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Abstract: There has been considerable modelling and wave basin validation of the multi-mode,
multi-float, moored wave energy converter M4. The 6 float (2 power take off) (PTO) configuration is
considered here with mooring from a buoy with light inextensible cables. Large mean mooring forces
and very large peak or snap forces were measured in large waves while the rotational response about
the hinges (for power take off in operational conditions) was predominantly linear. Modelling has
been extended with elastic mooring cables connected directly to the base of the bow float and to the
buoy. The experimental mean force is input to the linear diffraction/radiation model. The device
response is effectively unchanged. The peak mooring force and tensions remain large with direct
connection to the base of the bow float but are only slightly greater than the mean forces with elastic
cables to the buoy, and an elastic hawser provides a further slight reduction. For the largest waves
measured, the force was about 10% of the dry weight of the platform. The idealized efficient modelling
may inform more detailed design while efficient methods for determining highly nonlinear mean
forces remain to be established.

Keywords: wave energy converter; multi-float; mooring configurations; elastic cables; mooring buoy;
snap loads

1. Introduction

Many concepts for offshore wave energy conversion have been considered and devices are
generally classed as point absorbers, terminators or attenuators, e.g., see reviews [1,2]. Moorings are a
generic problem for survivability and fatigue life. The basic hinged raft-type attenuator concept has
been developed into multi-float form with multi-mode forcing and multiple power take offs to give
capacities similar to offshore wind turbines, a system known as M4 which is considered here [3,4].
There has been considerable modelling and wave tank validation of M4 [3–6], demonstrating relatively
high capture widths, up to about one wavelength corresponding to the energy period in irregular
waves or three stern float diameters, for the 6 float version. This is shown in a video frame from
laboratory testing in Figure 1, the scale being approximately 1:50. This version has one bow float,
three mid floats and two stern floats, called 1-3-2; the stern floats are connected by beams to hinges
above the outer mid floats for power take off (PTO), provided by mechanical damping from an actuator.
The mooring connection is made to the bow float. The system heads naturally into the wave direction
due to wave drift forces. The experiments were undertaken with a simple single point mooring (SPM),
with the buoy connected by a light inextensible cable (hawser) to a point just above the deck of the bow
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float. The buoy was connected to the bed also by a light inextensible cable, primarily for station keeping
but mooring force was also measured. JONSWAP wave spectra were used. Linear diffraction-radiation
modelling gave good predictions of rotational response for operational conditions (with significant
wave height Hs about 4 cm or 2 m full scale) and also surprisingly for large waves with the PTO
disengaged in survival mode [6]. Response was also shown to be predominantly linear in direct
analysis of experimental data for the 3-float (1-1-1) configuration in large focused waves [7]. However
mean loads increased markedly with significant wave height Hs and snap loads were considerably
larger than the mean. The modelling indicated that the mooring had negligible effect on response
and power capture in operational conditions, as the mooring may easily be switched off in the model.
In the experiments, connecting the hawser to a buoy or an overhead gantry also made negligible
difference [6]. We are concerned here with mooring systems which reduce snap loads.Water 2020, 12, x FOR PEER REVIEW 3 of 20 
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Figure 1. A video frame of the 6-float M4 with single mooring buoy (red, partly submerged) in the Lir
ocean basin, University College Cork.

We need to consider the origin of the mean loads. In diffraction/radiation analysis to 2nd order,
mean drift forces are due to: zero-difference frequencies in a wave spectrum, as on a fixed body,
generally defined by quadratic transfer functions obtained by potential flow panel methods such as
WAMIT [8]; radiation damping as wave energy flux is converted into body motion (for all degrees
of freedom); drag damping as wave energy flux is converted into viscous losses (negligible for the
case considered here). This requires an estimate of wave speed to convert total energy flux into force,
assumed equal to total flux divided by spectral energy in [6]. In the case of wave energy converters,
wave energy flux is also absorbed in mechanical damping. This formulation gave only approximate
mean force prediction for operational conditions and was grossly underestimated in large waves [6].
There are highly nonlinear effects in large waves, e.g., increasing asymmetry (about a crest) as breaking
is approached in extreme conditions. This will give a non-zero Froude Krylov (FK) force (due the
undisturbed pressure field). In linear diffraction/radiation analyses the oscillatory FK force is included
in the diffraction or excitation force (e.g., in WAMIT) with another component due to wave scattering.
That the response is predominantly linear suggests that radiation damping produced by body motion
will also be linear. The nonlinear mean force is difficult to predict and here the measured experimental
mean forces are applied as an external force in linear diffraction/radiation analysis [6]. Since oscillatory
response is reasonably well predicted, we assume that oscillating loads are predicted correspondingly
and may be superimposed on the mean forces. The dynamic mooring loads may be compared with
experimental measurements using inextensible cables and the aim is to determine how different
mooring configurations with elastic cables may reduce snap loads.

