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Abstract: Generation of debris flows is related to poorly sorted mixtures of soil, catchment topography,
and rainfall characteristics. Runoff in a valley resulting from intensive rainfall can induce sediment
movement within stream beds or along adjacent banks. The water flow in channels is affected by
rainfall parameters such as duration, intensity, cumulative rainfall, etc., and is the key factor in
debris movement. In this paper, the rainfall characteristics and occurrence conditions of debris
flow in Xiongmao Gully on 26 July 2016 were explored. Using data from field surveys and indoor
simulation experiments, evaluations of critical discharge parameters for debris movement were
performed. Furthermore, debris distribution and the critical discharge characteristics were analyzed
via investigation of the catchment topography and cause of the debris flow, and analysis was made of
the critical discharge parameters initiating channel debris movement. A K-value clustering analysis
method was applied to characterize the rainfall pattern of the study area and its effects on calculation
of debris flow. The results showed that for the debris flow in Xiongmao Gully, the debris initiation in
the middle reaches of the gully provided the majority of solid particles for the disaster on 26 July 2016,
and the upstream confluent provided catchment. Based on the relationship determined by laboratory
tests, the calculated critical discharge was 43.8 m3/s, less than the peak discharge (Qc = 66.7 m3/s)
calculated by morphological method. In addition, it was indicated that the dominant rainfall patterns
of the studied area were first-quartile and second-quartile, i.e., the rainfall occurred primarily at the
early or middle stage of this rainfall event. The critical discharge for the debris flow on 26 July was
achieved at 5% rainfall frequency, and the larger runoff volume was generated from a short heavy
rainfall. According to specific catchment characteristics, such as distributed hydrological analysis,
critical discharge, and rainfall pattern of debris flow, forewarning of a damaging debris flow could be
made more effective.

Keywords: debris flow initiation; critical discharge; rainfall patterns; distributed hydrological

1. Introduction

Debris flows in southwestern China are sometimes initiated when soil is mobilized by a high
enough water flow. Methods used to study debris flow initiation include field observation [1–3],
laboratory flume experiments [4–6], statistical methods, and theoretical derivation [7–9]. Debris flow
occurs frequently in catchments which have well-developed main channels and tributary gullies.
The evolution of debris flows after an earthquake often occurs with increased coarse material and
higher frictional resistance, which decreases their frequency and increases difficulty in debris flow
identification or prediction. According to the characteristics of debris flows, Tang et al. (2008) [10]
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pointed out that the critical precipitation and initial discharge can be used as indicators for the initiation
of debris flows. The discharge per unit width (m3/s·m) was taken as the available indicator of debris
flow initiation [2,7,9], due to the fact that the discharge, in combination with parameters such as debris
grain size, slope angle, and sediment concentration, can be obtained and applied to scientific research,
prediction, and practice.

Some flume experiment simulations of runoff discharge have been performed [6] to understand
impact of gully bed gradient and average particle size. Coe et al. (2008) [2] verified the accuracy
of the critical discharge of overland runoff based on field observation data. However, their results
were obviously different from the source of the Wenchuan earthquake area; deposit heterogeneity
should be considered when critical debris flow discharge data are computed. The same average grain
size or percentage of particles less than 10 mm in diameter in the flume test had an influence on
Wenchuan earthquake area. Severe erosion and transport led to high solid concentrations, generating
debris flows. [11]. The critical discharge can be simulated in serial tests and calculated in terms of its
relationships, avoiding analyzing hydrodynamic force by using the size and slope. The parameter of
critical discharge could be an effective criterion to assess channel sediment instability.

