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Abstract: Geothermal brines can be a resource of energy, freshwater and minerals. Even when
rejected after their exploitation to produce energy in a power plant, the brines can be a source
of freshwater and minerals, and can have a residual enthalpy that can be recovered to produce
additional power. The different reuse scenarios of these wasted brines depend on the composition
and temperature at which they must be reinjected into the wells. On this basis, geothermal energy
production is a perfect case study to investigate the water–energy nexus and to optimize the integrated
energy- and water-production processes. In this paper, two case studies of brine reuse for both
energy and water production are presented with the related process analysis, basic design and
technical–economic analysis. A methodology to evaluate the exergy efficiency of the processes
is presented by analyzing minimum work of separation, the maximum achievable work and the
additional primary energy required for integrated production. The novel approach to estimate the
process efficiency for integrated geothermal energy and desalination plants is applied to the case
studies and discussed in light of literature results.

Keywords: exergy analysis; geothermal energy; desalination; organic Rankine cycle; mechanical
vapor compression; wastewater

1. Introduction

The future freshwater and energy supplies are intrinsically linked and are governed by population
growth and ongoing climate change [1]. “Affordable and clean energy” as well as “clean water and
sanitation” are two of the UN Sustainable Development Goals and are fundamental to attain almost all
the other goals [2]. Both the performances of industrial processes and, more in general, the quality of
life depend on energy/water utilization and the nexus between these “primary resources,” which are
widely discussed in the literature [1–5]. In this sense, it is possible to summarize the water/energy
nexus through the following considerations that highlight the opportunity for managing the issues of
water and energy supply in an integrated form [5–10].

Water and energy are key drivers of economic growth and social development, and the procurement
of these resources is one of the major causes of international conflicts [2,3]. The population growth by
2035 will cause a 35% increase in energy consumption and an 85% increase in water consumption; the
number of people having unreliable access to electricity are around 2.5 billion, in turn, the number of
people living in high-water stress areas are around 2.8 billion [1–3,11,12].
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The energy sector is among the main sectors responsible for climate change that, in turn,
is increasing the stress on water resources through an irreversible modification of the paths and
intensities of the rain cycle.

Most energy generation processes require water consumption [1,4,5]; on the other hand, any water
treatment/production process requires energy [1,4]. For example, the energy demand of water
processes goes from 0.5 for conventional wastewater treatment to 10 kWhel/m3 for thermal desalination
processes [8,9,11,12].

Moreover, there is a need to decarbonize the water sector (as for the energy one); water production
processes, in particular, desalination technologies, are strongly related to the fossil fuel combustion and
show a relatively high carbon footprint (1.5–5 kgCO2/m3) [1,2,11]. On the other hand, a substantial
number of countries affected by water scarcity are energy and fuel exporters, and these countries
present enormous potential for developing renewables [11].

This work focuses on the opportunity for recovering precious resources (water, energy and
minerals) from wasted brines and the exergy efficiency of the related processes. The over-abstraction
and wasting of waters cause pollution and consumption of our “renewable” reservoirs. On the other
hand, wastewaters can be considered as an unexploited resource and should be utilized with a more
efficient approach, based on three pillars [7–12]:

• water harvesting from nonconventional sources in a closed cycle (e.g., wastewater reuse,
“zero-liquid-discharge,” circular economy approach) [11,12];

• reduction of the energy (and carbon footprint) of the water processes towards the implementation
of renewable energy and energy recovery from water streams [6–9];

• mineral and precious resources recovery from the rejected brine and concentrated effluents [10,13–15].

Although geothermal brines represent a niche with respect to the civil wastewaters, they are
the best example of unexploited waste streams that can be used to recover water, minerals and
energy [13–18], and offer the ideal case study for the coupling between water production processes
and renewable energy utilization [19–23].

The global capacity of geothermal energy has exceeded the value of 13 GW for electricity
production, while the direct use (air conditioning, district heating and cooling) and ground-source
heat pumps (GSHP) account for more than 70 GW of thermal power [19–21]. Although this renewable
resource is available locally, it has the main advantages of low operating costs, good reliability and
“dispatchability,” since it relies on conventional technologies to convert thermal power to electricity
and does not depend on the solar energy, like other renewables [21–23]. Its exploitation is constantly
increasing, thanks to enhanced geothermal systems (EGS) that create the acceptable conditions at new
potential sites [24]. On the other hand, this renewable resource is “economically available” only in
limited sites located in some specific areas of the planet.