There are various design guidelines for moorings in conventional ocean engineering applications,
for oil/gas and wind platforms, often of catenary form, e.g., [9]. While withstanding peak loads
is essential, inhibiting and damping platform motion by mooring is an added benefit. However,
wave energy conversion requires platform motion and damping is detrimental [10–13]. There is a
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widespread consensus in the wave energy community that mooring system design and modelling is a
major challenge that needs to be overcome [12].

Various mooring configurations have been proposed for wave energy converters (WECs) including
catenary, SPM, taut elastic and combinations including clump masses and risers (or jumpers), e.g., [13–17].
Coupled mooring and hydrodynamic modelling studies have been undertaken usually for point
absorbers with computational fluid dynamics (CFD), e.g., [18,19] and reviewed in [11]. Linear models
have also been extended to account for nonlinear FK and drag effects, e.g., [20,21].

The aim here is to investigate, by linear diffraction/radiation modelling with empirical mean
forces, how the dynamic mooring loads for the 6-float attenuator-type WEC M4 may be reduced by
replacing the inextensible cables to the buoy with taut elastic cables, attached directly to the bow float,
to the buoy with inextensible hawser, and to the buoy with an elastic hawser. The paper is structured
as follows. The mooring models linked to the existing hydrodynamic model are described in Section 2.
Results are presented in Section 3 and discussed in Section 4. Some conclusions are drawn in Section 5.

2. Model

The M4 device was tested experimentally in the ocean wave basin at Lir, Cork [5,6], and a video
frame is shown in Figure 1. The red mooring buoy is visible and there are light inextensible cords
attaching the buoy to the bed and the buoy to the device. The scale is about 1:50 and the elevation
dimensions are shown in Figure 2 and the plan dimensions in Figure 3. The bow float is denoted 1,
the three mid floats 2, 3, 4 and the stern floats 5, 6.
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The hydrodynamic model with mooring is the same as in [6]. In summary, multi-body equations
are set up with reference to the hinge point O in Figure 2, above the central mid float. Hydrodynamic
forcing due to surge, heave, sway, pitch and roll is input. With uni-directional waves yaw is negligible.
Body motion about the longitudinal centerline would not occur due to symmetry. Although the
damping in the power take off (PTO) on either side was not generally equal, sway and roll were
negligible. With irregular waves, Cummins’ formulation was applied with hydrodynamic coefficients
from WAMIT [8]. In addition, a mean hydrodynamic force is applied which is balanced by the mean
mooring force. Here we input the measured mean force which is independent of mooring configuration,
provided that this does not affect device response. There is negligible drag in operational conditions and
for large response agreement with experiment is improved with a small drag coefficient; 0.2 is applied.
This is consistent with some idealized CFD simulations [22]. The equation set is solved for position
of O, xO, yO, zO, (with yO effectively zero), the angular rotation of the bow-mid (effectively rigid)
frame (including floats 1,2,3,4) about O, θ1234, and the angular rotation of stern floats 5 and 6 about O,
θ5, θ6. Equations are solved to give accelerations at each time step and velocities and displacements
are advanced. The mooring provides a quasi-static external force, described below. With PTO engaged,
the pneumatic actuators generate a torque at each hinge due to the relative angular velocity between
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frame 1234 and beams to floats 5 and 6:
.
θr5 =

.
θ1234 −

.
θ5 and

.
θr6 =

.
θ1234 −

.
θ6. With linear damping:

Q5 = B5
.
θr5, Q6 = B6

.
θr6, where constants B5, B6 are determined by post processing the measurements

and were found to be almost constant but not equal (differing by up to 30%), despite using identical
parts. The difference between θ5 and θ6 was however very small [5] and mean

.
θr = (

.
θr5 +

.
θr6)/2 is

presented here. Mechanical power is given by torque x relative angular velocity and found to be only
weakly sensitive to coefficient B. Without the PTO engaged for large wave heights, θ5 and θ6 were
almost identical.
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Three mooring configurations are considered:

A. the experimental configuration with light inextensible cords (Dyneema) attaching a buoy to the
bed and the buoy to the device. The cord in water is assumed to be neutrally buoyant.

B. elastic cords attached to the base of the bow float, with elastic stiffness based on Froude scaling.
C. same elastic cords attached to the buoy in A with an inextensible cord from buoy to the bow float.
D. same elastic cords as C but with cord to bow float (hawser) also elastic.

2.1. Configuration A

The experimental configuration is shown in Figure 4.
The mooring force is assumed to be quasi-static with negligible inertia in the cables with the

only force on the buoy due to buoyancy and its weight. The water surface is simply assumed to be
horizontal within linearized approximation.