According to the distributed hydrological models such as the Hydrologic Engineering Center’s
Hydrologic Modeling System (HEC-HMS) [12] and the Integrated Hydrologic Model (inHM) [13],
the surface or subsurface hydrologic responses can be simulated. With the surface runoff discharge,
two methods, (1) Manning’s formula [14–16] or (2) Shen’s method [17], can be used to calculate the
discharge of debris flow. The volumetric concentration of solid particles of debris flow can also be
determined by internal friction angle and inclination [18,19]. Hydrological response analysis on critical
precipitation and discharge has thus become more available; meanwhile, predictions on debris flow
discharge can feasibly be made. Rainfall, as an important factor formulized as rainfall intensity-duration
(I-D) curve for debris flow initiation, has been frequently used [2,20–22]. Rainfall patterns in the
Wenchuan earthquake area [21] have shown that the runoff coefficient and peak discharge of an
instantaneous heavy rainfall can be 5 to 6 times higher compared than that of a rainfall with uniform
intensity [23]. As a potential factor of initiation, the same magnitude of cumulative rainfall may lead
to different water discharges when the rainfall pattern is different.

For rainfall pattern estimation, Huff (1967, 1990) [24,25] first divided the precipitation process into
four phases, and the National Oceanic and Atmospheric Administration (NOAA ) published the Huff

curve in America [26], while Azli et al. (2010) [27] and Domen et al. (2016) [28] studied the temporal
characteristics of rainfall around China, Peninsular Malaysia, and Slovenia based on the Huff curve.
To reveal how confluence in the catchment changed with different rainfall patterns, the rainfall data
used in this paper were gathered from three rainfall stations located on Longmen Mountain (Table 1),
and the meteorology of these stations was similar to that of a station in Yuzi River in Yingxiu.

Table 1. Periods during which rainfall data were collected from the website https://rp5.ru.

Station WMO_ID a Location Altitude Monitoring Time

Dujiangyan 56,187 30◦42.00′ N,
103◦49.98′ E 545 m 1 January 2013–28 June 2018

Mianyang 56,196 31◦28.00′ N,
104◦41.00′ E 522 m 1 January 2013–28 June 2018

Ya’an 56,287 29◦59.00′ N,
103◦00.00′ N 629 m 1 January 2013–28 June 2018

a the weather station number of World Meteorological Organization.

This study obtained the rainfall patterns statistically. The corresponding runoff discharge and
debris flow discharge were calculated based on distributed hydrological modeling, field surveys, and
empirical relationships. Further prediction of rainfall threshold combined with rainfall patterns is
presented. A direct survey of the debris flow on 26 July 2016 in Xiongmao Ravine and 165 effective
rainfall events were collected.

https://rp5.ru
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2. Study Area

On 12 May 2008, Yinxiu, a town in Wenchuan County, located on the fault zone of Longmen
Mountain, was hit by a Richter 8.0 earthquake. The straight-line distance of the study area to the
epicenter was 32.3 km (Figure 1). The earthquake heavily damaged the buildings and infrastructure
of Wolong town in Wenchuan County, and loosened the mountain surface, resulting in collapse and
landslide and providing abundant loose sources for the debris flow.
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Figure 1. Map of Xiongmao Gully, located in Wolong National Nature Panda Reserve. Figure 1. Map of Xiongmao Gully, located in Wolong National Nature Panda Reserve.

Xiongmao Gully, located in the Wolong nature reserves, southwest of Wolong, Wenchuan County,
Sichuan Province, is the primary tributary on the right bank of Yuzi river. The average longitudinal
length of the gully is 8.8km, average width is 3.4 km, average longitudinal grade is 169.9%�, and the
catchment area is 23.6 km2. Additionally, the highest elevation located at the southwest outlet of
the gully is 3600 m; the lowest one at the junction between the outlet and Yuzi River is 2105 m. The
upstream catchment contains six branches with lengths from 0.9 to 2.4 km and longitudinal gradients
from 15% to 35% (Figures 1 and 2).
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Figure 2. Xiongmao catchment topography and distribution of source materials, in which the black 
lines are the investigated cross-sections and the black triangles with numbers are the sampling points 
for the physical tests. 

