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Abstract: Despite the numerous contributions available in the literature about the wind-induced
bias of rainfall intensity measurements, adjustments based on collection efficiency curves are rarely
applied operationally to rain records obtained from catching-type rain gauges. The many influencing
variables involved and the variability of the results of field experiments do not facilitate the widespread
application of adjustment algorithms. In this paper, a Lagrangian particle tracking model is applied
to the results of computational fluid dynamic simulations of the airflow field surrounding a rain
gauge to derive a simple formulation of the collection efficiency curves as a function of wind speed.
A new parameterization of the influence of rainfall intensity is proposed. The methodology was
applied to a cylindrical gauge, which has the typical outer shape of tipping-bucket rain gauges, as a
representative specimen of most operational measurement instruments. The wind velocity is the only
ancillary variable required to calculate the adjustment, together with the measured rainfall intensity.
Since wind is commonly measured by operational weather stations, its use adds no relevant burden
to the cost of meteo-hydrological networks.

Keywords: rain; wind; CFD; particle tracking; drop size distribution; rainfall intensity; collection
efficiency; adjustment curves

1. Introduction

Systematic errors (biases) in precipitation measurements are commonly accounted for by means
of correction models that can be expressed in the general form

Pc = k

Pg +
∑

i

∆Pgi

 (1)

where Pc is the corrected figure, Pg is the gauge-measured precipitation,
∑
i

∆Pgi is the sum of correction

terms for various error sources, and k is the wind deformation coefficient. The detailed model, originally
proposed by [1], was later modified by [2] to account for both liquid and solid precipitation and can be
written as

Pc = kr
(
Pgr + ∆Pwr + ∆Per + ∆Pmr

)
+ ks

(
Pgs + ∆Pws + ∆Pes + ∆Pms

)
(2)

where ∆Pw, ∆Pe and ∆Pm are the correction terms for wetting, evaporation, and mechanical errors,
respectively, while subscripts r and s refer to liquid (rain) and solid (snow) precipitation (see also [3]).
This formulation reveals that the adjustment of catching (environmental) biases due to the wind applies
to the precipitation amount once this is corrected for counting (instrumental) biases. The adjustment
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factor k is reportedly a function of the wind speed and precipitation intensity, and its value ranges
between 1.0 and 1.15 for rain and between 1.0 and 2.0 for snow measurements [4].

The correction of precipitation measurement biases is applied to daily or monthly totals or, in
some practices, to individual precipitation events [3]. However, since the precipitation intensity and
the wind velocity are among the influencing variables, the most relevant sources of error act at very
short to instantaneous timescales, at which point such factors may vary significantly. Corrections are
often non-linear functions; therefore, it is important to develop correction algorithms that can be easily
applied at the minimum temporal resolution of operational measurements (e.g., one-minute for rainfall
intensity, as recommended by [3]).

The influence of wind on precipitation measurements is due to the interaction between the gauge
body and the airflow. Any precipitation gauge behaves as a bluff-body when impacted by wind,
and this interaction produces airflow deformations around the obstacle. Generally, upward velocity
components arise upwind of the collector and wind accelerates above it [5,6]. This aerodynamic effect
deflects the hydrometeors (liquid/solid particles) with respect to their undisturbed trajectories [4,7],
and is responsible for a significant reduction in the collection performance. The main factors of
influence are the gauge geometry, the wind speed, and the type of precipitation (liquid or solid)
and its characteristics, including the crystal type, Particle Size Distribution (PSD) and precipitation
intensity [8,9].

The problem of the wind-induced bias on precipitation measurements is addressed in the literature
using both numerical simulation (Computational Fluid Dynamics (CFD) and particle tracking) and
experiments (field and wind tunnel tests). Generally, wind produces underestimation in precipitation
measurements, except for gauges with peculiar shapes (e.g., the Hotplate© precipitation gauge, see [10]).
Reference [1] reported that the typical magnitude of the wind–induced losses (undercatch) for the
precipitation amount is 2–10% in case of liquid precipitation and 10–50% in case of solid precipitation.
Field studies focusing on solid precipitation [9,11] showed collection losses up to 70–80%, while [12]
reported an observed undercatch of about 10 to 23% for liquid precipitation at a lowland and upland
site, respectively. Nevertheless, the implementation of adjustments based on correction curves in
operational conditions is still uncommon.