The mooring lines are shown in Figure 4 with the small spherical buoy of 0.11 m diameter and
mass 87 g. The aim is to determine the horizontal and vertical restraining mooring forces at the fairlead
F, HM, VM. The buoy weight is W and buoyancy force B, due to submergence d. The submerged depth
d in still water is 0.024 m, shown in Figure 5. When the lines are taut the forces at the fairlead F are
shown in Figure 5 with T for tension force such that

HM = T2cos(β2), (1)

VM = T2sin(β2) (2)
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F is defined by the motion of the hinge point O and the rotation about the hinge point. Thus,
the displacement from the initial position is

x′F = xO − vFsin(θ1234) (3)

z′F = zO + hF sin(θ1234) (4)

where hF is the horizontal distance from O to F, vF is vertical distance of F below O. At each time step
the new position of F defines the mooring force, due to the extensions in the cables.

At the buoy in the horizontal direction

T2cos(β2) = T1cos(β1) = HM (5)

And in the vertical

B−W = T1sin(β1) − T2sin(β2) = HM (tan(β1) − tan(β2) ) (6)

giving

HM =
(B−W)

(tan(β1) − tan(β2))
(7)
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and hence VM. The position of the fairlead on bow float 1 is known at each time level. We now define
position of mooring connection relative to bed connection point as x1b, z1b and when tension is just
zero as x1b0, z1b0. If length of lines (to sphere centre) are l1 and l2 then

l1cos(β1) + l2cos(β2) = xb1 (8)

l1sin(β1) + l2sin(β2) = zb1 (9)

β1, β2 may thus be determined which defines submergence d and hence B and HM and VM.
The line is slack if x1b < x1b0 and HM = VM = 0. The submergence d is determined by the vertical
position of the buoy relative to the bed l1sin(β1) and ∆d = l1(sin(β10) − sin(β1)).

For d < 2r B = ρ g π
d2(3r− d)

3
(10)

and when fully submerged

d > 2r B = 4 ρ g π
r3

3
(11)

2.2. Configuration B

There are two elastic mooring lines with fairlead connection F at the base of bow float as shown in
Figure 6. The fore mooring line bed connection B1 is at xB1, zB1 and the aft B2 is at xB2, zB2; the fairlead
point F is xF, zF. F is defined by the motion of the hinge point O and the rotation about the hinge point
as for configuration A. At each time step, the new position of F defines the mooring force, due to the
extensions in the cables. For the fore cable the length is

l1 =
√
((xF + x′F − xB1)

2 + (zF + z′F − zB1)
2) (12)
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With l1 > l0, T1 = k (l1 − l0) and with l1 < l0 T1 = 0 where l0 is initial length and k is the elastic
stiffness. The angle of the cable to the bed is

β1 = tan−1( (zF + z′F − zB1)/(xF + x′F − xB1)) (13)

Similarly, for the aft cable

l2 =
√
((xF + x′F − xB2)

2 + (zF + z′F − zB2)
2) (14)
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With l2 > l0, T2 = k (l2 − l0) and with l2 < l0 T2 = 0. The angle to the bed is

β2 = tan−1
((

zF + z′F − zB2
)
/
(
xF + x′F − xB2

))
. (15)

The horizontal and vertical mooring forces are given by

HM = T1cos(β1) + T2cos(β2) (16)

VM = T1 sin(β1) + T2sin(β2) (17)

acting upwave and downwards at F respectively.

2.3. Configuration C

This configuration is similar to A with addition of cable 3 and cables 1 and 3 are elastic. The fairlead
position F determines the mooring force. We know length SF is constant (inextensible) equal to 0.4 m
(if not slack) but position S is not known while on the arc of a circle centre F. The lengths SB1 = l1 and
SB3 = l3 determine tensions T1 = k (l1 − l10) and T3 = k (l3 − l30), with l10, l30 lengths when just taut.

For horizontal equilibrium

T2 = (T1cos(β1) − T3cos(β3))/cos(β2) (18)

Vertical equilibrium will not in general be satisfied giving error

dV = B−W + T2sin(β2) − T1sin(β1) − T3sin(β3) (19)

Then β2 is varied between −30◦ and +90◦ at 1◦ intervals until dV changes sign and β2 for dV = 0
is determined by linear interpolation. The fairlead forces are thus given by

HM = T2cos(β2) (20)

VM = T2sin(β2) (21)

2.4. Configuration D

The configuration is as Figure 7 now with cable to float SF elastic with same stiffness k. Firstly,
an estimate of the length l2 is assumed to be the slack length l2O and T2 and β2 are evaluated as before.
An elastic tension T2e is given by T2e = k (l2 − l2O). A revised length is given by l2 = l2O +(T2 + T2e)/2k
and T2 and β2 are recalculated and the iteration continues until T2 = T2e, single precision accuracy
taking less than 10 iterations.

2.5. Elastic stiffness

The elastic stiffness k = EA/l0 where E is Young’s modulus, A is cross sectional area of the cable
and l0 cis the slack (just taut) length. Magnitudes of 100 and 200 N/m were applied for the results
shown. This corresponds to EA ≈ 180 and 360 N. For a scale of 1:50 this elastic stiffness corresponds to
250 and 500 kN/m at full scale (based on Froude scaling) which are practical values according to [13].
No material or hydrodynamic damping from cables is assumed in the model.
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3. Results

JONSWAP wave spectra were used with a peak enhancement factor γ = 3.3. The target Hs of 0.04
and 0.06 m for operational conditions were not exactly reproduced and measured values are given the
Table 1. Although the resulting spectra were close to the specified form, the measured spectra were
used as input for model comparison.