Many authors proposed the exploitation of residual geothermal brines to recover additional
energy and/or water and minerals [13–15,24–28]. From the energy recovery point of view, the most
concrete answer is offered by the organic Rankine cycles (ORCs), well-established systems capable of
achieving acceptable efficiencies at low temperatures [29–31].

From the resource recovery point of view, many desalination processes (mainly thermal-based
to exploit low-enthalpy sources) have been applied to geothermal brines, mainly for research and
development purposes [14–18,25–28]. Thermal processes can be perfectly integrated with the residual
heat from the geothermal plant. Desalination processes can be implemented to treat an external
water feed (e.g., seawater), exploiting the geothermal brine as a low-enthalpy source, or directly to
desalinate the residual geothermal brine, in order to produce additional water and to concentrate it
for the recovery of precious minerals (e.g., lithium [11,16,25,26,32]). Gude described many processes
and reported the compositions and characteristics of waste brines that include macro elements of
the reservoir rock (such as Na+, K+, Ca2+, Mg2+, Cl–, SO4

2−) and trace compounds (e.g., radium) or
pollutants [17]. Boron and silica, if present in high concentrations, represent the most dangerous from
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the technical point of view. Most of the TDS (total dissolved solids) concentrations were reported
between 500 mg/L and 8000 mg/L [14–18] with very high concentration (above 200,000 mg/L) observed
at specific reservoirs [17]. The feed water characteristics should be evaluated to determine a suitable
desalination process and the final desired product and end use (potabilization, make-up water for
industrial or power processes, agriculture, etc.); it is not economically possible to produce a distillate
with the desired characteristics from all types of brine. Moreover, while it is always possible to recover
heat from the brine to desalinate an external saline water feed, only in some cases a direct treatment of
brine for reuse is achievable. As an example, direct reuse is possible for open-type shallow aquifers
near active volcanic areas where the brine reservoir is sustained by atmospheric water. In deeper
reservoirs (e.g., closed-type geopressured brine), used geothermal brine should be reinjected because
of pressure maintenance and reservoir sustainability. In this case, desalination processes should be
considered only for mineral mining and not for freshwater production.

Being able to count on a residual enthalpy in the brine, the thermal processes are the most studied.
Thermal processes have an energy demand around and often higher than 10kWhel/m3 [23–27]. Bell
was the first to develop a technical–economic analysis of geothermal-driven multieffect distillation
(MED) in 1959 [33]. Successively, Wong proposed freshwater generation from the geothermal fluid
itself [18]. The development of the first patents and pilot plants is well described by A. Christ [34] that
reports a comprehensive economic analysis of the geothermal desalination plants. Depending on the
composition and the recovery ratio, membrane processes face significant problems of scaling and fouling.
Multi-effect evaporation/distillation (MED), multistage flash distillation (MSF), thermal and mechanical
vapor compression (TVC/MVC) are the most studied processes; at lower temperature, membrane
distillation and humidification–dehumidification can be interesting alternatives [17,26–28,34–38].

Starting from geothermal brines rejected by “flash” power plants, the possible recovery options
are presented in this paper, together with a thermodynamic and process analysis. The thermodynamic
analysis follows a novel methodology, here presented and inspired by previous works of this research
group [39] and by the “exergy approach” adopted by Lienhard’s group at the Massachusetts Institute
of Technology (MIT) [39]. Similar works including exergy and thermodynamic analysis are reported in
the references [29,39–41]. These approaches enable the rigorous comparison with any other production
process because it considers the real quality of the inputs and outputs, and enables the individuation
of the “actual process irreversibility” [42–44].

