver grass as exotic
plants; Rhamnus prinoides, Salix mucronata, Dodonaea angustifolia, Croton macrostachyus, Brown’s myrobalan,
Agave sisalana, acacia, Olea Africana, Juniperus procera, Jastropha, Cordia Africana, Ruinex nervosus, and
Podocarpus falcatus as indigenous plants.
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Table 1. Characteristics, land use, and land management practices of the upper forested and downslope
agricultural and the entire Gomit watershed. LWM: land and water management practices.

Land Water
Management Practices Forested Agricultural Entire

Watershed

Area (ha) - 196 163 359

Longest flow path (km) - 2.9 2.4 4.8

Elevation range (m asl) - 2013–2612 1974–2159 1974–2612

Arc weir (no.) Locally adapted type of
conservation structure 0 9 9

Gabion check dam (no.) - 15 27 42

Bush and shrubland (%) None 19 7 15

Bush and shrubland (%) Enclosures 51 5 35

Bush and shrubland (%) Contains infiltration
furrows and stone bunds 7 7 7

Cultivated land (%) 7 3 5

Cultivated land (%)
Contain infiltration
furrows, stone, and
soil bunds

4 42 17

Farm and village (%) None - 14 5

Grazing land (%) None 0.3 8 3

Eucalyptus (%) None - 3 1

Natural forest (%) Enclosures 11 - 7

Town village (%) None - 11 4

2.3. Method of Data Collection and Analysis

Rainfall: Rainfall was measured for three years between 2015 and 2017 with one automatic tipping
bucket rain gauge (made by RainWise Inc, recording precipitation at 5-min intervals with an accuracy of
2% at 3.8 cm h−1) and two manual rain gauges located within the watershed (Figure 1). The automatic
and one of the manual rain gauges were located on the east side of the watershed; the other manual rain
gauge was at the west side at the same elevation (Figure 1). Two manual rain gauges were read each
morning at 9 am. Although differences in rainfall were expected due to orographic effects, the highest
elevations were not inhabited, and could therefore not be gauged because guards were not available to
safeguard the equipment. The daily precipitation has been provided in the Supplemental Material
Table S2.

Infiltration: A total of 18 infiltration measurements were taken in duplicate at three landscape
positions (i.e., upper, mid, and foot slope) for three land uses in August and early September 2015.
Since the sites were not accessible by car and it was difficult to carry sufficient water, a single-ring
infiltrometer (30 cm diameter) was used to measure the steady-state infiltration rates. The ring was
inserted and hammered to a depth of 10 cm after removing plant residues. Infiltrated water depth was
measured at constant time intervals (5 min) by adding water into the ring. A ruler was used to read
the water depth in the infiltrometer.

Extraction of geological structures: Detailed geological faults and lineaments in the Gomit watershed
were extracted using PCI Geomatica 2018 software employing edge detection, thresholding, and curve
extraction steps [80]. Input data consisted of a 1:250,000 geological map [81] and a digital elevation
model (DEM) with a resolution of 30 m and band 8 of the Landsat-8 image (0.50–0.68 micrometers);
Eighth band of Landsat-8 (OLI) is useful for edge detection [82]. Verification of faults and lineaments
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were made by field visits. During these visits, the general trend of discontinuities (strike and deep) on
the exposed rock units was measured.

Perched shallow groundwater levels: In 2016, 23 piezometers were installed on the upslope, midslope,
and downslope positions to monitor fluctuations in the shallow groundwater table (Figure 1).
Piezometers were made from 5-cm-diameter PVC pipes with the bottom 30 cm screened. The screened
part was wrapped with filter fabric to prevent intrusion of silt and sand. The upper ends of the
piezometer were capped to avoid rainfall entering the piezometer. The deepest piezometer was 504
cm. The depth to the water table was manually measured two times per day when the groundwater
table was in the piezometer range. From the 23 installed piezometers, 9 recorded the existence of the
water table during the rain phase, six (P4, P5, P7, P10, P16, and P23) were situated at the downslope,
and three (P2, P13, and P19) were at the midslope (Figure 1c, Table A2 in the Appendix A). Ground
water table observations are listed in the Supplementary Material Table S2.

Runoff: Two triangular weirs with step-wise increasing sites following the bank of the rivers were
installed. The bottom steps had a small v-notch structure. Weir-1 measured the discharge at the outlet
of the entire watershed and Weir-2 that at the outlet of the upper watershed (Figure 1). Between
2015 and 2017, measurements were taken during storms (both day and night) by local observers.
Manual measurements of flow depth and velocity started when the water in the stream became turbid.
Both water depth and surface water velocity at the two gauging sites were recorded at 20-min intervals
in 2015 and 10-min intervals in 2016 and 2017. Measurements were ended when the water became
clear. Finally, water depth and velocity were measured at 6:00 a.m. and 6:00 p.m.

The surface velocity was determined with a float method [83]. The float method is well suited for
smaller streams like Gomit due to its operational ease and cost-effectiveness. The float was released
9 m and 16 m upstream from each weir each time a height measurement was made. The time required
for the float to reach the weir was recorded. The product of two thirds of the float velocity and the
wetted cross-sectional area was used to calculate the discharge.

For each gauging site, a best-fit rating curve was developed using all 20- and 10-min flow depths
and mean discharge measurements. A power equation was fitted to the flow depth and storm discharge.
See Figure A3 in Appendix A for stage-discharge rating curves and Table S1 for the daily discharge
data. The calculated discharges were summed to obtain daily and annual runoff data. The runoff

coefficient was calculated by dividing the runoff depth by the rainfall over a fixed period.
Sediment concentrations: One-liter water samples were taken at 20-min intervals in 2015 and 10-min

intervals in 2016 and 2017 at the two gauging stations for sediment concentration analyses. In the field,
the samples were kept in a room prepared for filtration. Sampling during the storm period started
when the flowing water looked turbid, and the sampling continued until the water became clear.
Each sample was filtered using a Whatman filter paper with a pore opening of 2.5 µm [31]. The filtered
sediment was oven-dried and weighed [31]. The sediment load during each interval was obtained as
the product of the average discharge during the interval and the sediment concentration. The total
sediment load was calculated as the sum of interval sediment loads. The runoff and sediment load
for the agricultural part was determined by taking the difference between the forested and the entire
watershed. Average sediment concentrations for storm events were determined by dividing the total
sediment load by the total storm runoff during that storm period.