On 26 July 2016, a sudden rainstorm in Wolong with a cumulative rainfall of about 70 mm 
between 14:00 and 16:00 increased the water discharge of Yuzi River significantly and, until 16:00, 
debris flows occurred in Xiongmao Gully, and the debris rushed out and flooded roads, blocking the 
tributaries in the catchment and Yuzi river, generating tremendous economic damage to the local 
people and infrastructure (Figure 3). According to the Manual of Floods in Small Watersheds of 
Sichuan Province, the rainfall within 24h at frequencies of 1%, 2%, 5%, and 10% in Xiongmao Gully 
was 211.5 mm, 190.8 mm, 162.0 mm, and 139.5 mm, and the rainfall within 6 h was 127.4 mm, 113.7 
mm, 94.6 mm, and 79.4 mm respectively. 

The longitudinal profile of Xiongmao Gully revealed that the whole gully gradually slowed due 
to the reduced upstream longitudinal gradient from the original 207‰ to 106‰–144‰. In particular, 
the reduced longitudinal gradient of the original area led to the debris being readily deposited and 
decreased the debris flow velocity. At the downstream transition area, the longitudinal gradient 
became abrupt, reaching a maximum of 450‰, which drove an outrush of debris into Yuzi River 
(Figure 4). 

Figure 2. Xiongmao catchment topography and distribution of source materials, in which the black
lines are the investigated cross-sections and the black triangles with numbers are the sampling points
for the physical tests.

The catchment consists of carbonaceous phyllites, sandy phyllites, slates, and crystalline limestones.
The upstream topography of the gully is U-shaped and the vegetation consists mainly of shrubs;
the downstream valley is roughly V-shaped, with steep slopes on both sides and well-developed cliffs
with gradients of 50◦–70◦. The channel sediment (red areas in Figure 2) in the midstream and collapse
accumulation (yellow areas in Figure 2) in the upstream represented the majority of solid material;
midstream erosion was located on the red areas, and the main initiation thus occurred along Tributary
6 and Tributary 5.

Debris flows broke out in Xiongmao Gully in 1995, 1998, and May 2004, destroying large areas of
agricultural land, but with no casualties reported. The Wenchuan earthquake triggered landslides,
producing a large volume of debris deposits in the upstream catchment, providing an abundant source
of material for debris flows.

On 26 July 2016, a sudden rainstorm in Wolong with a cumulative rainfall of about 70 mm between
14:00 and 16:00 increased the water discharge of Yuzi River significantly and, until 16:00, debris flows
occurred in Xiongmao Gully, and the debris rushed out and flooded roads, blocking the tributaries
in the catchment and Yuzi river, generating tremendous economic damage to the local people and
infrastructure (Figure 3). According to the Manual of Floods in Small Watersheds of Sichuan Province,
the rainfall within 24h at frequencies of 1%, 2%, 5%, and 10% in Xiongmao Gully was 211.5 mm,
190.8 mm, 162.0 mm, and 139.5 mm, and the rainfall within 6 h was 127.4 mm, 113.7 mm, 94.6 mm,
and 79.4 mm respectively.
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Figure 3. Photo of the scene of the debris flow on 26 July 2016: (a) the outbreak of the debris flow 
before blocking of the main river; (b) emergency drainage of the debris flow which has dammed the 
river. 

 
Figure 4. Longitudinal slope line of Xiongmao Gully and longitudinal gradient diagram. 

Xiongmao Gully can be divided into source area and transition and accumulation zones. Figure 
5a,b shows cross-sections of the upper and lower parts of the transition zone, while Figure 5c shows 
it through the source area. Photos of the transition zone with a deep gully, the sediment initiation 
area, and flood flow area are shown in Figure 5d, 5e, and 5f, respectively. 

The gully length of the transition zone is about 0.83 km, with an average longitudinal grade of 
about 38% and 45% at the maximum. In this section, the gully had a V-shape with a width of 3 to 8 
m. The channel bed was heavily eroded, and both sides were steep rock slopes without landslides 
(Figure 5a,d). 