The model presented here allows quantification of the “exergetic efficiency” for both water and
energy production and could represent a first reference in the framework of geothermal brine reuse.
The process analysis reported here utilizes (as input) real data from geothermal areas belonging to
the Italian company, Enel Green Power S.p.A (Rome). The well networks and the power plants of the
Enel GP areas (Bagnore, Piancastagnaio, Cove Fort) were analyzed in order to extrapolate the flow
rates, temperatures and pressures of the geothermal waste streams that can still be used to produce
additional useful work and freshwaters. The solutions of water and energy production were simulated
using the Aspen Plus simulator, considering the organic Rankine cycle for power production and
mechanical vapor compression (MVC) for desalination. The basic design was developed to realize a
prefeasibility study (technical–economic analysis) and the novel methodology for the exergy analysis
was adopted to obtain the “actual process efficiencies” and to compare these processes to similar ones,
even if not related to a geothermal energy source.

2. Materials and Methods

2.1. Exergy Analysis

The “exergy” (or second-law) efficiency is the ratio of the exergy output divided by the exergy
input and accounts for the “actual” efficiency of processes. It can be applied to any process, from the
energy production to the mineral or water extraction/separation. In the case of a “chemical separation
box,” it enables the comparison between processes utilizing different sources of energy [42–44] and is
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defined by the ratio between the least work of separation (minimum reversible work) and the actual
work required. An extended discussion of the second-law efficiency, the least work and least exergy of
separation, is given by the recent works of Lienhard’s research group at the MIT [39,42–44], especially
regarding seawater desalination.

According to these papers, in any separation process, seen as a black box, the energy input can be
evaluated in terms of work (Wsep) and heat (Qsep) of separation. Since these types of energy have a
different quality (“availability” or “exergy”), their value should be compared in terms of “equivalent
primary energy” or in relation to the minimum required work or heat.

Equations (1) and (2) report these minimum values, where r is the recovery ratio, T0 and
TH are the temperature of the “cold” (ambient) and “hot” (highest temperature available) thermal
sources, as defined by Mistry et al. [39]. These depend on the free Gibbs energy of the feed (gf),
the concentrate (gc) and the product (gp) (distilled or desalinated water in the case of desalination
processes). Figure 1 depicts the minimum values for both work-driven desalination and thermal
processes at different temperatures.
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Figure 1. Minimum thermal and electrical energy for the separation of freshwater (product) from
seawater (feed salinity at 35,000 ppm and environmental temperature T0 = 25 ◦C) in relation to the
recovery ratio, r.
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Hence, the second-law or exergy efficiency (Equation (3)) is the ratio between these minimum
values and the “actual” work (or heat) of separation, the energy actually required to carry out the
process. Equivalently, this definition can be seen as the ratio of minimum fuel consumption to actual
fuel consumption or, as reported in Equation (3), the ratio between the minimum and the actual carbon
footprint of the process.

ηII =
ξuse f ul

ξused
=

.
Wleast

.
Wreal

=

.
Qleast

.
Qreal

=
min CO2emission

actual CO2 emission
(3)

According to the cited literature [39,44], for integrated processes the “real values” of work/heat
depend on the energy production system. Especially if the final aim is the minimization of primary
energy consumption, fuel consumption and/or carbon emission, these “real values” should be evaluated
in a cogeneration scheme (dual-purpose water/energy plants). Following the approach of Mistry et
al. [39], the “work value” depends on the global efficiency of the power plant; the “thermal power
value” depends on the temperature of the hot source. Here, referring to Figure 2, this methodology is
briefly adapted for the geothermal-brine utilization. The overall heat input (primary energy) provided
to the system is divided into the power plant amount (Qpp) and the amount necessary to drive the
separation process (Qdes). By applying the first and second laws of thermodynamics and by defining
the entropy generation in relation to the “intrinsic efficiency of the power plant,” ηpp, it is possible to
define the amount of additional energy required for desalination (Equation (4)) and the “modified”
second-law efficiency ηII (Equation (5)) in analogy to the work of Mistry et al. [38]. It should be noted
that the thermal powers and the brine are separated for representation clarity, but may coincide since
the heat is actually recovered from the wasted brine that, in turn, could be also the feed of the black
box separator.
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In this way, the resulting second-law efficiency of Equation (5) accounts for the “actual amount” of
additional energy that must be provided to the power plant in order to generate the required amount
of heat and work to power the desalination plant (or any separation plant). In the case of sensible
heat recovery (e.g., waste heat, solar and geothermal power), the actual exergy input and the heat of
separation should be corrected by considering a temperature-variable heat source as described in the
following with the support of Figure 3.