The drawbacks of adjustment functions derived from field experiments alone are related to their
strict dependence on the site where the test field is geographically located, the associated precipitation
and wind climatology, and on the reliability and accuracy of the assumed reference gauge. The observed
Collection Efficiency (CE) values derive from the actual drop size distribution of precipitation events
and the microphysical characteristics of the hydrometeors. Complete parameterization of these CE
curves is rarely achieved, so that a large dispersion of the field-measured data around the best-fit
curves usually persists.

It is evident that a theoretically based approach is needed, though still based on real-world
observations for proper validation of the algorithms and results, to achieve a complete coverage
of various local climatological characteristics, precipitation microphysics, gauge shapes and wind
conditions. This can be achieved by exploiting the potential of numerically solving the basic equations
of fluid motion and of particle-fluid interactions, as in our proposed method. In the present work,
we base our study on CFD simulations already performed by [13] for a cylindrical gauge which has the
shape of the most widely used precipitation gauges.

With the aim of reducing the dispersion of field data around experimentally derived adjustment
curves, and shedding light on the dependence of such curves on the drop size distribution and its link
with the precipitation intensity, [14] recently showed that such dispersion can be reduced by including
the results of the numerical simulation into the best-fit methodology applied on field measurements.
The authors analysed WMO-SPICE quality controlled 30-min accumulation data from the Marshall
field-test site (CO, USA) and revealed that the wind-induced undercatch of precipitation gauges is
best correlated with the measured precipitation intensity, rather than temperature (widely used, e.g.,
in [15]), in addition to wind speed. The measured precipitation intensity indeed has the advantage
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of including information about the particle size distribution [16]. The optimal curve fitting used
by [14] to derive adjustment curves for the Geonor© T200B gauge in a Single Alter shield and in
a reference configuration indicated that accounting for precipitation intensity indeed reduces the
scatter of the residuals. This result is confirmed by the analysis of data from other field test sites,
such as CARE (Canada) and Haukeliseter (Norway), and shows consistent behaviour under different
climatological conditions.

The physical basis for the improved parameterisation of the adjustment curves obtained by
using the measured precipitation intensity was shown to derive from the correlation of large particles
with high intensities. Large particles are preferentially collected by the gauge, even in strong wind,
due to their higher fall velocity, allowing them to break through streamlines of flow above the gauge.
The numerical modelling was able to reproduce the collection efficiency pattern observed in the
field. The authors’ findings provide an attractive method to improve operational measurements,
since no additional instrument, except for a wind sensor, is required to derive the adjusted estimates of
snow accumulation.

In the present work, the formulation of CE curves as a function of wind speed (Ure f ) is derived for
a typical cylindrical gauge and parameterized with the Rainfall Intensity (RI). Easy-to-use adjustment
curves are finally obtained as a function of the rainfall intensity measured by the gauge (RImeas) and
wind speed.

Existing Correction Algorithms

Adjustment curves can be derived using data from experimental sites equipped with different
precipitation gauges in operational conditions, and a reference one. In field studies, the ratio between
the precipitation measured by a gauge in operational conditions, hmeas (usually in (mm)) for a given
wind speed, Ure f (m s−1) and the reference one, hre f (mm) is called the Collection Efficiency (CE)

CE =
hmeas

(
Ure f

)
hre f

(3)

The World Meteorological Organization (WMO) recommends using a gauge placed in a pit as the
reference instrumental configuration for liquid precipitation, with the gauge orifice at ground level,
sufficiently distant from the nearest edge of the pit to avoid in-splashing. A strong plastic or metal
anti-splash grid with a central opening for the gauge must cover the pit, except for the central opening
where the gauge orifice is located (construction details are provided in [17]). Because of the absence
(or very limited effect) of wind-induced bias, pit gauges generally report more precipitation than any
elevated gauge.

The reference installation for solid precipitation is known as the Double Fence Intercomparison
Reference (DFIR) [18]. It has octagonal vertical double fences surrounding a storage or automatic
gauge, which itself is equipped with a Single Alter shield. Note that this reference configuration is not
free from measurement biases itself, and its construction could be improved [19].