The topography of source area was U-shaped, with bank slopes on both sides and abundant 
unconsolidated material. Most of the slopes were eroded as slightly bank cutting (Figure 5c,f). The 
upstream valley was covered by a thin layer of weathered deposits and dense vegetation. This region 
consisted of bare rock slopes and, therefore, could generate a large volume of run-off water for debris 
flow initiation. 

Figure 3. Photo of the scene of the debris flow on 26 July 2016: (a) the outbreak of the debris flow before
blocking of the main river; (b) emergency drainage of the debris flow which has dammed the river.

The longitudinal profile of Xiongmao Gully revealed that the whole gully gradually slowed due
to the reduced upstream longitudinal gradient from the original 207%� to 106–144%�. In particular,
the reduced longitudinal gradient of the original area led to the debris being readily deposited and
decreased the debris flow velocity. At the downstream transition area, the longitudinal gradient
became abrupt, reaching a maximum of 450%�, which drove an outrush of debris into Yuzi River
(Figure 4).
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Figure 4. Longitudinal slope line of Xiongmao Gully and longitudinal gradient diagram.

Xiongmao Gully can be divided into source area and transition and accumulation zones. Figure 5a,b
shows cross-sections of the upper and lower parts of the transition zone, while Figure 5c shows it
through the source area. Photos of the transition zone with a deep gully, the sediment initiation area,
and flood flow area are shown in Figure 5d–f, respectively.
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Figure 5. Morphological characteristics of Xiongmao Gully. (a,d) A cross-section of transition zone in 
which the gully is narrow with exposed bed rock slopes; (b,e) a typical cross-section of the 
accumulation zone in which the gully is wide with large amounts of solid material; (c) the erosion of 
slope deposits in the upstream area; (f) nearly no solid materials in the upstream gully. 

It was known from the source distribution of debris flow in Figure 2 and investigation in Figure 
5 that hyper-concentration flow is generated from the upstream of Xiongmao Gully after sufficient 
confluence flow, and that the channel deposits were eroded by the runoff between Junctions 2 and 3. 
Therefore, it was necessary to calculate the critical discharge at this location. 

3. Methods 

Through the laboratory flume experiment relationship, the critical discharge of debris flow 
initiation in a natural channel was investigated based on source distribution, morphology, 
topography, and grain composition tests. The rainfall characteristics of the Longmen mountain area 
were explored using the dynamic K-value clustering analysis method. According to HEC-HMS, the 
hydrological characteristics of the catchment were analyzed at different frequencies and rainfall 
patterns to predict the critical discharges, providing significant reference for research on rainfall and 
critical discharge of debris flow in earthquake area. 

3.1. Rainfall Patterns Statistic 

Wolong County belongs to the climate zone of the Qinghai–Tibet plateau, the weather of which 
is controlled by the south branch of the westerly jet stream and the southeast monsoon. The area’s 
weather is dry and sunny with less rainfall in winter, while in the summer half-year, under the 
influence of the humid southeast monsoon, the rainfall is abundant. Table 1 shows the years in which 
rainfall data were collected from three stations during the period from June to September. These data 
were used for statistical analyses. 

The basic data unit was the hourly rainfall intensity, which was calculated from the cumulative 
rainfall over time. A series of sequential data obtained from the stations were divided into 
independent rainfall events using two definitions: inter-event time definition and effective rainfall 

Figure 5. Morphological characteristics of Xiongmao Gully. (a,d) A cross-section of transition zone in
which the gully is narrow with exposed bed rock slopes; (b,e) a typical cross-section of the accumulation
zone in which the gully is wide with large amounts of solid material; (c) the erosion of slope deposits in
the upstream area; (f) nearly no solid materials in the upstream gully.