Baseflow separation: The baseflow contribution of the watershed was computed by separating
baseflow from the surface runoff using an automated method of baseflow estimation. The digital
filter technique used in this study was developed by Nathan and McMahon [83]. The base flow
separation procedure is based upon a recursive digital filter which is commonly used in signal analysis
and processing [84]. The technique has no true physical basis, but it does provide an objective and
repeatable estimate of an index of base flow that is easily automated [83]. The equation of the filter is:

bt = Qt − qt where bt ≤ Qt (1)
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qt = βqt−1 +
1− β

2
(Qt + Qt−1) (2)

where qt is the filtered direct runoff on day t, Qt is the observed stream discharge on day t, bt is the
baseflow on day t, and β is the filter parameter. To obtain realistic results, a β value of 0.925 was
employed by Nathan and McMahon [83] and Arnold et al. [85]. The filter can be passed over the
streamflow several times [86]. Based on the study by Partington et al. [87], the backward pass was
selected for the separation of the baseflow from the simulated stream discharge.

Statistical analysis: A paired t-test was used to compare two population means of infiltration rates
from the three land slopes (bottom, mid and up-slope) and land use types using an Excel spreadsheet.
In addition, descriptive statistical methods in Excel like maximum, minimum, sum, mean, and median
were used to compare the results. Probability of exceedance (PE) was used to compare the steady-state
infiltration rate and rainfall intensity.

3. Results

3.1. Rainfall

The annual rainfall recorded in Gomit was 894 mm in 2015, 988 mm in 2016, and 1042 mm in
2017 (Figure 3). In the three years, the annual rainfall was less than the long-term mean (1997–2015)
rainfall of 1265 mm. Especially the first year was dry. The monthly rainfall patterns in July, August,
and September (constituting the main part of the rain phase) were nearly the same between the three
years, with July being the wettest month (Figure 3). The main difference in total rainfall was caused by
the start of the rain phase which was late June in 2015 and early May in 2017. Less than 50 mm of rain
fell during the dry phase each year.

Water 2020, 12, x FOR PEER REVIEW 8 of 33 

 

Statistical analysis: A paired t-test was used to compare two population means of infiltration rates 
from the three land slopes (bottom, mid and up-slope) and land use types using an Excel spreadsheet. 
In addition, descriptive statistical methods in Excel like maximum, minimum, sum, mean, and 
median were used to compare the results. Probability of exceedance (PE) was used to compare the 
steady-state infiltration rate and rainfall intensity. 

3. Results 

3.1. Rainfall 

The annual rainfall recorded in Gomit was 894 mm in 2015, 988 mm in 2016, and 1042 mm in 
2017 (Figure 3). In the three years, the annual rainfall was less than the long-term mean (1997–2015) 
rainfall of 1265 mm. Especially the first year was dry. The monthly rainfall patterns in July, August, 
and September (constituting the main part of the rain phase) were nearly the same between the three 
years, with July being the wettest month (Figure 3). The main difference in total rainfall was caused 
by the start of the rain phase which was late June in 2015 and early May in 2017. Less than 50 mm of 
rain fell during the dry phase each year.  

 
Figure 3. Mean monthly wet season rainfall in 2015, 2016, and 2017 in the Gomit watershed. 

Of the three years, the maximum daily rainfall, i.e., 66 mm, occurred on 7 July 2016 (Figure 4). 
The maximum rainfall in a single hour was 41 mm; this occurred on 24 July 2016. The greatest 5-min 
intensity was 12.2 mm, recorded on 1 September 2016. The cumulative 5-min rainfall is plotted in 
Appendix A, Figure A4, and daily rainfall is plotted in Figure 4. In 2015, rainfall per day was relatively 
low. In July 2016, two large storms of more than 60 mm d−1 were recorded. In 2017, rainfall started 
early and stopped at the beginning of June for 15 days. 

 
Figure 4. Daily rainfall of Gomit watershed. 

Figure 3. Mean monthly wet season rainfall in 2015, 2016, and 2017 in the Gomit watershed.

Of the three years, the maximum daily rainfall, i.e., 66 mm, occurred on 7 July 2016 (Figure 4).
The maximum rainfall in a single hour was 41 mm; this occurred on 24 July 2016. The greatest 5-min
intensity was 12.2 mm, recorded on 1 September 2016. The cumulative 5-min rainfall is plotted in
Appendix A, Figure A4, and daily rainfall is plotted in Figure 4. In 2015, rainfall per day was relatively
low. In July 2016, two large storms of more than 60 mm d−1 were recorded. In 2017, rainfall started
early and stopped at the beginning of June for 15 days.
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3.2. Infiltration and Rainfall Intensity

The steady-state median ranged from 12 to 468 mm h−1 (Table 2). The average infiltration rate
for the downslope was 98 mm h−1, which was statistically less than either the 217 mm h−1 for the
midslope or the 270 mm h−1 for the upslope (Table 2). The rates between upslope and midslope were
not statistically different. The probability of exceedance (PE) of the average steady-state infiltration
rate by the rainfall intensity was 9% for the downslope and less than 1% for midslope and upslope
areas. The minimum infiltration rate was 12 mm h−1, with an exceedance probability of 35% (Table 2).
It was recorded on the grassland at the downslope where the soil was saturated from the middle to
the end of the rain phase at the time that measurements were taken. The high water table limited the
infiltration because water could not be stored in the soil. In addition, the infiltration rate for the teff

crop was limited due to tilling the field five times. For this crop, the infiltration rate was the least
downslope with an exceedance probability of 18%. The maximum rate of infiltration of almost 5 m
h−1 was observed on the maize plot up- and mid-slope, as shown in Table 2. Additional details are
provided in Figure A4 in Appendix A.

Table 2. Infiltration rates (IR) and the probability of exceedance (PE) of different land uses at three
slope categories in the Gomit watershed.