At an experimental site in Haukeliseter (Norway), two Geonor© T200B weighing gauges, in
unshielded and single Alter shielded configurations, were installed close to the DFIR. Temperature
measurements were also available, and anemometers were located at the height of ten meters and at the
gauge collector height. The authors classified the precipitation in solid, mixed, or liquid [15], according
to the air temperature thresholds reported by [20]. For temperatures T < −2 ◦C the precipitation is
mainly falling as snow, and the CE has a characteristic fast decreasing behavior with the wind speed.
For T > 2 ◦C, where the precipitation is mainly falling as rain, the CE is less influenced by the wind.
Rain, snow and mixed precipitation occur in the range −2 ◦C ≤ T ≤ 2 ◦C, and a larger scatter appears
depending on the precipitation type. Based on a three-year dataset from the Haukeliseter test site,
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containing several concurrent observations of the CE, the following adjustment curve was formulated
by [15]

CE =

1− τ1 − (τ2 − τ1)
e(

T−Tτ
sτ )

1 + e(
T−Tτ

sτ )

e−(Ure f
θ )

β

+ τ1 + (τ2 − τ1)
e(

T−Tτ
sτ )

1 + e(
T−Tτ

sτ )
+ σ(T)ε (4)

where β and θ are two fitting parameters, Tτ is the temperature threshold and defines the transition
between the two limits above, while sτ indicates the fuzziness between rain and snow, and σ(Ti) is a
parameter governing the variance in the measurement error.

The equation was obtained starting from the assumption that CE is a function of wind speed and
air temperature, in the form

CE = f
(
Ure f , T

)
= [1− τ(T)]e−[

Ure f
θ(T) ]

β(T)

+ τ(T) (5)

the parameter τ(T) goes from one limit, dry snow, to another, mixed precipitation, when the temperature
increases/decreases. A sigmoid function reasonably fits experimental data yielding the parametric
function as follows

τ(T) = τ1 + (τ2 − τ1)
e(

T−Tτ
sτ )

1 + e(
T−Tτ

sτ )
(6)

Application of the adjustment curve yields some residual differences between the adjusted
accumulation and the reference one, which are probably ascribable to the actual (unknown) particle
size distribution.

Data from winter 2010 in the two experimental sites of Marshall (USA) and Haukeliseter (Norway)
were analysed by [21]. The authors proposed the following exponential shape for CE

CE = e−a(U)
(
1− [tan−1(b(T)) + c

]
) (7)

where the experimental parameters a, b and c vary with the height of the anemometer and the type of
precipitation gauge (unshielded, Single Alter shielded, etc.). After correction, a significant scatter of
data persists, which is probably due to the effect of noise, the spatial variability of precipitation and
also the spatial variability in crystal type, that are not fully taken into account in this study. With the
aim of deriving adjustment curves that could be extended to other sites, data from eight experimental
sites were further analysed by [22]. The study provided the parameters of Equation (7) for Single
Alter shielded and unshielded chimney shaped weighing gauges, by separating mixed and solid
precipitation, and for wind speed measured at ten meters or at the collector elevation.

The dataset obtained by [23] at the Formigal (Spain) experimental site was divided into two
samples, and adjustment curves were derived for tipping-bucket rain gauges at one- and three-hours
accumulation. For one-hour accumulation, the authors propose Equation (8), where a contribution of
the melting of snow during the previous hour of accumulation is also included

TrueAcc(1h) =
Acc
CE
− 0.095

Acc
CE

+ 0.095Acc(prevh) (8)

where TrueAcc(1h) is the adjusted hourly precipitation, Acc is the measured one, and Acc(prevh) is the
cumulated precipitation in the previous hour.

2. Method

In the present work, the airflow field (velocity magnitude and components) around a cylindrical
gauge, the Casella© tipping-bucket gauge (hereinafter Casella, see Figure 1), was adopted to simulate
the trajectories of water drops and to calculate the CE based on a suitable PSD. We started from the CFD



Water 2020, 12, 3431 5 of 15

simulations (see Figure 1) partially published in the work of [13] for various wind speeds (Ure f = 2, 5,
7, 10, and 18 m s−1).
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Figure 1. (a) The Casella tipping-bucket rain gauge; (b) a sample section of the airflow field (velocity
magnitude, Um (m s-1)) along the stream-wise vertical symmetry axis of the gauge at wind speed of
10 m s−1 (from CFD simulations by [13]).

The Lagrangian Particle Tracking (LPT) model used by [9] for solid precipitation was modified
by [24] to introduce drag coefficient equations suitable for liquid precipitation. These were derived
for various ranges of the particle Reynolds number among those proposed in the literature by [7],
and formulated starting from data published by [25,26]. Drop trajectories are computed from the
particle motion equation, by calculating, at short time intervals, the particle position, velocity, and
acceleration. The relative particle-to-air velocity is updated at every time step by interpolating the CFD
airflow field to obtain the flow velocity in the exact position of the drop. Water drops are assumed to be
spherical, with the associated equivalent diameter d, while the density of liquid water was set as equal
to 1000 kg m−3 at the air temperature of 20 ◦C. This model was validated by means of a dedicated
wind tunnel campaign in [24].