The gully length of the transition zone is about 0.83 km, with an average longitudinal grade of
about 38% and 45% at the maximum. In this section, the gully had a V-shape with a width of 3 to
8 m. The channel bed was heavily eroded, and both sides were steep rock slopes without landslides
(Figure 5a,d).

The topography of source area was U-shaped, with bank slopes on both sides and abundant
unconsolidated material. Most of the slopes were eroded as slightly bank cutting (Figure 5c,f).
The upstream valley was covered by a thin layer of weathered deposits and dense vegetation.
This region consisted of bare rock slopes and, therefore, could generate a large volume of run-off water
for debris flow initiation.

It was known from the source distribution of debris flow in Figure 2 and investigation in Figure 5
that hyper-concentration flow is generated from the upstream of Xiongmao Gully after sufficient
confluence flow, and that the channel deposits were eroded by the runoff between Junctions 2 and 3.
Therefore, it was necessary to calculate the critical discharge at this location.

3. Methods

Through the laboratory flume experiment relationship, the critical discharge of debris flow
initiation in a natural channel was investigated based on source distribution, morphology, topography,
and grain composition tests. The rainfall characteristics of the Longmen mountain area were explored
using the dynamic K-value clustering analysis method. According to HEC-HMS, the hydrological
characteristics of the catchment were analyzed at different frequencies and rainfall patterns to predict
the critical discharges, providing significant reference for research on rainfall and critical discharge of
debris flow in earthquake area.
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3.1. Rainfall Patterns Statistic

Wolong County belongs to the climate zone of the Qinghai–Tibet plateau, the weather of which
is controlled by the south branch of the westerly jet stream and the southeast monsoon. The area’s
weather is dry and sunny with less rainfall in winter, while in the summer half-year, under the influence
of the humid southeast monsoon, the rainfall is abundant. Table 1 shows the years in which rainfall
data were collected from three stations during the period from June to September. These data were
used for statistical analyses.

The basic data unit was the hourly rainfall intensity, which was calculated from the cumulative
rainfall over time. A series of sequential data obtained from the stations were divided into independent
rainfall events using two definitions: inter-event time definition and effective rainfall definition [20,29].
An effective rainfall standard for a rainfall event was amended for the Wenchuan earthquake area [30].

Based on the dimensionless rainfall–duration curve, standardized rainfall profiles (SRP), and Huff

curves, a binary shape code (BSC) was established and applied to Calabria (south Italy) to investigate
the seasonality of erosivity [31,32]. A total of 165 valid rainfall events were chosen from the rainfall data
in this paper, and the rainfall events were divided into four categories of precipitation process to ensure
that the properties of each category were similar, according to the dynamic K-value clustering method
proposed by Yin et al. (2014) [33]. The specific process included rainfall data nondimensionalization,
cluster number setting, Euclidean distance calculation, and so on. Each curve corresponded to each
rainfall type; the relationship between cumulative rainfall intensity and duration of each rainfall type
was then determined.

The rainfall pattern was one of the factors influencing the critical discharge of the catchment,
while precipitation evidently affected the critical discharge as well.

3.2. Hydrological Analysis

The sub-basin results of Xiongmao Gully were obtained using the Hydrology Model with
ARCGIS10.1. It was found that the sub-basins were accurate when the cumulative grid number was
660; furthermore, the above results were applied using HEC-HMS (Figure 6), and the watershed model
was built by arranging sub-basins, junctions, reach and sink, etc.

The input settings in HEC-HMS hydrological model included the infiltration property, initial soil
water content, and maximum saturate rainfall intensity, which were valued as 6% and 14 mm by field
tests, respectively.

A soil conservation service curve (SCS) was adopted considering the impact of soil property,
land use, and soil moisture content at an earlier stage on runoff generation and flow concentration.
Regional values depending on geographical and climatic factors were selected in the range of 0.1–0.3 [34];
this value was normally 0.2 in the semi-distributed hydrological model for precisely predicting the
runoff [35,36]. The curve number (CN) value [37,38] was 85, based on the general soil type and
vegetation cover in the studied area.