Table 1. Experimental values of Hs for JONSWAP spectra with γ = 3.3.

Tp (s) 0.8 0.9 1.0 1.1 1.2 1.4 1.6 1.8 2.0

Hs ≈ 0.04 (m) 0.035 0.037 0.038 0.038 0.039 0.038 0.037 0.038 0.041
Hs ≈ 0.06 (m) 0.049 0.054 0.057 0.057 0.059 0.057 0.056 0.057 0.062

The experimental results (configuration A) for relative angle θr are shown in Figure 8 for rms and
in Figure 9 for peak values with Hs ≈ 0.04m and 0.06 m with results from the linear diffraction/radiation
model with mean measured force input. The agreement is reasonably close, although note there is a
maximum value of about 15 degrees ue to the actuator stroke limit which is reached for Hs ≈ 0.06 m.
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Figure 8. Variation of rms relative angle θr with Tp for Hs ≈ 0.04 m and 0.06 m from experiment and
linear diffraction/radiation model with measured mean force.
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Figure 9. Variation of peak relative angle θr with Tp for Hs ≈ 0.04 m and 0.06 m from experiment and
linear diffraction/radiation model with measured mean force.

The power output in terms of non-dimensional capture width ratio (CWR) is shown in Figure 10.
The capture width ratio, CWR, is defined as average power (Pav)/wave power per meter crest/2x
diameter of a stern float. The device width is often used to normalize capture width and, since the
two stern floats drive the PTOs, the device width is set to 2× float diameter. The experimental CWR
was similar for Hs ≈ 0.04 and 0.06 m. However, the model underestimates power by up to 30% and
the reasons for this are presently unexplained. Control of the PTO torque may also be employed to
optimize power capture, increasing power capture by 20–40% in operational wave conditions [23].Water 2020, 12, x FOR PEER REVIEW 10 of 20 
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Figure 10. Variation of capture width ratio (CWR) with Tp for Hs ≈ 0.04 m and 0.06 m from experiment
and linear diffraction/radiation model with measured mean force.

This demonstrates that the body response, and hence dynamic forcing, were approximately
predicted by linear modelling. We are particularly concerned with mooring loads in large waves and
for these cases the actuator was disengaged so there was no mechanical damping and no end stop.

Results for rms θr and max θr are shown in Figure 11 for Tp = 1, 1.4, 2 s. The tests were of 5 min
duration. The motion increased and predictions were improved with a small drag coefficient of 0.2
(for all modes). Remarkably the response was still quite well predicted except for Tp = 1s where the
model underestimated.
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Figure 11. Variation of rms and peak relative angle θr with Hs for Tp = 1, 1.4, 2 s from experiment and
linear diffraction/radiation model with measured mean force.

The peak horizontal force at the fairlead is shown for Hs ≈ 0.04 m and 0.06 m in Figure 12.
The mean measured input into the model is also shown. The model results are generally similar
although it underestimates markedly around Tp = 1 s for Hs ≈ 0.04 m and 1.1s for Hs ≈ 0.06 m, to be
discussed later.
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Figure 12. Variation of horizontal fairlead mooring force with Tp for Hs ≈ 0.04 m and 0.06 m from
experiment and linear diffraction/radiation model with measured mean force.

Figure 13 shows the mean peak values for experimental cases with Tp = 1, 1.4, 2 s with varying
Hs. The mean values clearly increased markedly for Hs > 0.04 m. The large experimental peak with
Hs ≈ 0.04 m and Tp = 1 s was again apparent. The model results were quite similar for Tp = 1.4 s
but may under- or overestimate the peaks, for Tp =1 s and 2 s respectively. The magnitudes can
be substantial, over 100 N. The model did not include any damping due to the buoy or cables as
this is difficult to quantify but artificially introducing damping in the model reduced peak values.
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Although the only force on the buoy was due to buoyancy, the model picked up gross effects of peak
mooring force qualitatively and the influence of elasticity will now be investigated.
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Figure 13. Variation of horizontal fairlead mooring force with Hs for Tp = 1, 1.4, 2 s from experiment
and linear diffraction/radiation model with measured mean force.