Starting from CFD simulations, the LPT model can obtain (per each particle size) the expected
catch ratio, r (-), defined as the ratio between the number of particles, which are captured by the gauge
collector in disturbed airflow conditions, n(d), and the maximum number of particles, nmax(d), captured
in undisturbed conditions. Catch ratios were computed for drops with equivalent diameter d = 0.25,
0.5, and 0.75 mm and then from 1 to 8 mm, with bin size of 1 mm. These are compared in Table 1 and
Figure 2 per each drop size and wind speed. For drop size less than 1 mm, the catch ratio increases
with decreasing wind speed. For larger drops, the trend is not always growing, but increases and then
decreases with increasing wind speed.

This behaviour is intrinsic in the balance between the drop size and the wind speed, and is
graphically highlighted in Figure 3. In the graph, a grid is reported where the releasing positions of the
simulated drops are depicted with black markers. Drops are released in the simulated airflow field,
upstream of the gauge, at a higher elevation than the collector area, depending on the wind speed
and drop diameter. The proper location was preliminarily calculated to ensure that the released drops
eventually fall in the region occupied by the gauge. This was obtained by computing backward the
trajectory of a sample drop which reaches the centre of the gauge collector in undisturbed airflow
conditions. The collector’s rim is depicted with black circles and contains the starting positions of
those particles that, in undisturbed conditions, would enter the gauge collector.
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Table 1. Catch ratios for each drop size and at different wind speed, calculated by means of the LPT
model and based on the airflow field simulated for the Casella cylindrical rain gauge.

d (mm)
Uref(m s−1) 0.25 0.5 0.75 1 2 3 4 5 6 7 8

2 0.791 0.983 1.010 1.019 1.017 1.010 1.010 1.010 1.010 1.010 1.010
5 0.356 0.927 0.977 1.006 1.023 1.021 1.017 1.014 1.010 1.010 1.010
7 0.110 0.803 0.938 0.981 1.010 1.021 1.021 1.021 1.017 1.017 1.017

10 0.085 0.752 0.927 0.963 1.006 1.017 1.021 1.021 1.021 1.017 1.013
18 0.015 0.660 0.868 0.938 0.992 1.006 1.014 1.017 1.021 1.021 1.021Water 2020, 12, x FOR PEER REVIEW 6 of 15 
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and based on the airflow fields simulated for the Casella cylindrical rain gauge.
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Figure 3. Schematics of the initial positions of the modelled trajectories, colour-coded according to
their destination, and projection of the collector’s rim (black circles). Red dots indicate drops that
actually fall inside the gauge collector in real conditions and that were expected to do so, while green
dots indicate those falling inside the gauge collector instead of outside. (a) Low wind and/or heavy
particles; (b) strong wind and/or light particles.

The drop-releasing positions are colour-coded according to their destination. The initial positions
of all drops that in real conditions are expected to fall inside the gauge collector and are actually
collected are depicted in red, while those falling inside the gauge collector but were expected to fall
outside are depicted in green.
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The left-hand panel of Figure 3 reports a low wind and/or heavy particle situation, and all drops
that are expected to fall inside the collector in undisturbed conditions also reach the collector in the
disturbed ones. A few additional drops, whose releasing positions are depicted in green, also enter the
collector while being expected to fall outside. This implies an overestimation (r > 1) of the precipitation
collected by the gauge, and therefore the resulting catch ratio is larger than one. By increasing the wind
speed, or reducing the drop size, the wind field deformation reduces the number of particles depicted
with red dots, and slightly increases the green ones (right-hand panel of Figure 3). In this sample case,
the sum of the red and green dots is lower than the number of particles expected to fall inside the black
circle, yielding an overall underestimation of the number of particles collected and r < 1.

After introducing a suitable PSD, indicating the number of particles N(d) per unit volume of air
and per unit size interval having a volume equal to the sphere of diameter d, the integral of the catch
ratios over the range of diameters provides the numerical CE in the form:

CE
(
Ure f

)
=

∫ d
0 ρp Vp n(d) N(d) dd∫ d

0 ρp Vp nmax(d) N(d) dd
(9)

where ρp, Vp are the density and volume of particles with diameter d.
The CE curve was derived from the calculated catch ratios by assuming that the microphysical

characteristics of precipitation are those obtained from distrometer measurements in the Italian territory.
The PSDs, provided by [27] for various RI classes, were fitted with the typical exponential function [28],
hereinafter MP), and the associated parameters N0 (intercept) and Λ (slope) were adopted to calculate
the CE values (here called raw CE values) per each RI class.