Land Use
Bottom Slope Mid Slope Upslope

IR
(mm h−1)

PE
%

IR
(mm h−1)

PE
%

IR
(mm h−1)

PE
%

Bush and shrub land 132 0.6 156 0.2 204 0.1
Cultivated (Bean) 156 0.2 288 0.0 432 0.0

Cultivated (Finger millet) 120 0.8 216 0.0 336 0.0
Cultivated (Maize) 144 0.4 468 0.0 468 0.0

Cultivated (Teff) 24 17.5 108 1.1 60 4.3
Grazing land 12 34.7 72 3.1 120 0.8

Mean 98 9.0 218 0.7 270 0.9
Median 126 0.7 186 0.1 270 0.1

3.3. Geology

The Lake Tana basin consists of three grabens (Gondar, Dengel Ber, and Debre Tabor) [78,88].
The Gomit watershed belongs to the Debre Tabor graben, which is the most highly faulted of the
three grabens. The main geological units of Debre Tabor graben are aphanitic basalt, weathered
scoriaceous basalt, alluvial deposit, and trachytic plugs (Figure 5). The trachyte plug on the northeast
boundary of the watershed was formed by an intrusion of lava during a volcanic eruption in the
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tertiary period (Figure 6b). The lineaments and faults in the Gomit watershed are oriented in several
directions, many of which are perpendicular to the streams (Figure 5). The two major faults located in
the upstream area (red lines in Figure 5) intersect at the trachyte plug. A major fault in the north-south
direction and parallel to the stream was found in the downstream part of the watershed. A municipal
borehole is at the upper part of this fault. It provides drinking water to a community of around 5000
people. A spring that provides water to 50 households is located between two minor lineaments (in
the NW direction) in the downstream area at the east side of the watershed. The yield varied with time.
It was high in the rain phase and low in the dry phase.Water 2020, 12, x FOR PEER REVIEW 10 of 33 
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identified by various methods. The yellow filled circles are the wells that contained water during the
growing season.
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to the fissures. 
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Figure 6. Images showing (a) the intersection of the stream channel with jointed and faulted basaltic
units trending in the northwest direction in the forested watershed. The dip angle of the fault plane
(white lines) is opposite the hillslope and the stream flow direction; (b) Acacia trees that grow along
Figure 6. Specifically, we noted that the fine-grained aphanitic basalt outcrops in the northeastern part
of the watershed (a) were intersected by joints and faults. The basaltic unit was tilting and jointed
and had a thickness ranging from 1.5 to 2 m. It was highly fractured with a WNW dipping direction.
In addition, during the field visit, we identified small scale faults with minor displacement on the
dark gray and aphanitic basalt with the major strike direction in an NW-SE direction (c). The spring
identified above was associated with these minor faults. Finally, our field visits noted that deep-rooted
acacia trees were associated with the faults (b). We also found, in addition to the major trachyte plug,
several smaller plugs on the northern part of the Gomit watershed (b). Talus deposits that cover the
plugs have large open pore spaces that facilitate the flow of water to the fissures.

3.4. Perched Groundwater Level

From the installed 23 piezometers, nine recorded the presence of the water table during the rain
phase, six (P4, P5, P7, P10, P16, and P23) were situated at the downslope, and three (P2, P13, and P19)
were at the midslope (Figure 7a, Table A2 in the Appendix A). The water levels in the downslope
piezometers increased early in August and then remained nearly constant until almost the end of the
measurement period (end of October). The water levels in P5, P7, and P23 were within 75 cm from the
surface. The midslope piezometers (P2, P13, and P19) remained dry for one month or longer after the
beginning of observations, after which the water table rose until a constant level was reached (Figure 7a,
Figure A2 in the Appendix A). When the water height was plotted above the bottom of the piezometer,
P7 had the greatest level because it was the longest piezometer, even when the bottom was bedrock
(Figure 7b, Figure A2 in the Appendix A). The remaining 14 piezometers were dry throughout the
2016 wet season. Most of these piezometers were found in the up- and mid-slope positions (Figure 1).
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This indicates that the infiltrated water upslope from these piezometers does not flow over the bedrock
but laterally through the faults.Water 2020, 12, x FOR PEER REVIEW 12 of 33 

 

 
Figure 7. Shallow groundwater for installed piezometers in the Gomit watershed for the year 2016. The 
piezometers P4, P5, P7, P10, P16, and P23 were located downslope and the P2, P13, and P19 on the 
midslope. The remaining 14 piezometers at mid- and up-slope positions remained dry. The locations of the 
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Figure 7. Shallow groundwater for installed piezometers in the Gomit watershed for the year 2016.
The piezometers P4, P5, P7, P10, P16, and P23 were located downslope and the P2, P13, and P19 on the
midslope. The remaining 14 piezometers at mid- and up-slope positions remained dry. The locations
of the piezometers are depicted in Figure 1: (a) plotted as depth from the soil surface and (b) plotted as
height above the bottom of the piezometer.

3.5. Discharge at the Two Outlets

In both 2016 and 2017, the streamflow averaged over the watershed was 80 mm a−1. This was
greater than 33 mm a−1 for 2015, which has less rain (Table 3). The upper watershed produced less
than half the streamflow of the agricultural area. Overall, the runoff was only a small portion of the
total rainfall (see Table 3). The maximum was 13% of rainfall in the agricultural area in 2017.
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Table 3. Rainfall, direct runoff (surface flow and interflow), baseflow, and runoff coefficient for the
entire Gomit watershed, the forested watershed, and the downstream agricultural area.

Watershed. Year Rainfall
mm a−1

Direct Runoff
mm a−1

Baseflow
mm a−1

Total Runoff
mm a−1

Rainfall-Runoff
Ratio %

Forested

2015 894 11 2 13 2
2016 988 32 21 53 5
2017 1042 25 8 33 3

Mean 975 23 10 33 3
St. Dev. * 75 11 10 20 2

Agricultural

2015 894 43 17 60 8
2016 988 54 66 120 12
2017 1042 23 117 140 13

Mean 975 40 67 107 11
St. Dev. 75 16 50 42 3

Entire

2015 894 24 9 33 4
2016 988 40 40 80 8
2017 1042 57 22 79 8

Mean 975 40 24 64 7
St. Dev. 75 17 16 27 2

* Standard deviation.