For cases with direct elastic connection to the bow float (configuration B), elastic to buoy connection
(configuration C) and elastic connections to buoy and bow float (configuration D), the mean and peak
tensions are shown in Figure 14 for Hs ≈ 0.04 m and Figure 15 for Hs ≈ 0.06 m; the experimental values
(configuration A) are included. The bed connections in all cases were 3 m apart and cables connecting
to the bed were of equal slack (unextended) length. Note tension was slightly different from mooring
force. The large experimental tensions around Tp = 1 s for Hs ≈ 0.04 m and Tp =1.1 s for Hs ≈ 0.06 m
are discussed later but otherwise the experimental and model tensions showed similar trends. For the
model results, the case with direct elastic to buoy and float (D) generally had the smallest peaks except
around Tp =1 s for Hs ≈ 0.04 m and Tp = 1.1 s for Hs ≈ 0.06 m when the inextensible cables to buoy
and float showed smaller values; this will again be discussed later. The largest overall snap tensions
occured with the direct elastic connection to float (B) around Tp =1.2 s.
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Figure 14. Variation of peak/maximum tension with Tp for Hs ≈ 0.04 m from linear diffraction/radiation
model with measured mean force and experiment.
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Figure 15. Variation of peak/maximum tension with Tp for Hs ≈ 0.06 m from linear diffraction/radiation
model with measured mean force and experiment.

Tensions with larger waves and disengaged PTO are shown in Figure 16 modelled for the four
mooring configurations. It is clear that the large snap forces are avoided with the elastic to buoy
(C) and the elastic to buoy and float configuration (D), which has slightly smaller values. The peak
magnitudes were only slightly greater than the means. The direct elastic to float configuration (B) can
have similar, larger or smaller magnitudes than the inextensible to buoy and float configuration (A).
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with measured mean force.

4. Discussion

It has been demonstrated that elastic cables to a buoy reduce snap forces in extreme waves such
that the peak force magnitude is only slightly greater than the mean forces. The mean mooring force
balances the mean hydrodynamic force which is independent of mooring configuration for the same
platform response. An elastic cable from buoy to float provides a further slight reduction in snap
forces which is beneficial. On the other hand, elastic cables connected directly to the base of the bow
float produce quite large snap forces, as large as with inextensible cables attached to the buoy in
some cases. To understand this, we consider the longitudinal stiffness of the total platform. Figure 17
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shows the static horizontal force variation with displacement for the four mooring configurations.
The elastic stiffness of a cable was 100 N/m in all cases shown. With the inextensible cables to the
buoy (configuration A) the buoy submergence acts as a form of elasticity with small stiffness for
small displacement becoming large as the cables approach maximum length (become more collinear).
With the elastic cable to float base (configuration B) and elastic to buoy (configuration C) the overall
stiffness is almost the same, but the snap forces are much greater for B. The difference is the connection
point to the float which is thus important and peak forces can be magnified due to platform motion.
With elastic cables to the buoy, an elastic cable from buoy to float in addition (configuration D) causes
the overall stiffness to be approximately halved as would be expected with two springs in series.Water 2020, 12, x FOR PEER REVIEW 14 of 20 
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There is a relatively large peak measured mooring force around Tp = 1 s for Hs ≈ 0.04 m and
Tp = 1.1 s for Hs ≈ 0.06 m. The experimental tension time series with Tp = 1 s for Hs ≈ 0.04 m is shown
in Figure 18a and the model time series in Figure 18b. Notably, the wavemakers start at time zero and
the time scale shown starts at 50 s after transients have died away.

The natural period of the total platform in surge is relevant. The total dry mass is 55.7 kg and surge
added mass is 34.0 kg giving an equivalent mass of 89.7 kg. With an equivalent stiffness k ∼80 N/m
the natural frequency is approximately 0.19 Hz with a period of 7 s. This period is apparent in
Figure 18a,b. The big difference is the large experimental peak in Figure 18a which occurs at an interval
of 128 s which is the repeat time for wave generation. This is not present in the model time series
which is otherwise quite similar with high frequencies of 1 s period superimposed on the 7 s period
oscillation. The float natural frequencies in heave are about 1 Hz. This large peak ceases for Tp > 1.2 s.
Inspection of the wave elevation time series for Tp = 1 s shows that a large snap load coincides with a
group of relatively large waves; the largest load occurs with a group of 5 waves with height about
5 cm. This causes the local mean load to be about 3 1

2 times greater than the overall mean and the snap
loads are correspondingly larger than the model results (with overall mean imposed). With elastic
cables to buoy and float in Figure 18c, the time series is quite different with regular force peaks when
the cables are taut and zero tension when slack. The platform moves upwave from its taut condition to
its slack condition due to the cable spring, then the motion is opposed by the mean force returning the
platform to its taut condition. This determines the period of oscillation which appears quite constant at
19 s in this case. The peak force with elastic cables is still quite low at less than 10 N, but greater than
the model results with inextensible cables with overall mean imposed but less than the experimental
results with wave group effects. There are corresponding effects for Hs ≈ 0.06 m and Tp = 1.1 s.
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Figure 18. (a) Time series of mooring tension in experiments with buoy and inextensible cables (A) with
Tp = 1 s for Hs ≈ 0.04 m. (b) Time series of mooring tension from model with buoy and inextensible
cables (A) with Tp =1 s for Hs ≈ 0.04 m. (c) Time series of mooring tension from model with elastic
cables to buoy and float (D) with Tp =1 s for Hs ≈ 0.04 m.