A three-step procedure was used to derive a suitable parameterization of the CE curves based on
rainfall intensity (RI), as follows.

First, in step (a), for each RI class, the CE curve was obtained as a function of wind speed (Ure f )
from the raw values of the numerical simulation results by fitting (with a least-squares method) a
four-parameter sigmoidal function (CE = f(Ure f )—see Equation (10)) and using the experimental N0

and Λ parameters associated with each RI class.
The parameters N0 and Λ used in step (a), attributed to the mean value of each RI class, were

then fitted in step (b) with power law curves as a function of RI, and a new sigmoidal CE curve was
obtained per each RI class from the fitted parameters. The definition of N0 and Λ as a function of RI
has the advantage of obtaining the MP parameters for any RI value, within the range investigated.
After calculating the CE values for the associated RI and Ure f , the CE curves could be obtained again
as a sigmoidal best-fit.

Finally, in step (c), to obtain a simple formulation for the CE as a function of both RI and Ure f in
the investigated ranges, the four parameters of the sigmoidal function were also fitted with power
laws or logarithmic curves as a function of RI.

The procedure was applied to real-world observations. The average observed PSD measured by
the Pludix distrometer in the Florence experimental site, as provided by [27], classified in six rainfall
intensity classes, was adopted here and fitted using the typical MP exponential function, as shown
in Figure 4. Some distrometers, including the Pludix, have limitations in detecting and counting
small-size particles [27]. Other instruments show a drop in the number of particles below 1 mm,
although it is not clear whether this feature is inherent of the precipitation process or is a measurement
bias. The exponential behaviour is here extended below 1 mm, down to a diameter of 0.25 mm.
In general, small particles (lower than 0.25 mm) give a rather negligible contribution to the total volume
of precipitation.

The MP parameters N0 (mm−1 m−3) and Λ (mm−1), and the correlation factors (R2) for each
rainfall intensity class are listed in Table 2.
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Figure 4. Measured PSD data from [27] and the associated best-fit exponential functions obtained for
each rainfall intensity class.

Table 2. Parameters N0 and Λ of the MP distribution and the associated correlation factors for each
rainfall intensity class, as obtained by fitting the measured PSD data provided by [27].

RI Range (mm h−1) RI ≤ 1 1 < RI ≤ 2 2 < RI ≤ 5 5 < RI ≤ 10 10 < RI ≤
20 RI > 20

N0(mm h−1 m−3) 365.1 1692.8 2775.0 4459.0 6989.4 18370.0
Λ (mm−1) 3.561 3.134 2.914 2.771 2.723 2.609

R2 0.979 0.976 0.979 0.975 0.972 0.979

As expected, the parameter Λ decreases with increasing RI, while N0 increases. This is due to
the fact that heavy rainfall events are characterized by a relatively higher number of drops of large
diameter in the distribution and by an overall higher number of particles in one cubic meter of air.
Therefore, by increasing RI, the slope of the distribution decreases and the curve is displaced upward.
For all RI classes, the correlation factor is larger than 0.97, yielding a very good fit between the MP
exponential curves and observations.

3. Results

Following step (a), for each simulated wind speed (Ure f ), the raw CE values were numerically
calculated as reported in Equation (9), by using for the PSD the best-fit MP parameters associated with
each RI class (from Table 2). Then, the obtained raw CE values (diamonds in Figure 5) were fitted
with a four-parameter sigmoidal function (Equation (10) and dash-dot lines in Figure 5). The obtained
parameters’ values are listed in Table 3 together with their associated R2.

CE
(
Ure f

)
= y0 +

a

1 + e−
(Ure f −x0)

b

(10)

Following step (b), with the objective of making the dependence of the collection efficiency on the
RI explicit, the parameters N0 and Λ were assigned to the mean value of each RI class and fitted with
power law interpolation curves (Equation (11)), as shown in Figure 6.

Y(RI) = aY RI bY (11)
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interpolation function, for each RI class, and the associated sigmoidal functions (dash-dot lines).

Table 3. Parameters of the sigmoidal functions obtained by fitting the raw CE values derived by using
the MP parameters from the exponential interpolations and correlation factors for each RI class.