Thirty-one percent of the total discharge was baseflow in the forested part, 62% in the agricultural
part, and 54% in the whole watershed (Table 3). The direct runoff included the interflow and surface
runoff. In most of the rainfall events, less than 2 cm day−1 did not generate direct runoff (Figure 8).
Only a few storms, with more than 2 cm day−1, caused the stream water to rise. In the forested
watershed, the baseflow started in late August and disappeared in mid-October. In the agricultural
area, baseflow started in mid-July and stayed up to the end of mid-November (Figure 8). The baseflow
contribution of the forested area was smaller than that of the agricultural area.
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3.6. Sediment Concentration and Yield

3.6.1. Sediment Concentration

The average sediment concentrations for the three years were 13.6 g L−1 for Weir-1 at the outlet of
the entire watershed and 14.4 g L−1 for Weir-2 at the uphill forested watershed. Sediment concentrations
for both weirs were greater in 2016 than the other two years because several large storms occurred
within a brief period during the beginning of the rain phase on 27 June 2016 with 15 mm of rain in
5 min.

Daily sediment concentrations and corresponding discharge amounts are depicted in Figure 9
for the three years. The maximum daily sediment concentrations were registered in the early part of
the rain phase in 2016: 57 g L−1 for Weir-1 at the outlet of the entire watershed on 13 May 2016 with
rainfall of 11 mm d−1 (Figure 9c), and 83 g L−1 for Weir-2 for the forested upper part on 26 June 2016,
with rainfall of 13 mm d−1 (Figure 9a). The maximum sediment concentration of the agricultural part
of the watershed was 87 g L−1 on 13 May 2016 (Figure 9b). Discharge on any of these days was less
than 0.4 mm (Figure 9).
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Thus, despite the differences in the runoff, the sediment concentration between the two contrasting
watersheds was nearly the same. The pattern was similar too with sediment concentrations greater at
the beginning of the rain phase than at the end (Figure 10). As shown by Guzman, et al. [89], the pattern
can best be organized by plotting the average 14-day suspended sediment concentration against 14-day
average discharge for cumulative effective rainfall amounts (Pce) (Figure 10). In all three watersheds,
the largest sediment concentration that increased with the average runoff amount occurred at the
beginning of the rainy season for cumulative effective rainfall of less 100 mm (Pce < 100). Concentration
decreased for 100 < Pce < 300 and then Pce > 300. The concentration discharge relationship was
independent of the cumulative effective rain. The decrease in concentration with the advance of the
rain phase was an indication that sediment supply becomes limiting in the conveyance system after
the beginning of the rain phase [90].
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3.6.2. Sediment Yield

Sediment yield in 2015 was at 1 Mg ha−1 for the forested part and 5.6 Mg ha−1 for the agricultural
part, while it was 2.5 and 13.7 Mg ha−1 respectively in 2016 (Table 4). The 2016 annual sediment yield
was three times greater than that in 2015 (Table 4) while the annual direct runoff in 2016 was two times
greater than that in 2015 (Weir 1 and 2) (Table 4). Thus, doubling in runoff resulted in a threefold
increase in sediment yield. The greater sediment loss was caused by two large storms on 7 and 30 July,
2016 producing high sediment loads. These storms contributed to 40% of the runoff and 72% of the
sediment yield in 2016. The 2017 sediment yield of the agricultural part was less than in 2016 (Table 4),
despite the fact that the amount of rainfall was greater because fewer storm events generated runoff in
2017. The monthly sediment yield leaving the watersheds during the three years was high during July,
and accounted for 54–82% of the annual sediment load (Table 4).

Table 4. Monthly sediment yields for forested, agricultural, and the entire Gomit watershed.

Month

Sediment Yield (Mg ha−1)

Entire Watershed Forested Part Agricultural Part

2015 2016 2017 2015 2016 2017 2015 2016 2017

March - - 0.002 - - 0.01 - - 0.003
April - - 0.04 - - 0.10 - - 0.04
May - 0.13 0.26 - 0.01 0.11 - 0.28 1.00
June 0.002 0.67 0.32 - 0.38 0.20 - 1.02 0.34
July 2.13 6.12 0.94 0.12 1.39 0.78 4.53 11.8 1.97

August 0.33 0.6 0.38 0.14 0.65 0.20 0.55 0.55 0.53
September 0.14 0.05 0.32 0.7 0.09 0.24 0.53 0.02 0.06
October - - 0.01 - - 0.07 - - 0.07

Total 2.6 7.6 2.3 1.0 2.5 1.7 5.6 13.7 4.0

4. Discussion

4.1. Interaction of Geology And Hydrology

In the results section, the hydrology (both discharge and soil loss) and geology were presented
separately. Here, we link hydrological observations with geological features. Linking the two results
can provide a better understanding of the watershed [91] and, as we will show, aids in prioritizing
areas for land and water management (LWM). First, the effect of the faults and lineaments on the
surface runoff and the water table elevations are assessed, followed by a discussion of land and water
management (LWM) practices.

4.1.1. Interaction of Geology with Direct Runoff and Baseflow

Table 3 shows that over the three years, only 7% of the rain ran off in the entire watershed.
Performing the annual water budget with the data in Table 3 assuming that evapotranspiration between
June and September is 416 mm [67], the excess rainfall that cannot be accounted for is 465 mm in
2015, 492 mm in 2016, and 547 mm in 2017. Some of the water which is unaccounted for would have
evaporated during the dry phase, but according to observations in other watersheds within 100 km
from the study area, this would constitute less than 200 mm a−1 [16,92]. Field evidence (Figure 6a)
suggests that the remainder of the unaccounted water flowed out of the watershed via the subsurface
through the faults and lineaments. During field visits, we found in the forested watershed a high
angle fault that was perpendicular to the stream and dipped nearly perpendicular to the slope and
was open (orange line in Figure 1, and red in Figure 5). A picture of the fault where it intersects with
the stream is shown in Figure 6a. We noted baseflow in the creek upstream of this geological feature
but none downstream. The high angle fault directed the flow of water to the Tekeze basin, where it
surfaces as springs that are used for irrigation [93]. The Tekeze River connects with the Nile in Sudan.
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In addition to this particular fault, numerous faults and lineaments perpendicular to the streams were
detected (Figure 5). These can cause a significant transfer of surface and subsurface water to the deep
groundwater, or can act as barriers, as we will see in the next section.