In this case, the “actual exergy input” is lower with respect to the conventional cases where the
exergetic input is supplied at a constant or pseudoconstant temperature (e.g. the adiabatic flame
temperature for a fossil fuel or the condensation temperature for a steam) and are taken into account
though the Carnot efficiency (1 − T0/TH). In the case of sensible heat, the correction factor ηSH of
Equation (6) can be introduced to account for the lower exergetic input. With reference to Figure 3, ηSH
considers the exergy variation (decreasing energy availability due to the entropy generation) during
the heat transfer from a sensible heat source with respect to the maximum value represented by the
Carnot limit.

ηSH =
QH·ηrev

use f ul

QH·ηrev
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(6)

Figure 4 shows a first sensitivity analysis to understand the order of magnitude of this correction
factor. The temperature of the hot source varies in the range 60–110 ◦C. The environment temperature
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T0 was kept constant at 40 ◦C. The lower temperature Tc varies from T0 to T0 + ∆T. The results show
that the “energy availability” of sensible heat source at TH is lower than the exergetic content of a
constant temperature (latent heat) source at the same temperature TH. The reduction factor is always
less than 0.5 and assumes very low values by decreasing the maximum temperature of the hot source
TH and with the increase of the terminal temperature pinch difference ∆T.
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Therefore, any actual thermal exergy input should be modified as reported by Equation (7). With
this premise, the proposed second-law efficiency of separation should be replaced by Equation (8),
where ηTH

SH is the correction factor for sensible heat, calculated at TH.

Ξth = Q
(
1−

T0

TH

)
ηTH

SH (7)

ηII =

.
Wleast[ .

Wsep
ηpp

+
.

Qsep

(
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ηTS

SH

]
ηTH

SH

(8)

As regards the integrated production process (dual water/energy production plant), Equation (9)
should be adopted, based on the following assumptions:

• the incoming sensible heat is evaluated as described above;
• the exergy of the output work or electric power is equal to the work output value Wpp;
• the exergy value of the distilled water product (output) is equal to the minimum reversible work of

separation Wleast (i.e., the difference in Gibbs free energy between the product and the concentrate,
as defined by Equation (1)).

ηII
dual =

Wpp + Wleast(
Qpp + Qdes

)(
1− T0

TH

)
ηTH

SH

(9)

2.2. Case Studies and Brine Characterization

For the first case study (related to the energy production), we report brine characterization
from two single flash plants (area of Bagnore and of Piancastagnaio, Tuscany, Italy). Table 1 reports
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the operating conditions, flow rate and composition of brine streams reinjected into the wells. The
characterization includes the dissolved gases (needed for the basic design of the heat exchangers). For
the electricity generation (by recovering the sensible heat available in the waste brine) the organic
Rankine cycle is adopted, as discussed in the following section.

Table 1. Characterization of the waste streams reinjected in the wells network of the geothermal areas.

Bagnore Piancastagnaio

Variable B1 B2 B3 P1 P2 P3 P4 P5 P6

Total Flow (kg h−1) 30,000 120,030 77,475 40,008 40,008 7002 12,002 1501 50,008
H2O Flow (kg h−1) 29,995 120,010 77,473 40,000 40,000 7001 12,000 1500 50,000
CO2 Flow (kg h−1) 2.93 11.71 0.49 4.88 4.89 0.81 1.39 0.20 4.44
H2S Flow (kg h−1) 2.11 8.45 0.59 3.35 3.35 0.56 0.97 0.13 3.25
Temperature (◦C) 190.0 190.0 148.5 212.9 212.9 207.0 210.7 210.9 196.5

Pressure (bar) 13.5 13.0 4.5 20.4 20.4 18.0 19.5 19.5 14.4
Vapor Fraction 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.02 0.02
Liquid Fraction 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.98 0.98

The second case study is related to the freshwater production (by means of desalination
technologies) from the waste brines (direct desalination). This process is applied to the medium-enthalpy
binary-cycle geothermal power plant of ”Cove Fort,” having a capacity of 25 MW, for a total of 160 GWh
of electricity produced per year. The brine composition (averaged from several reinjection wells) is
reported in Table 2. The purpose of the water recovery is to produce fire-fighting water, demineralized
water, drinking water and service water in order to make this plant self-sufficient from a water
standpoint. This means that the plant productivity has been limited to these purposes.