RI Range
(mm h−1)

RI ≤ 1 1 < RI ≤ 2 2 < RI ≤ 5 5 < RI ≤ 10 10 < RI ≤ 20 RI > 20

a 0.2632 −0.1995 0.1696 0.1513 0.1454 0.1317
b −4.2495 4.0670 −3.9526 −3.8710 −3.8422 −3.7713
x0 3.8429 4.7512 5.2510 5.5914 5.7090 5.9960
y0 0.8445 1.0753 0.8920 0.9024 0.9058 0.9140
R2 0.984 0.984 0.983 0.982 0.982 0.982
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Figure 6. MP parameters associated with the mean values of each RI class (circles) and fitted by power
law curves (dashed lines), (a) intercept N0 and (b) exponent Λ.

In Equation (11), Y assumes the nomenclature of the PSD intercept N0 and slope Λ, while aY
and bY are the associated parameters of the best-fit power law curves. The values of the power law
parameters are listed in Table 4, together with the correlation factors for both N0 and Λ.

The CE values were calculated by adopting the N0 and Λ values provided by the power law
curves (Figure 6, dashed lines). The best-fit sigmoidal functions provide the new parameters for the
CE, as listed in Table 5. The new CE curves are depicted in Figure 7 (dashed lines) and compared
with the raw CE values (diamonds) calculated under step a). This further step provides an important
advantage because it allows to derive the PSD for any desired rainfall intensity within the measured
RI range (0.5–25 mm h−1).
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Table 4. Best-fit parameters aY and bY (Equation (11)) for both N0 and Λ, expressed as a function of RI,
and the associated correlation factors.

N0(mm h−1 m−3) Λ (mm−1)

aY 835.91 3.2863
bY 0.8942 −0.0760
R2 0.964 0.962

Table 5. Parameters of the sigmoidal functions obtained by using N0(RI) and Λ(RI) as power law
curves and the associated correlation factors for each RI class.

RI Range (mm h−1) RI ≤ 1 1 < RI ≤ 2 2 < RI ≤ 5 5 < RI ≤ 10 10 < RI ≤ 20 RI > 20

a 0.2481 0.2069 0.1794 0.1574 0.1395 0.1275
b −0.2127 −4.0923 −3.9925 −3.8994 −3.8128 −0.7481
x0 4.043 4.6353 5.0803 5.4739 5.8284 6.0888
y0 0.8516 0.872 0.8866 0.8988 0.9093 0.9165
R2 0.984 0.984 0.983 0.983 0.982 0.981
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Figure 7. Raw CE values (diamonds) obtained by using the MP parameters derived from the exponential
interpolation in step (a), for each RI class, and CE curves obtained by expressing N0 and Λ as a function
of RI (dashed lines) in step (b) and by expressing the sigmoidal parameters as a function of RI
(continuous lines) in step (c).

Finally, as summarized in step (c), a general formulation for the CE Equation (12) as a function of
both RI and Ure f , but independent of the initial RI classes and valid throughout the investigated RI
range, was obtained by fitting the sigmoidal parameters associated with the mean value of each RI
class with logarithmic (for b, x0, y0) and power law (for the parameter a) curves.

CE
(
Ure f

)
= y0(RI) +

a(RI)

1 + e−
(Ure f −x0(RI))

b(RI)

(12)

The best-fit curves for each sigmoidal parameter (a, b, x0 and y0) as a function of RI are listed
below and shown in Figure 8 with the associated correlation factors.

a = 0.2213 RI−0.17 (13)

b = 0.1191 ln(RI) − 4.1365 (14)

x0 = 0.5222 ln(RI) + 4.4164 (15)
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y0 = 0.0166 ln(RI) + 0.8645 (16)

To verify the quality of this result, the collection efficiency curves were calculated by using
Equation (12) for the mean value of each RI class (Figure 7, continuous lines), as already done in steps
a) and b). Then, the correlation between the raw CE values and the CE curves obtained in the three
steps (a–c) was compared. Figure 9 shows the correlation factors for each RI class and the partial
step adopted ((a–c)). This result reveals that, in all cases, the correlation factors are very high, larger
than 0.99, and only slightly higher for step (a) than for step (c) (about +10−5). This very minimal
worsening in performance is counterbalanced by the simplification introduced by the final CE curve,
which allows the easy application of a correction factor for the wind-induced bias of operational
precipitation measurements.
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The derived numerical CE curve is a function of the actual rainfall intensity that, in this case,
was obtained from the PSD provided by [27]. However, in operational practice, the only knowledge
available for RI is that measured by the gauge, which is therefore affected by the wind-induced bias.
In this work, the adjustment curve was further derived, for application purposes, as a direct relationship
between the reference rainfall intensity (RI) and the measured one (RImeas), so that the actual rainfall
intensity (and the wind-induced bias) can be calculated starting from the measurement provided by
the gauge, once the wind velocity is known.