4.1.2. Relationship between Geology and Perched Groundwater

The groundwater table elevations were measured with the 23 piezometers. Fourteen piezometers
remained dry throughout the measurement period (Figure 1). Analyzing the perched groundwater
observation (Figures 1, 5 and 7) with respect to the geology, we note that wells with water (yellow
filled circles in Figure 5) were mainly located east of and close to the main river. Only two wells were
located downstream, west of the river: P2 in the downstream area was located approximately 225 m
east of the river, and P5 (also downstream) was near a side branch of the main river. The wells without
water were on the west side (such as P22), or at a greater distance from the river area and were at a
higher elevation than the nearby piezometer with water (Figure 1).

Wells that were located close together that were especially interesting and helped to describe the
effect of the faults were P13 and P23 on the east side of the river and P22 on the west side (Figure 1).
All three wells were at the same elevation of 2020 m. Wells P13 and P23 had nearly the same water
level throughout the period of observation (Figure 7, Figure A2 in the Appendix A), while there was
no water in P22. Thus, there was a direct connection between P13 and P23, and the lineament between
P22 west of the river and P23 and P13 east of the river acted as a barrier (Figure 5). Another set of
piezometers of interest comprised P2, P4, and P1. P2 and P4 contained water during the observation
period and P1 did not. The elevation of P1 was 1971.8 m. Compared to P1, P4 was 4.5 m higher and P2
was 11.5 m higher. The N-NW major fault (red line in Figure 5) and E-N lineament between P2 and P4
(yellow hatched line in Figure 5) acted as barriers. The distinct boundary at this location of the small
green (wet) area and dark (lack of vegetation) downstream in Figure 5 was caused by the fault and
lineament as well. The fault prevents subsurface flow downstream and water ponded upstream of the
fault. The final pair of interest was P7 and P5. These wells, although located approximately 500 m
apart, had the same water level pattern (Figure 7). This could indicate that they were part of the same
perched aquifer in the alluvial deposit, since no major faults or lineaments were found between the
two piezometers.

The water levels in the piezometers in the Gomit watershed were nearly independent of rainfall
once they reached their maximum levels (Figure 7). In other watersheds like Debre Mawi, the water
table fluctuated with the amount of rainfall [13,16,58]. In addition, Alemie et al. [13] observed for a few
hand-dug wells that the groundwater level remained constant during the wet phase. The constant level
indicated that water flowed over a blocked fault through the alluvial deposits to the river. The delayed
rise in Piezometer P2 at some distance from the river and P10 on the west side of the main river could
have been caused by this spill effect.

4.1.3. Interaction of Groundwater and Baseflow

The baseflow started to rise symmetrically with the rise of the groundwater level at the downslope,
as shown by comparing the water level in piezometer 16 with the discharge in weir 2 that was located
just downstream of weir 1 (Figure 11a). Similarly, the rise in piezometer 4 was related to the rise in
discharge with weir 1 (Figure 11b). After the initial rise, the discharge and water level in the piezometer
became independent. We hypothesize that the discharge was related to the amount of flow over the
barrier, while the groundwater level was related to the height of the barrier. In other words, the river
acted as an overflow, limiting the height of the water table. As long as the supply continued, the water
table remained at the same height in the piezometer; however, after the rain stopped, it declined due
to evaporation.
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Finally, the groundwater table and the runoff were related. We theorized that the 2 cm of rain
needed before runoff occurred (Figure 8) was related to the amount of water needed to bring the water
table to the surface. Only then, surface runoff occurred as saturation excess overland flow because the
infiltration rates were too great for any infiltration excess flow.

4.1.4. Regional Ethiopian Highlands—The Interaction of Geology and Annual Discharge

The runoff coefficients of the watersheds in the semihumid and humid Ethiopian Highlands
shown in Table A3 in Appendix A and Figure 12a ranged from 3% to 80%. The runoff coefficient in the
May Zeg watershed in the semiarid Tigray was the only one that was less and was not considered
here. The Rib watershed had a runoff coefficient of 23%, which was the smallest of the large rivers
in the Lake Tana basin. The runoff coefficient for the Gomit watershed, which is part of the Rib
watershed (Figure 1), was even lower than for the entire Rib watershed. The watershed area and
the runoff coefficients listed in Table A3 are plotted in Figure 12a as a function of the logarithm of
the watershed area. The watersheds fall clearly into two groups. The first group consists of Gomit,
Tikur Wuha, Megech, Rib, and Beles. The remaining watersheds in Table A3 are in group two. Most of
the watersheds in the second group are found south of Lake Tana. In both groups, the runoff ratio
increased with area but the intercept with the y-axis was distinctly different.
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Orange dots indicate group 1 watersheds including Gomit, Tikur Wuha, Megech, Rib, and Beles. Blue
dots show group 2 watersheds including Gumara, Gilgel Abay, Dirma, Gibera, Gelda, Koga, Maybar,
Anjeni, Andit Tid, Debre Mawi, May Zeg Zeg, Birr, and Guale (Table A3) watershed in the volcanic
mountainous area in the world (squares, see Table A4 in the Appendix A for more information). (b) the
Ethiopian highland watersheds and some global volcanic watersheds from Ecuador, Chile, Costa Rica
and USA.

Most of the watersheds in group 1 in Figure 12a are found in tertiary basalt. These basalts can be
found in the northern, western, and eastern parts of Lake Tana [94,95]. These basalts are part of the
Debre Tabor graben [78]. Watersheds in group 2 are located on quaternary basalt that is distinct for the
southern part of the Lake Tana basin. Quaternary basalt in Lake Tana’s southern part is associated with
Dengel Ber graben (Chorowicz et al., 1998). The tertiary basalt of the Gondar and Debre Tabor grabens
are older and more fractured than the quaternary basalt of the Dengel Ber graben [96]. The tertiary
basalt, with a more mature subsurface flow network, can transport greater amounts of flow than the
quaternary basalt in which the flow network is not so eroded. Thus, the geology, like those of other
highlands in the world [3,8–12,17–23], directly affects the amount of subsurface flow (and thereby
indirectly the surface flow) in the watersheds.
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Interestingly, our findings for the Gomit watershed (Table A3, Figure 12a) fit very well with the
regional context. It falls into group 1. Since the watershed is smaller than the Rib basin, the runoff

coefficients are even less than that of its main watershed with the major faults perpendicular to
the stream.