Table 2. Composition, temperature, pressure and flow data for geothermal brine leaving the Cove
Fort plant.

Variable Value

Flow Rate (t/h) 2251.86
Outlet Temperature Tout (◦C) 75.44

Outlet Pressure bara 9.08
pH 5.6

Flow (KPH) 4971.0

Total Dissolved Solids (TDS) (mg/L) 4184.8

Cl (mg/L) 1921.7
Si (mg/L) 187.0
K (mg/L) 252.4

Na (mg/L) 1194.5
Na/K 4.7

Ca (mg/L) 73.5

3. Results and Discussion

3.1. Energy Production

The process scheme and the main assumptions for the additional energy generation is described
in the following. Given the low temperature of the thermal source, an organic Rankine cycle with
isobutane as the working fluid was chosen. For the first area (Bagnore), the choice fell on the union
of the three streams (B1–3 of Table 1) and the generation of a single liquid/vapor feed (vapor content
>5%) at 148.54 ◦C and 4.5 bar. The process scheme is depicted in Figure 5. The optimal solution to
optimize the heat recovery and the related power production was to feed a first separator (flash) to
produce a vapor stream and a liquid stream. The vapor stream is then sent to the evaporator of the
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Rankine cycle, while the liquid is sent to the economizer (preheater) together with the condensate from
the evaporator. In the Aspen flowsheet for simulation, the heat exchange is regulated by a design
specification manipulating the isobutane flow rate (corresponding to the control valve of Figure 5) to
obtain 99% liquid in the condensate stream out from the hot side of the evaporator. This “practical”
value was selected since total condensation is not possible because of incondensable gases in the
steam. Isobutane (critical temperature of 134.92 ◦C and critical pressure of 35.85 bar) was selected to
recover the heat from the saturated streams of water (at the inlet temperature TH of 148.54 ◦C). The
temperature–enthalpy diagram of the waste heat recovery exchangers is depicted in Figure 6. The
evaporating pressure of 30 bar (T = 123 ◦C) allows an acceptable temperature pinch difference (~5 ◦C).
The chosen pressure value provides the maximum vapor quality (saturated vapor enthalpy) at the
lowest price (latent heat of vaporization). The discharge pressure of the turbine was chosen at 5 bar
(corresponding to a condensation temperature of 38 ◦C).
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For the second area (Piancastagnaio), the union of all the streams results in a liquid/vapor stream
at 196.5 ◦C and 14.4 bar (with a percentage of vapor lower than 5%) that can be directly exploited as
a sensible heat source in the evaporator. The simplified process scheme (symbolically equivalent to
the flowsheet realized for the Aspen simulation) is shown in Figure 7. The heat exchange of the cycle
is controlled by manipulating the flow rate of the working fluid in the closed cycle in order to have
a pinch of 5 ◦C between the brine leaving the evaporator and the working fluid stream (saturated
liquid) entering the evaporator. An additional exchanger to recover the heat from the superheated
steam leaving the turbine (before entering the condenser) was included in the process scheme. In this
way, the liquid feed is preheated, thus increasing the cycle efficiency. After a preliminary process
optimization, isopentane (with critical temperature of 187.83 ◦C and a critical pressure of 34.09 bar)
was selected to recover the heat of the waste geothermal brine at 196.5 ◦C (with the similar preliminary
considerations adopted for the previous power cycle). The temperature–enthalpy diagram of the waste
heat recovery is depicted in Figure 8. The discharge pressure of the turbine was chosen at 1.5 bar
(corresponding to a condensing temperature of 39 ◦C).
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For both these power plants, the thermodynamic model adopted for the Aspen Plus simulation
was the Peng–Robinson. The noncondensable gases (CO2 and H2S) leaving the wells were taken into
account and their distribution between the liquid and the steam (downstream of the separators) was
considered. The results of the process analysis, after a preliminary stage of optimization (not included
in this paper) is reported and summarized in Table 3. It is possible to recover around 3 MW for case 1a
and 4 MW for case 1b. The adiabatic isentropic efficiency and the organic efficiency were assumed at
0.8 and 0.9, respectively. These values give a thermal efficiency of 0.10 and 0.17, respectively, for cases
1a and 1b.