Recalling that, in the field, the CE is defined as the ratio between the precipitation measured by
the gauge (RImeas) and the reference one (RI), it is possible to derive from Equation (12), the RImeas

associated with each (Ure f , RI) couple within the investigated range. The results can be depicted in
the (RI, RImeas) plane for each wind speed, as shown in Figure 10. The RImeas values calculated from
Equation (12) for the mean values of each RI class and the simulated wind speed are depicted with
markers, while the associated adjustment curves were obtained as best-fit power law curves as follows:

RImeas = α
(
Ure f

)
RIβ(Ure f ) (17)



Water 2020, 12, 3431 12 of 15
Water 2020, 12, x FOR PEER REVIEW 12 of 15 

 

 

Figure 9. Correlation factors between the raw CE values and the CE curves obtained, for each RI class, 

under step (a) (blue), (b) (orange) and (c) (grey). 

The derived numerical CE curve is a function of the actual rainfall intensity that, in this case, 

was obtained from the PSD provided by [27]. However, in operational practice, the only knowledge 

available for RI is that measured by the gauge, which is therefore affected by the wind-induced bias. 

In this work, the adjustment curve was further derived, for application purposes, as a direct 

relationship between the reference rainfall intensity (RI) and the measured one (RImeas), so that the 

actual rainfall intensity (and the wind-induced bias) can be calculated starting from the measurement 

provided by the gauge, once the wind velocity is known. 

Recalling that, in the field, the CE is defined as the ratio between the precipitation measured by 

the gauge (RImeas) and the reference one (RI), it is possible to derive from Equation (12), the RImeas 

associated with each (𝑈𝑟𝑒𝑓, RI) couple within the investigated range. The results can be depicted in 

the (RI, RImeas) plane for each wind speed, as shown in Figure 10. The RImeas values calculated from 

Equation (12) for the mean values of each RI class and the simulated wind speed are depicted with 

markers, while the associated adjustment curves were obtained as best-fit power law curves as 

follows: 

𝑅𝐼𝑚𝑒𝑎𝑠 = 𝛼(𝑈𝑟𝑒𝑓)𝑅𝐼𝛽(𝑈𝑟𝑒𝑓) (17) 
 

 

Figure 10. Adjustment curves (dotted lines) for the Casella cylindrical gauge and linear curves at 

constant CE values (dashed lines). Circles indicate the results of the performed numerical simulations 

and are colour-coded according to the wind speed (𝑈𝑟𝑒𝑓). 

Figure 9. Correlation factors between the raw CE values and the CE curves obtained, for each RI class,
under step (a) (blue), (b) (orange) and (c) (grey).

Water 2020, 12, x FOR PEER REVIEW 12 of 15 

 

 

Figure 9. Correlation factors between the raw CE values and the CE curves obtained, for each RI class, 

under step (a) (blue), (b) (orange) and (c) (grey). 

The derived numerical CE curve is a function of the actual rainfall intensity that, in this case, 

was obtained from the PSD provided by [27]. However, in operational practice, the only knowledge 

available for RI is that measured by the gauge, which is therefore affected by the wind-induced bias. 

In this work, the adjustment curve was further derived, for application purposes, as a direct 

relationship between the reference rainfall intensity (RI) and the measured one (RImeas), so that the 

actual rainfall intensity (and the wind-induced bias) can be calculated starting from the measurement 

provided by the gauge, once the wind velocity is known. 

Recalling that, in the field, the CE is defined as the ratio between the precipitation measured by 

the gauge (RImeas) and the reference one (RI), it is possible to derive from Equation (12), the RImeas 

associated with each (𝑈𝑟𝑒𝑓, RI) couple within the investigated range. The results can be depicted in 

the (RI, RImeas) plane for each wind speed, as shown in Figure 10. The RImeas values calculated from 

Equation (12) for the mean values of each RI class and the simulated wind speed are depicted with 

markers, while the associated adjustment curves were obtained as best-fit power law curves as 

follows: 

𝑅𝐼𝑚𝑒𝑎𝑠 = 𝛼(𝑈𝑟𝑒𝑓)𝑅𝐼𝛽(𝑈𝑟𝑒𝑓) (17) 
 

 

Figure 10. Adjustment curves (dotted lines) for the Casella cylindrical gauge and linear curves at 

constant CE values (dashed lines). Circles indicate the results of the performed numerical simulations 

and are colour-coded according to the wind speed (𝑈𝑟𝑒𝑓). 