4.1.5. Global Context—The Interaction of Geology and Annual Discharge

To investigate how well our results are in agreement with findings globally, we calculated annual
runoff coefficients from published watershed studies [3,11,97,98] on volcanic highlands that measured
both runoff and rainfall. Two watersheds were in the Cascade Range in the semiarid part of Oregon
with a fractured volcanic rock substrate. The watersheds were 116 ha and 96 ha (Table A4). Less than
10% of the rainfall appeared as runoff [97]. In the Ecuadorean Andes, seven watersheds were monitored
ranging in size from 20 ha to 753 ha [11]. The subsoil was made up of volcanic and volcanoclastic
rock deposits that were compacted during the last glacial ice period of the last ice age [11]. Runoff

coefficients ranged from 55% to 68% (Table A4). In the Chilean Andes, three watersheds with sizes
varying from 127 km2 to 210 km2 were monitored. The geologic substrate made up of lava was
deposited in the middle and middle-upper Pleistocene and was characterized by dense jointing,
favoring the fast movement of groundwater [3]. Finally, a set of small watersheds was monitored in
Portugal and Costa Rica (Table A4). The plots in Portugal did not qualify as watersheds and were not
further considered [98]. Geological information was not provided by the authors for the watersheds in
Costa Rica. The runoff coefficient was less than 7%.

We plotted the runoff coefficients of these globally distributed watersheds with those in the
Ethiopian Highlands in Figure 12b. The runoff coefficient for Ecuador was distinctly greater
than any of the watersheds in Ethiopia due to the compacted volcanic and volcanoclastic rock
deposits. The watersheds in the Oregon Cascade Range, with their fractured volcanic rock substrates,
are comparable to the group 1 watersheds in Ethiopia. The watersheds in Costa Rica and Chile fall
between group 1 and group 2. Teir runoff is directly related to the fraction portion of high permeable,
strongly weathered, and fractured volcanic rocks, as reported by Iwagami et al. [10], and the amount
of fraction varies from one region to another. This was not unexpected. Consistent among the volcanic
regions is the observation that the runoff ratio increases linearly with the logarithm of the area of
the watershed.

4.2. Sediment—Discharge Interaction

4.2.1. Gomit Watershed

A monthly summary of discharge and both sediment yield and concentration of the forested,
agricultural, and entire watersheds are shown in Figure 13. In the three sites, the peaks of sediment
concentrations were observed at the beginning of the rainy phase and before the direct runoff peak
in July, indicating that the sediment supply became limited during this month with high rainfall.
The steep reforested upper watershed had less direct runoff and baseflow than the lower agricultural
watershed. Both the forested and agricultural parts of the watershed had similar average sediment
concentrations (between 14 and 15 g L−1) but sediment yield was greater in the agricultural watershed
due to the larger runoff response (Figure 13). Other factors were responsible for the similar sediment
concentration in the two parts of the watershed and might be related to picking up sediment in the
river channel in both land uses [99].
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4.2.2. Regional Ethiopian Context

The rate of the annual sediment load from the entire Gomit watershed was relatively small as
compared to other watersheds, while the sediment concentration was greater (Table 5). This may be
related to the low runoff response of the watershed and, to some degree, to the sediment trapping
capacity of the SWC structures installed in the watershed. In Table 5, we also show that sediment
yield decreased in the first year after the implementation of soil and water conservation in watersheds,
e.g., those at Debre Mawi, Anjeni, Birr, and May Zeg Zeg. However, as shown by Guzman et al. [100],
the sediment concentration decrease was only temporary (in most cases) for structural practices.
Increasing evaporation with vegetative measures in the watershed by increasing the acreage of
eucalyptus trees will reduce the long-term runoff and sediment concentration.
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Table 5. Mean annual sediment yield and daily average sediment concentration in some
Ethiopian watersheds.

Basin/Watershed Area
(ha)

Mean Annual
Sediment Yield
(Mg ha−1a−1)

Daily Average
Sediment

Concentration (g L−1)
Source

Blue Nile 17,600,000 7 3.8 Steenhuis et al. [101]

Gilgel Abay 166,500 35.4 1.8

Zimale et al. [102]Gumara 128,100 49.4 3.3
Rib 128,900 24.6 4.8

Megech 50,000 12.2 0.77

Debre Mawi 95
62.1
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effective as for group 2 watersheds. For the same investment, practices implemented in the Gomit 
watershed could have been installed in one of the watersheds in group 2, resulting in greater amounts 
of soil saved. Priority should be given to watersheds transporting substantial amounts of sediment 
outward. This will make LWM investments more effective. 

Since the volcanic highlands have a similar pattern of water flow through losses through faults 
as other volcanic highlands, our findings on LWM practices are valid in semihumid and humid 
monsoon volcanic highland regions throughout the world. Since the investment cost of LWM 
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watershed could have been installed in one of the watersheds in group 2, resulting in greater amounts 
of soil saved. Priority should be given to watersheds transporting substantial amounts of sediment 
outward. This will make LWM investments more effective. 
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of water. This is accomplished by increasing the time that the water is on the field. In practice in the 
Ethiopian Highlands, this is accomplished by storing the runoff water in the infiltration furrows or 
upstream of the stone and soil bunds. This allows sediment to settle in the furrows and behind the 
bunds, eventually forming terraces. 

The surface runoff is much less in the Gomit watershed than in other watersheds because of the 
many faults that transport the excess rainfall out of the watershed. Thus, the faults have the same 
function as the LWM practices by infiltrating the excess runoff. So, there is less need for the 
application of LWM practices when the watershed is highly fractured. This is certainly the case in the 
Gomit watershed with high coverage of existing bunds and infiltration furrows (Table 2) in the 
agricultural area from past years (Figure 2a). This is evidence that these practices are not effective, 
because otherwise, the bunds would have formed terraces and the infiltration furrows would have 
filled up. In the group 2 watersheds (Figure 12), such as the Debre Mawi, all bunds were filled up 
within five years [31]. Figure 2a shows that in the Gomit watershed, the 5-year-old bunds did not 
accumulate sediment. 

The investment in LWM practices in the Gomit watershed in group 1 was, therefore, not as cost-
effective as for group 2 watersheds. For the same investment, practices implemented in the Gomit 
watershed could have been installed in one of the watersheds in group 2, resulting in greater amounts 
of soil saved. Priority should be given to watersheds transporting substantial amounts of sediment 
outward. This will make LWM investments more effective. 