The largest Hs was 0.13 m with Tp= 1.4 s. The experimental mooring force time series is shown in
Figure 19a with a very large peak of about 140 N and a mean of about 50 N. A slowly varying drift force
is evident. The model time series in Figure 19b has similar peak magnitudes but with a constant mean
force imposed there is no slowly varying drift force. In the experiments, the drift force variation is not
associated with groups of relatively large waves. With elastic cables to buoy and float in Figure 19c,
the force has become almost constant and this is also the case with an inextensible cable (hawser) to the
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bow float. The cable does not become slack as the mean force is too large. This is generally the case for
Hs > 0.04 m.Water 2020, 12, x FOR PEER REVIEW 17 of 20 
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Figure 19. (a) Time series of mooring tension in experiments with buoy and inextensible cables (A) with
Tp = 1.4 s for Hs = 0.13 m. (b) Time series of mooring tension from model with buoy and inextensible
cables (A) with Tp = 1.4 s for Hs = 0.13 m. (c) Time series of mooring tension from model with elastic
cables to buoy and float (D) with Tp =1.4 s for Hs = 0.13 m.
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Some other mooring options may be tested. Pre-tension is sometimes used to reduce or avoid
snap loads and a pre-tension of 3 N was tested with cables connected directly to the float base but the
effect on results was minimal. The effect of a bigger buoy with diameter 0.15 m was also tested but
again it had minimal effect. Adding clump masses, buoyant risers or both along mooring cables has
been investigated in order to reduce snap loads [11,17,24], effectively increasing the hydrodynamic
elasticity of the system, but this is not considered necessary here.

Most cases were also run with a cable elastic stiffness of 200 N/m. This did not change the
underlying results; with elastic cables to buoy and to buoy and float, the snap loads in large waves
were increased slightly over results with 100 N/m but were still only slightly greater than the mean
forces. The cable extensions were roughly halved which may be a practical advantage.

The mean hydrodynamic force may be reduced by a current opposing the wave direction. For the
case with Tp = 1.4 s and Hs = 0.13 m mean force was reduced by up to 90% but the snap load remained
only slightly greater than the reduced mean force.

This analysis has been undertaken with a linear diffraction/radiation model with mean forces
imposed. This is partially justified by the model predicting platform response quite accurately and the
highly nonlinear mean force is from experimental measurement. There is qualitative prediction of snap
loads with the inextensible cables used experimentally. For operational wave conditions there is some
evidence that mean forces associated with groups of large waves may cause the model to underestimate
local “mean” or drift force and correspondingly underestimate snap loads. This slowly varying drift
force associated with intermittent groups should not be confused with low frequency forces due to
difference frequency effects which have caused resonant response of offshore platforms. In this case,
the resonant surge period is about 7 s. There is thus a limitation in assuming an overall mean for
an irregular wave condition rather than a varying drift force. For very large waves slowly varying
drift forces are observed but these do not now coincide with groups of larger waves; the waves are
highly nonlinear, occasionally breaking, and dynamic interaction is clearly complex. Nevertheless, it is
expected that the influence of elastic cables will also be predicted qualitatively, importantly reducing
the snap loads to be just larger than the mean in large waves. However experimental verification is
always desirable. The determination of mean force is clearly important. CFD is an option, e.g., [18,19],
but very computationally demanding for design where many configurations and wave conditions
need to be tested. Another option is to use nonlinear Froude-Krylov forcing with the other force
components assumed to be linear. This was quite successful for a single buoy on an elastic cable [25] in
steep non-breaking waves but underestimated snap loads in breaking waves. Such an approach may
be tuned further and is efficient as only the nonlinear wave field without body interaction needs to be
computed by CFD.

The mooring configurations applied here are idealized and define the force-displacement curves
for the total system. These idealizations need to be converted to practical configurations, for example
with several mooring lines to the buoy, like radial spokes. Effects of damping due to cable drag may
be included and anchor loads determined. Damping is generally beneficial in reducing snap loads.
Such design may be undertaken with commercial codes such as Orcaflex [26] or explored with open
source codes such as MoorDyn [27]. The hydrodynamic force on the buoy is assumed to be only due to
buoyancy relative to mean water level, ignoring the effect of drag, added mass and radiation. As the
mooring forces are predicted reasonably in operational conditions this does not appear to be a major
limitation. In extreme waves with elastic cables the buoy is fully submerged and the mooring force
almost constant; drag and inertia are expected to be small in relation to buoyancy although this should
be confirmed experimentally.

The focus of this study has been on snap loads. Fatigue is another important consideration
which requires the running of many wave cases from a scatter diagram. Although snap loads for
intermediate waves are much smaller than for large waves their impact on fatigue requires further study.
There can relatively large snap loads measured experimentally in operational conditions associated
with wave groups.