Figure 10. Adjustment curves (dotted lines) for the Casella cylindrical gauge and linear curves at
constant CE values (dashed lines). Circles indicate the results of the performed numerical simulations
and are colour-coded according to the wind speed

(
Ure f

)
.

The coefficient α and exponent β of the adjustment curves for the simulated wind speed are
summarized in Table 6, with a correlation factor (R2) equal to one (1.000) in all cases, and their functional
dependency on wind speed is expressed in Equations (18) and (19). The correlation factor is equal to
0.973 and 0.997 for α and β, respectively.

α = 1.0621 Ure f
−0.066 (18)

β = 0.9971 Ure f
0.007 (19)

Table 6. Parameters α and β of the power law best-fit curves at different wind speeds (Ure f ).

Ure f (m s−1) 2 5 7 10 18

α 1.0057 0.9668 0.9413 0.9099 0.8726
β 1.0023 1.0076 1.0106 1.0138 1.0175
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In Figure 10, the diagonal (continuous black line) indicates CE = 1, while the grey dashed lines
correspond to CE values from 0.95 to 0.99. As expected, the adjustment curve for Ure f = 2 m s−1 is
located above the diagonal, due to the overcatch observed at this low wind speed, while the other
curves are lower due to the wind-induced undercatch. Moreover, the adjustment curves are described
by power law functions, with coefficients (see Table 6) that are increasingly different from one (the
linear case when CE is constant) as the wind speed increases, reflecting the trend towards higher values
of CE while the rainfall intensity increases.

Although the deviation is small, it is possible to note in the graph that the adjustment curve at e.g.,
18 m s−1 progressively diverges from the dashed line at CE = 0.96 with increasing rainfall intensity
(towards the right-hand side of the graph), while they are practically superimposed to each other at a
low RI (left-hand side of the graph). This means that, at any given wind speed, the collection efficiency
varies with the rainfall intensity, rather than lying on a curve (line) at CE = constant, as predicted by
the existing experimental studies (e.g., [14]).

4. Discussion

Adjustment curves for a typical, cylindrical gauge as a function of wind speed were derived from
numerical simulation, including a new parameterization based on the measured rainfall intensity.
A simple formulation of the adjustment curves was obtained, which can be easily applied in an
operational context. Wind velocity is the only ancillary variable required to perform the adjustment
and, since wind is often measured by operational weather stations together with the precipitation
intensity, its use adds no relevant burden to the cost of meteo-hydrological networks.

The functional dependency of the CE curves on rainfall intensity is demonstrated in this work for
a cylindrical, catching-type gauge and the results confirm that such a parameterization holds for liquid
precipitation measurements, as was demonstrated already by [14] for snowfall measurements, using
a chimney-shaped weighing gauge. Using RI as a controlling factor for the CE has sound physical
bases in the relationship between RI and the PSD, and the role of RI can only be quantified using
numerical simulations of both the airflow field (CFD) and the particle motion (LPT). Reference [14]
also demonstrated that the application of this rationale to field test data helps in reducing the scatter
of the observations. Further developments of the present work would include extensive validation
with suitable experimental campaigns where contemporary RI and wind velocity data are available,
together with a reference rain gauge pit. The role of free-stream turbulence in attenuating the updraft
and acceleration of the airflow above the collector as shown in [29], and its effect on the adjustment
curves could also be quantified.

Application of the results presented in this work spans over many fields of hydrology, meteorology,
and climatology, including water resources and flood risk management and agriculture. Rainfall is
indeed the forcing input of the land phase of the hydrological cycle. The knowledge of rainfall, its
variability and the observed/expected patterns of rain events in space and time, are of paramount
importance for most hydrological studies, and a large number of consequences of such studies on
the engineering practice are exploited in the everyday technical operation. The results, especially the
proposed adjustment curves, have the potential to improve rainfall measurements in order to support the
enhanced accuracy and reliability of the basic information used in many engineering applications such
as the design of hydraulic works, the protection from flood-related hazards, the management of potable
water supply and its conservation, hydropower production, the enhancement of sustainability and
resilience of human settlements and the conservation and protection of the natural and cultural heritage.
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