Since the volcanic highlands have a similar pattern of water flow through losses through faults 
as other volcanic highlands, our findings on LWM practices are valid in semihumid and humid 
monsoon volcanic highland regions throughout the world. Since the investment cost of LWM 
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watershed could have been installed in one of the watersheds in group 2, resulting in greater amounts 
of soil saved. Priority should be given to watersheds transporting substantial amounts of sediment 
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because otherwise, the bunds would have formed terraces and the infiltration furrows would have 
filled up. In the group 2 watersheds (Figure 12), such as the Debre Mawi, all bunds were filled up 
within five years [31]. Figure 2a shows that in the Gomit watershed, the 5-year-old bunds did not 
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The investment in LWM practices in the Gomit watershed in group 1 was, therefore, not as cost-
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Gomit watershed with high coverage of existing bunds and infiltration furrows (Table 2) in the 
agricultural area from past years (Figure 2a). This is evidence that these practices are not effective, 
because otherwise, the bunds would have formed terraces and the infiltration furrows would have 
filled up. In the group 2 watersheds (Figure 12), such as the Debre Mawi, all bunds were filled up 
within five years [31]. Figure 2a shows that in the Gomit watershed, the 5-year-old bunds did not 
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The investment in LWM practices in the Gomit watershed in group 1 was, therefore, not as cost-
effective as for group 2 watersheds. For the same investment, practices implemented in the Gomit 
watershed could have been installed in one of the watersheds in group 2, resulting in greater amounts 
of soil saved. Priority should be given to watersheds transporting substantial amounts of sediment 
outward. This will make LWM investments more effective. 
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filled up. In the group 2 watersheds (Figure 12), such as the Debre Mawi, all bunds were filled up 
within five years [31]. Figure 2a shows that in the Gomit watershed, the 5-year-old bunds did not 
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watershed could have been installed in one of the watersheds in group 2, resulting in greater amounts 
of soil saved. Priority should be given to watersheds transporting substantial amounts of sediment 
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The surface runoff is much less in the Gomit watershed than in other watersheds because of the 
many faults that transport the excess rainfall out of the watershed. Thus, the faults have the same 
function as the LWM practices by infiltrating the excess runoff. So, there is less need for the 
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agricultural area from past years (Figure 2a). This is evidence that these practices are not effective, 
because otherwise, the bunds would have formed terraces and the infiltration furrows would have 
filled up. In the group 2 watersheds (Figure 12), such as the Debre Mawi, all bunds were filled up 
within five years [31]. Figure 2a shows that in the Gomit watershed, the 5-year-old bunds did not 
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The investment in LWM practices in the Gomit watershed in group 1 was, therefore, not as cost-
effective as for group 2 watersheds. For the same investment, practices implemented in the Gomit 
watershed could have been installed in one of the watersheds in group 2, resulting in greater amounts 
of soil saved. Priority should be given to watersheds transporting substantial amounts of sediment 
outward. This will make LWM investments more effective. 

Since the volcanic highlands have a similar pattern of water flow through losses through faults 
as other volcanic highlands, our findings on LWM practices are valid in semihumid and humid 
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4.3. Land and Water Management Practices

The general purpose of LWM practices is to decrease surface runoff by increasing the infiltration
of water. This is accomplished by increasing the time that the water is on the field. In practice in the
Ethiopian Highlands, this is accomplished by storing the runoff water in the infiltration furrows or
upstream of the stone and soil bunds. This allows sediment to settle in the furrows and behind the
bunds, eventually forming terraces.

The surface runoff is much less in the Gomit watershed than in other watersheds because of
the many faults that transport the excess rainfall out of the watershed. Thus, the faults have the
same function as the LWM practices by infiltrating the excess runoff. So, there is less need for the
application of LWM practices when the watershed is highly fractured. This is certainly the case in
the Gomit watershed with high coverage of existing bunds and infiltration furrows (Table 2) in the
agricultural area from past years (Figure 2a). This is evidence that these practices are not effective,
because otherwise, the bunds would have formed terraces and the infiltration furrows would have
filled up. In the group 2 watersheds (Figure 12), such as the Debre Mawi, all bunds were filled up
within five years [31]. Figure 2a shows that in the Gomit watershed, the 5-year-old bunds did not
accumulate sediment.

The investment in LWM practices in the Gomit watershed in group 1 was, therefore, not as
cost-effective as for group 2 watersheds. For the same investment, practices implemented in the Gomit
watershed could have been installed in one of the watersheds in group 2, resulting in greater amounts
of soil saved. Priority should be given to watersheds transporting substantial amounts of sediment
outward. This will make LWM investments more effective.

Since the volcanic highlands have a similar pattern of water flow through losses through faults as
other volcanic highlands, our findings on LWM practices are valid in semihumid and humid monsoon
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volcanic highland regions throughout the world. Since the investment cost of LWM practices per
hectare is approximately the same, independently of the runoff amounts, the maximum amount of soil
per dollar invested is found in those watersheds that have minimum subsurface flow and maximum
runoff and soil loss.

5. Conclusions

We examined the runoff depth and soil loss in the Gomit watershed. The runoff depth was much
less than in other watersheds to the south. The runoff coefficient was low compared to those of other
watersheds found in the region because as much as 29% of the rainfall left as subsurface flow. This loss
of water was through faults and likely appears as spring at lower elevations in the Tekeze basin.

An average sediment concentration of between 14 and 15 g L−1 in the Gomit watershed was high
compared to those of watersheds worldwide, but the sediment yield (between 2 and 4 Mg ha−1 a−1)
was below average for an agricultural watershed in Ethiopia. This was due to the low runoff response
of the watershed. In addition, LWM practices might have trapped some sediment.

Finally, since the type of geological formation determines, for a given rainfall, the discharge
and sediment load of a watershed, the process of prioritizing watersheds for the implementation of
management practices should take into account the geological nature of the region. More research is
needed on how various geological formations affect the hydrology of the highlands in the tropics that
serve as water towers for hundreds of millions of people.

Supplementary Materials: The observed experimental data are available online at http://www.mdpi.com/2073-
4441/12/10/2702/s1, Table S1: Rainfall and streamflow data for Gomit watershed, Table S2: Perched groundwater
level data of Gomit watershed
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Appendix A

Table A1. Watershed characteristics of the Gomit watershed.