Water 2020, 12, 2818 17 of 18

Full scale values may be determined based on Froude scaling. If a scale of 1:50 is assumed,
appropriate for a site with predominant Tp of 8–9 s, the dry laboratory scale mass of 55.7 kg becomes
nearly 7000 tons at full scale and the maximum snap load (close to the mean value) of about 55 N
becomes 700 tons which is well within the breaking load limit for a polyester cable, as indicated
in [15]. This extreme load is dependent on extreme wave statistics and will be greater for certain sites.
In a practical mooring configuration load would be shared between several mooring lines, typically
between 3 and 12 in a radial spoke arrangement.

5. Conclusions

The mooring forces on the 6-float wave energy converter M4 were measured in wave basin
tests with inextensible cables attached to a mooring buoy and modelled in time-domain linear
diffraction/radiation form with experimental mean forces input. Platform rotational response was
well predicted and there was qualitative agreement of high snap loads in large waves. Elastic cables
were then modelled in three idealized configurations: with direct connection to the base bow float,
elastic connection to the buoy, and elastic connections to buoy and float. The quasi-static mooring
models were almost exact. In large waves the snap loads with elastic cable to buoy were effectively
avoided as they were only slightly greater than the mean force; the dynamic forces were thus very
small. In operational waves the small snap loads measured experimentally could be underestimated
due to wave group effects. The model thus requires input of the highly nonlinear mean hydrodynamic
force which is known here from experiment but in general requires modelling, either from CFD or
from partial CFD with nonlinear Froude-Krylov forcing. The idealized mooring configurations and
modelling undertaken here provide basic information for detailed mooring analysis, including several
cables, accounting for cable damping and buoy hydrodynamics with drag, inertia and added mass,
as well as buoyancy. An important conclusion is that dynamic mooring loads are almost eliminated in
large waves with an elastic cable to a buoy. That this applies for this particular M4 configuration does
not mean it is a general rule and any configuration requires analysis.

Author Contributions: Conceptualization, methodology, modelling, experiments, writing, funding acquisition,
P.S.; experiments, data analysis, project administration, E.C.M. All authors have read and agreed to the published
version of the manuscript.

Funding: The experimental project M4WW was funded by the EU Marinet2 programme and ECM was
supported at the University of Manchester by the Energy Sustainability Conacyt-SENER fund provided by
the Mexican government.

Acknowledgments: Electronic instrumentation for the experimental program was provided Bob Brown.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cruz, J. Ocean Wave Energy; Springer: New York, NY, USA, 2008.
2. Antonio, F.D.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14,

899–918.
3. Stansby, P.; Moreno, E.C.; Stallard, T.; Maggi, A. Three-float broad-band resonant line absorber with surge for

wave energy conversion. Renew. Energy 2015, 78, 132–140. [CrossRef]
4. Stansby, P.; Moreno, E.C.; Stallard, T. Large capacity multi-float configurations for the wave energy converter

M4 using a time-domain linear diffraction model. Appl. Ocean. Res. 2017, 68, 53–64. [CrossRef]
5. Moreno, E.C.; Stansby, P. The 6-float wave energy converter M4: Ocean basin tests giving capture width,

response and energy yield for several sites. Renew. Sustain. Energy Rev. 2019, 104, 307–318. [CrossRef]
6. Stansby, P.K.; Carpintero Moreno, E. Hydrodynamics of the multi-float wave energy converter M4 with

slack moorings: Time domain linear diffraction-radiation modelling with mean force and experimental
comparison. Appl. Ocean. Res. 2020, 97, 102070. [CrossRef]

http://dx.doi.org/10.1016/j.renene.2014.12.057
http://dx.doi.org/10.1016/j.apor.2017.07.018
http://dx.doi.org/10.1016/j.rser.2019.01.033
http://dx.doi.org/10.1016/j.apor.2020.102070


Water 2020, 12, 2818 18 of 18

7. Santo, H.; Taylor, P.H.; Moreno, E.C.; Stansby, P.; Taylor, R.E.; Sun, L.; Zang, J. Extreme motion and response
statistics for survival of the three-float wave energy converter M4 in intermediate water depth. J. Fluid Mech.
2017, 81, 175–204. [CrossRef]

8. Lee, C.H.; Newman, J.N. Wamit—User Manual Version 7.0; WAMIT Inc.: Chestnut Hill, MA, USA, 2013.
9. DNV GL. DNVGL-RP-C205 Environmental Conditions and Environmental Loads; DNV GL: Oslo, Norway, 2017.
10. Johanning, L.; Smith, G.H. D7.3.2 Consideration of the Cost Implications for Mooring MEC Devices. EquiMar

Protocols. 2009. Available online: http://www.equimar.org/equimar-project-deliverables.html (accessed on
10 October 2020).