On the other hand, the exergy efficiency, considering the quality of the thermal energy input
according to Equation (9) (where there is no production of water and the reversible work of separation
Wrev is put equal to zero) is higher than 0.6, indicating that the electricity generation is closer to the
maximum achievable energy. The second case study presents a very high efficiency, this at the expense
of the exchange surfaces which increase, due to the very reduced pinch-point temperature difference
∆T, as can be seen from the enthalpy–temperature diagram of Figure 8. This methodology in fact
allows to make quantifiable the dichotomy between the investment costs and process optimization
which, by reducing entropy generation, improves exergy efficiency [45].
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Table 3. Results of the process basic design–energy recovery for case studies 1a and 1b.

Main Results Case 1a Case 1b

Nominal Power (MW] ~60
Reinjected Brine Temperature (◦C) 89.4 91

Heat Recovered Qin (kW) 25,893.4 24,200.7
Additional ORC Turbine Power (kW) 3140 4618.3

Auxiliaries (kW) 428 369.8
ORC Global Efficiency ηg 0.105 0.175

ORC Second-Law Efficiency ηII 0.61 0.96

According to the process results, the economic analysis was carried out including the following
steps. The capital expenditure (CAPEX) estimation was done by estimating the cost for each equipment
from a preliminary basic design. The design/CAPEX results are summarized in Table 4. The economic
results for the key indexes of project profitability and the cost of electricity (CoE) were obtained
considering incentives (renewable energy power plants different from photovoltaic) and reported in
Table 5.

Table 4. Capital expenditure (CAPEX) and profitability estimation for ORC (case study 1a and 1b).

Case 1a Case 1b

Equipment Value Cost (k€) Value Cost (k€)

Separator (vertical vessel) 52 m3 272
Economizer

(Heat-Exchanger) 595 m2 258 3311 m2 895

Evaporator
(Heat-Exchanger) 401 m2 206 678 m2 279

Recovery Heat-Exchanger 744 m2 296
Turbine 3.14 MW 1709 4.62 MW 2154

Alternator 3.77 MW 1273 5.54 MW 1830
Condenser (air cooler) 1600 m2 573 1844 m2 620
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Table 4. Cont.

Case 1a Case 1b

Fans 1899 m3/s 1141 1667 m3/s 998
Fans Engine 404 kW 151 354 kW 140

Pump 385 kW 179 332 kW 163
Pump Engine 462 kW 186 399 kW 173

CAPEX (k€) 8839 11228
NPV (k€) (@ r 5%) 24,194.65 40,974.81

IRR 27% 34%
PBP (time) 3 years and 6 months 3 years

ROI 0.23 0.29
CoE (€/MWh) 65 54

Table 5. Assumption of the economic drivers for the profitability estimation.

Input Parameter Value

Electricity price 65 €/MWh
Basic incentive rate 98 €/MWh

Bonus for total reinjection of geothermal brine 30 €/MWh

Total selling price of electricity 193 €/MWh

3.2. Freshwater Production

Regarding the water production by desalination technologies, the aforementioned options of brine
reuse are depicted in Figure 9. It is possible to use the waste brine as a heating fluid, thereby recovering
the heat to preheat a saltwater stream (e.g., seawater) successively sent to the desalination apparatus
(Option 2). In some cases the brine itself can be sent to the desalination plant to produce fresh water
and a concentrated brine (Option 1). As discussed in the Introduction, the choice depends on the water
quality and the end-use; moreover, the second option can also be used to preconcentrate geothermal
brines in a perspective of recovering minerals from them.Water 2020, 12, 316 13 of 19 
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From the “exergy point of view,” the two options are similar (and the equations proposed in
Section 2.1 can be implemented) since the input exergy is always given by the brine enthalpy (sensible
heat to recover). Moreover, Option 2 (“indirect desalination”) generates the loss of a small amount
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of exergy (related to the additional ∆T) since it places an exchange surface in the direct recovery of
sensible heat.