Characteristics Forested Agricultural Entire Watershed

Major soils (%)

Alisols 10 0.5 6
Ferralsols - 8 3
Leptosols 49 16 34
Luvisols 39 44 41
Nitosols - 26 12
Regosols 0.6 - 0.3
Vertisols 2 6 4

Slope class (%)

Flat 0.5 2 1
Gentle 4 27 12
Moderately steep 9 32 17
Steep 32 28 30
Hilly 35 10 26
Mountainous 20 2 13

http://www.mdpi.com/2073-4441/12/10/2702/s1
http://www.mdpi.com/2073-4441/12/10/2702/s1
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Table A2. Properties of the piezometers in the Gomit watershed.

Piezometer Easting Northing Altitude, m Well Depth, cm Land Use Remark

P1 1,338,242 379,614.2 1971.8 436 Crop land
P2 1,338,290 379,807.6 1983.3 436 Grass land
P3 1,338,317 380,021.8 2015.3 224 Bush and grass land
P4 1,338,327 379,534.8 1976.3 466 Crop land Water, stream bank
P5 1,338,536 379,722.9 1992.7 328 Grazing land Found groundwater
P6 1,338,620 379,929.1 1995.3 220 Grassland Between cultivation
P7 1,338,728 379,528.7 1993.6 503.9 Crop land Found ground water
P8 1,338,872 379,618.2 1999.7 130 Crop land
P9 1,338,995 379,673.9 2011.4 313 Crop land

P10 1,338,683 379,428.6 1987.2 368.5 Grass and crop land
P11 1,338,766 379,258.5 2000.9 120 Crop land
P12 1,338,811 379,159.6 2008.3 233 Grass and crop land
P13 1,339,326 379,742.4 2021.8 421 Grass land
P14 1,339,487 379,924.7 2026.3 112.2 Crop land
P15 1339566 380,018.2 2041.7 232.5 Crop land
P16 1,340,096 379,741.9 2046.0 225 Crop land Water, stream bank
P17 1,340,139 379,661.6 2056.9 273.2 Crop land
P18 1,340,258 379,526.7 2070.1 150 Crop land Near stream bank
P19 1,339,683 379,808.5 2029.0 346 Grass and crop land
P20 1,339,823 379,930 2056.6 359 Grass and crop land
P21 1,339,909 380,044.6 2062.1 159 Grass and crop land
P22 1,339,262 379,675 2022.0 155 Grazing land Near stream bank
P23 1,339,285 379,694 2022.0 243 Crop land Near stream bank

Table A3. Watershed size, annual rainfall, and annual runoff coefficients for watersheds in the
Ethiopian Highlands.

Watershed Area (ha) Annual Rainfall (mm a−1) Runoff Coefficient (%) Source

Gumara 135,100 1460 60
Dessie et al. [24],
Gebrehiwot et al.

[106]

Rib 130,800 1460 23
Gilgel Abay 359,800 1562 80

Megech 63,100 1170 40

Dirma 16,300 1200 40
Dessie et al. [24]Gibera 2300 1460 60

Gelda 21,700 1500 50

Beles 352,000 971 32 Gebrehiwot et al.
[106]Koga 266 1562 37

Maybar 477 1417 30 Bayabil et al. [14]

Anjeni 113 1675 42 Bayabil et al. [14]
Andit Tid 113 1467 49

Debre Mawi 95 1240 22 Dagnew et al. [102]

Birr 300 1355 79 Gebrehiwot et al. [106]

May Zeg Zeg 200 762 1.6 Nyssen et al. [48]

Tikur-Wuha 500 1602 21 Akale et al. [107]
Guale 190 1561 31

Birr 192 1225 63 Ayele et al. [103]

Gomit
359 987 11 This study
166 987 3.3
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Table A4. Annual runoff coefficients in some watersheds of the world.

Basin/Region Country Area (ha) Total Rainfall (mm) Runoff (% Rainfall) Source

Ribeirinha Portugal 0.35 1787 0.4 Fontes et al. [98]
Granja Portugal 0.18 2313 0.9 Fontes et al. [98]

Canary Islands Spain 0.02 69 2.3 Guerra et al. [108]
Zhurucay M1 Ecuador 20 1300 56 Mosquera et al. [11]
Zhurucay M2 Ecuador 38 1300 55 Mosquera et al. [11]
Zhurucay M3 Ecuador 38 1293 65 Mosquera et al. [11]
Zhurucay M4 Ecuador 65 1294 62 Mosquera et al. [11]
Zhurucay M5 Ecuador 140 1267 60 Mosquera et al. [11]
Zhurucay M6 Ecuador 328 1254 63 Mosquera et al. [11]
Zhurucay M7 Ecuador 753 1277 68 Mosquera et al. [11]

Chillán Chile 21,000 - 36.3 Muñoz et al. [3]
Renegado Chile 12,700 - 32.5 Muñoz et al. [3]
Diguillín Chile 20,700 - 44.8 Muñoz et al. [3]

Ways USA 116 314 8.8 Ochoa et al. [97]
Jensen USA 96 314 2.9 Ochoa et al. [97]

Reventazón Forest Costa Rica 6.1 3826 2.1 Toohey et al. [109]
Reventazón Coffee Costa Rica 4.5 3826 3.0 Toohey et al. [109]

Reventazón Sugar cane Costa Rica 1.9 3826 6.8 Toohey et al. [109]
Reventazón Pasture Costa Rica 1.2 3826 1.3 Toohey et al. [109]
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Figure A4. Exceedance probability of five-minute rainfall intensity (a) for 2015, 2016, 2017, and (b) for
all the three years. Note that the exceedance probability versus rainfall intensities and infiltration rates
of (a) Gomit watershed in 2015, 2016, and 2017, and (b) bottom slope, midslope, and upslope of Gomit
watershed from 2015 to 2017 rainfall. The minimum infiltration rate, which occurred at the bottom of
the hill where the soil was saturated, was exceeded by the rainfall intensity 30% of the time it rained in
2016/2017 and 50% in 2015. The median infiltration rate is a good indication of whether the upslope
regions generate runoff because water that runs off in one location can infiltrate downhill. The median
infiltration rate was only exceeded by the rainfall intensity with 0.6% in the bottom slope, 0.1% in
the midslope, and 0% in the upslope, indicating that all rainwater (except for the near stream areas)
infiltrates 99.4% of the time before reaching the stream.
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