11. Davidson, J.; Ringwood, J.V. Mathematical Modelling of Mooring Systems for Wave Energy Converters—A
review. Energies 2017, 10, 666. [CrossRef]

12. Paduano, B.; Giorgi, G.; Gomes, R.P.F.; Pasta, E.; Henriques, J.C.C.; Gato, L.M.C.; Mattiazzo, G.
Experimental Validation and Comparison of Numerical Models for the Mooring System of a Floating
Wave Energy Converter. J. Mar. Sci. Eng. 2020, 8, 565. [CrossRef]

13. Thomsen, J.B.; Ferri, F.; Kofoed, J.P.; Black, K. Cost Optimization of Mooring Solutions for Large Floating
Wave Energy Converters. Energies 2018, 11, 159. [CrossRef]

14. Amran, N.A.; Koto, J.; Sio, C.L. Review on Polyester Mooring Lines of Offshore Structures. J. Ocean Mech.
Aerosp. Sci. Eng. 2016, 35, 7–12.

15. Harris, R.E.; Johanning, L.; Wolfram, J. Mooring systems for wave energy converters: A review of design
issues and choices. Proc. Inst. Mech. Eng. Part. B J. Eng. Manuf. 2006, 220, 159–168.

16. Ridge, I.M.L.; Banfield, S.J.; Mackay, J. Nylon fibre rope moorings for wave energy converters. In Proceedings
of the OCEANS 2010 MTS/IEEE SEATTLE, Seattle, WA, USA, 20–23 September 2010; pp. 1–10.

17. Weller, S.; Johanning, L.; Davies, P.; Banfield, S.J. Synthetic mooring ropes for marine renewable energy
applications. Renew. Energy 2015, 83, 1268–1278. [CrossRef]

18. Palm, J.; Eskilsson, C.; Paredes, G.M.; Bergdahl, L. Coupled mooring analysis for floating wave energy
converters using CFD: Formulation and validation. Int. J. Mar. Energy 2016, 16, 83–99. [CrossRef]

19. Sjokvist, L.; Wuc, J.; Ransley, E.; Engstrom, J.; Eriksson, M.; Goteman, M. Numerical models for the motion and
forces of point-absorbing wave energy converters in extreme waves. Ocean. Eng. 2017, 145, 1–14. [CrossRef]

20. Giorgi, G.; Ringwood, J.V. Nonlinear Froude-Krylov and viscous drag representations for wave energy
converters in the computation/fidelity continuum. Ocean. Eng. 2017, 141, 164–175. [CrossRef]

21. Giorgi, G.; Ringwood, J.V. Comparing nonlinear hydrodynamic forces in heaving point absorbers and
oscillating wave surge converters. J. Ocean. Eng. Mar. Energy. 2018, 4, 25–35. [CrossRef]

22. Gu, H.; Stansby, P.; Stallard, T.; Carpintero Moreno, E. Drag, added mass and radiation damping of oscillating
vertical cylindrical bodies in heave and surge in still water. J. Fluids Struct. 2018, 82, 343–356. [CrossRef]

23. Liao, Z.; Stansby, P.; Li, G. A generic linear non-causal optimal control framework integrated with wave
excitation force prediction for multi-mode wave energy converters with application to M4. Appl. Ocean. Res.
2020, 97, 102056. [CrossRef]

24. Gao, Z.; Moan, T. Mooring system analysis of multiple wave energy converters in a farm configuration.
In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009.

25. Lind, S.J.; Stansby, P.K.; Rogers, B.D. Fixed and moored bodies in steep and breaking waves using SPH with
the Froude Krylov approximation. J. Ocean Eng. Mar. Energy 2016, 2, 331–354. [CrossRef]

26. Orcaflex. 2020. Available online: www.orcina.com/orcaflex (accessed on 10 October 2020).
27. Hall, M.; Goupee, A. Validation of a lumped-mass mooring line model with DeepCwind semi-submersible

model test data. Ocean. Eng. 2015, 104, 590–603. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1017/jfm.2016.872
http://www.equimar.org/equimar-project-deliverables.html
http://dx.doi.org/10.3390/en10050666
http://dx.doi.org/10.3390/jmse8080565
http://dx.doi.org/10.3390/en11010159
http://dx.doi.org/10.1016/j.renene.2015.03.058
http://dx.doi.org/10.1016/j.ijome.2016.05.003
http://dx.doi.org/10.1016/j.oceaneng.2017.08.061
http://dx.doi.org/10.1016/j.oceaneng.2017.06.030
http://dx.doi.org/10.1007/s40722-017-0098-2
http://dx.doi.org/10.1016/j.jfluidstructs.2018.06.012
http://dx.doi.org/10.1016/j.apor.2020.102056
http://dx.doi.org/10.1007/s40722-016-0056-4
www.orcina.com/orcaflex
http://dx.doi.org/10.1016/j.oceaneng.2015.05.035
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Model 
	Configuration A 
	Configuration B 
	Configuration C 
	Configuration D 
	Elastic stiffness 

	Results 
	Discussion 
	Conclusions 
	References