The possible input of saline water from the environment brings a negligible contribution of
exergy flow. From the point of view of calculations, changing the type of feed water to desalinate
(e.g., geothermal brine or seawater) affects only the minimum separation work. From the process point
of view, as described in the introduction, Option 1 (“direct desalination”) is possible only with certain
types of reservoir and specific brine composition (if an acceptable scaling/fouling is obtained). It is
necessary to pretreat the process feed and to fix the recovery ratio as not to generate the precipitation
of some critical salts.

This paper reports the results of process and economic analysis for the first option (direct supply
of waste brine) by means of the single-effect mechanical vapor compression (MVC) desalination,
which is very attractive for small to medium modular units and decentralized solutions. In this paper,
a minimum potentiality of 10 t/h was selected. The process, fed with hot water, does not require an
external thermal source (for both heating/evaporating and cooling) because it uses the produced vapor
to evaporate the feed. The process scheme of the selected MVC apparatus is presented in Figure 10.Water 2020, 12, 316 14 of 19 
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Figure 10. Simplified process scheme of the MVC desalination process under evaluation.

The MVC apparatus consists of five main elements: compressor, evaporator, inlet water preheater,
brine/distillate pumps and non-condensable gases extraction system. In our case, the MVC plant is
fed by a geothermal brine at around 75 ◦C, so there is no need for preheaters. The brine is not cooled
since it is sent to the reinjection wells along with the exit brine from the power plant. The distillate is
air-cooled (to reduce the water footprint of the process). The compressor is directly connected to the
evaporator that includes the horizontal-tubes bundle for the falling film evaporation, the spraying
nozzles, the steam suction tube and the demister. The brine is sprayed over the horizontal tubes,
generating a falling film on the tubes that improves the evaporation efficiency. The generated steam is
conveyed to the compressor suction through a piping line protected by demisters. The superheated
steam out from the compressor condenses inside the horizontal tubes; outside the tubes the water
(partially) evaporates.
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The key operational parameters are the pinch-point temperature ∆T in the evaporator and the
degree of vaporization of the feed α. The net ∆T (including BPE) was fixed at 5 ◦C to minimize the
heat-exchange area. The degree of vaporization α was fixed according to the maximum concentration
factor of the brine to avoid silica precipitation. In this case, α is calculated from the silica solubility
at 26%; in other cases additional methodologies to avoid silica scaling should be adopted (e.g., pH
adjustment, treatment with scale/inhibitors) [46].

The process is fed with the geothermal brine described in Section 2.2 with a total salts concentration
around 5000 ppm (whose characteristics are shown in Table 2). The feed flashes and evaporates at 0.39
bar (75.4 ◦C). The 74% of the feed is collected at the bottom as concentrated brine (for reinjection) and
the 26% that evaporates is compressed to the saturation pressure corresponding to the evaporation
temperature plus 5 ◦C (0.84 bar, 80.4 ◦C). The enthalpy–temperature diagram of the evaporator is
available in Figure 11. The distillate is sent to an air cooler to obtain a final temperature of 40 ◦C.
The described process is controlled by regulating the feed-stream flow rate to keep the degree of
vaporization equal to 26%. The heat and material balances of the process were performed in the Aspen
Plus environment (thermodynamic model: Electrolyte NRTL) for the capacity of 10 t/h distillate.
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The basic design of the evaporator and the air cooler was carried out. The main construction
and performance parameters (e.g., power consumption and the specific heat exchange area) were
calculated to realize a prefeasibility economic estimation. The results are reported in Table 6.

According to these results, it is possible to state that the recovery of freshwater is feasible with a
very compact and low-cost solution. The second-law efficiency (according to Equation (8)) assumes
values close to 6%. This is because, despite the very low exergy consumption, the Wrev is low too
(given the low salinity of the feed water and the low recovery ratio). The MVC utilizes electrical energy
and cannot overcome the exergy efficiency of the reverse osmosis (RO) process. For low-salinity feeds,
the RO is thermodynamically superior, also for dual-purpose plants as discussed by Mistry et al. [39].
On the other hand, the RO process was not considered due to the water temperature and composition
that generate prohibitive conditions for the membrane. This and other research groups are developing
alternative thermal processes to exploit this low-grade thermal energy with higher efficiency. For
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the purpose of this work, a reliable technology (MVC), which can be the object of basic design and
cost estimation, was chosen and discussed. It must also be considered that in these cases the heat is
commonly dispersed into the environment. Therefore, despite the efficiencies being low, a precious
good is still being produced from a waste current. The assessment of the integrated process (through
Equation (9)), including the data of the power plant from which the brine is rejected, has not been
carried out at the moment, as not all data relating to the Cove Fort power plant are available.

Table 6. Results from basic design, CAPEX and OPEX estimation for the MVC desalination of waste
geothermal brine.

Process/Design Results

Evaporator heat exchange area 224 m2

Distillate air cooler heat exchange area 452 m2

Specific power consumption 13.2 kWh m−3

Specific heat exchange area 80 m2/(kg s−1)

Economic Results

Total investment cost (CAPEX) 486 k€
Total annual operating cost (OPEX) 138 k€

Total annual cost of water production (CoW) 1.7 €/m3

4. Conclusions

Water and energy are key drivers of economic growth and social development, and the related
production/use processes are intrinsically linked; there is a need to manage the issues of water and
energy supply in an integrated form. Moreover, a large amount of water and energy is degraded and
wasted into the environment in several forms.

This work deals with recovery processes adapted to low-enthalpy saline streams such as geothermal
brines. The latter represent the best example of unexploited waste streams that can be used for
water, minerals and energy recovery, and offer the ideal case study for coupling desalination and
power production.

Firstly, a general thermodynamic framework of the integrated process is proposed for the
characterization of the exergy balance and the second-law efficiency in water/energy production
processes, and for the comparison with similar competitive technologies. This methodology is in
continuity with some cited works, but specializes in the case of low-enthalpy stream and sensible
heat by introducing a new corrective factor based on the destruction of exergy in the heat exchange at
variable temperature (sensible heat).

Secondly, the process and economic analysis of some water and energy production that exploit
geothermal brine was proposed. From the energy point of view, two ORCs were analyzed to obtain
an additional production of electrical energy. Although the global thermal efficiency is around 15%,
from the point of view of second-law efficiency, these processes show considerably higher values.
This means that the "available" energy is properly exploited. A basic design of the ORC is proposed;
from the point of view of the remuneration of a possible investment, these choices show good
profitability indexes.

As for water production, an MVC directly supplied by the geothermal brine was analyzed. The
basic design was proposed together with a preliminary technical–economic analysis of the desalination
plant to produce 10 t/h of freshwater from the reinjected brine. Even if high exergy performance is
not attained with this technological choice, a good combination of efficiency and investment costs is
achieved. In fact, with the MVC it is possible to produce low-cost water for the uses of the industrial
complex. This research group and others in the world are developing technologies (currently at
Technological Readiness Level, TRL 4–5) to exploit the huge potential given by wasted hot-saline
currents, of which geothermal brines are an example.
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Abbreviations

cp specific heat at constant pressure (kJ kg−1 K−1)
CAPEX capital expenditure (€)
CoE cost of energy (€/kWh)
CoW cost of water (€/m3)
g specific Gibbs free energy (kJ kg−1)
.

m mass flow rate (kg s−1)
NPV net present value (€)
ORC organic Rankine cycle
PBP pay-back period (years)

.
Q0 heat flux rejected at T0 (kW)
.

Qsep least heat of separation (kW)
.

Qleast heat of separation (kW)
.

Qdes
additional heat required for desalination in the dual
purpose plant (kW)

r recovery ratio [(kg s−1 product)/(kg/s−1 feed)]
ROI return of investment (−)
T temperature (K)
T0 ambient (dead state) temperature(K)
TS temperature of the separation process (K)
TH temperature of hot reservoir (K)
Wleast least work of separation (kW)
Wsep work of separation (kW)
Wpp work produced by the power plant (kW)
∆ change in a variable
η efficiency (−)
ηII second-law/exergetic efficiency (−)
ξ specific exergy (kJ kg−1)
Ξ exergy flow rate (kW)
c concentrate
el electric
p product
f seawater
rev relative to a reversible transformation
SH relative to sensible heat source
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