SCS unit hydrograph transform was taken as the transform method and used to calculate the
peak discharge of unit hydrograph according to precipitation, catchment area, peak, and confluence
time [39]. The lag time, combined with the longitudinal grade, runoff length, etc., and the drainage
boundary was obtained from ARCGIS. Additionally, a lag time parameter was calculated by lag routing
method and kinematic wave routing [40].
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Based on the water flow (Qp, m3/s) at Junction 3 obtained from HEC-HMS, we used the modified
flood method [17], considering the volumetric concentration of the solids (Cv, dimensionless) and
blocking coefficient (Dc, dimensionless) to calculate the debris flow discharge (Qc, m3/s):

Qc = Dc ·Qp/(1−Cv), (1)

where Cv represents the solid volume in a unit volume of debris flow, which was calculated by
Equation (2).

Cv = γ− γw/(γs − γw), (2)

The progress of woody transportation is an important factor of blockage [41] (Rickenmann and
Koschni, 2008). The blockage coefficient (Dc) was determined by checking published tables, and the
coefficient was normally between 1.0 and 3.0 [42]. Wu et al. (1993) [43] provided a detailed illustration
on the blockage coefficient of debris flow, given below.

(1) Slight blockage (Dc < 1.5), characterized as a smooth and straight channel, without blockage
or steps.

(2) Moderate blockage (1.5 ≤ Dc < 2.5), characterized as a moderately smooth and straight channel,
even width of reach with less blockage and steps.

(3) Severe blockage (Dc ≥ 2.5), characterized as a curved channel, uneven width of reach, spreading
with blockage and steps.

There were colluvium and decayed trees at the upper catchment of B-B’ after the field survey, and
the coefficient in this paper was set as 1.5. In Equation (2), Cv was the volume concentration of debris
flow, γwas the specific weight of debris flow, γw was the specific weight of water (0.98 × 103 kg/m3),
and γs was the specific weight of solid (2.65 × 103 kg/m3).
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In order to calculate the specific weight, the equation developed by Yu (2011) [44] was adopted:
Coarse particles with sizes were more than 20 mm were removed from depositions of gullies to calculate
debris flow concentration by grain grading analysis, as shown in Equation (3).

γ = P0.5
0.35P2γv + γ0, (3)

where γ is debris flow concentration (kg/m3); P0.5 the ratio of fine particles with sizes were less
than 0.05 mm; P2 the ratio of coarse particles with sizes were more than 2 mm; γv the minimum
concentration of viscous debris flow, equal to 20 KN/m3; and γ0, the minimum concentration of debris
flow, was 1.5 × 103 kg/m3.

3.3. Critical Debris Flow Discharge on Flume Test

Through a series of laboratory flume experiments, Wang et al. (2017) [9] revealed the relationship
between grain size distribution and the hydrodynamic conditions of debris flow. Based on the deposit
characteristic of wide grading in the Wenchuan earthquake area, a grain size of 0–60 mm was selected,
and the result was as follows:

qc = 0.32d2.5
84 /(tan2 θd16CuC0.4

c ), (4)

For Cu = d60/d10, and Cc = d30
2/(d60 × d10), di was the diameter corresponding to an i% cumulative

distribution of particles smaller than the size; d84 was the typical grain size of coarse particles; and d16

was that of fine particles.

4. Results

Considering that the abundant solid materials on the channel bed were primarily initiated,
by contrast, the soil erosion of talus material along channel bank increased the concentration slightly.
Thus the position of Junction 3 was set as a typical monitoring cross-section.

4.1. Rainfall Patterns

Figure 7 indicates that the period during which the cumulative rainfall increased fastest was in
the first period from 0% to 25% of the rainfall duration for Pattern I and Pattern II. These periods were
defined as first-quartile rainfall according to the Huff curve. Considering the fact that in most cases,
debris flows broke out in the middle and later periods of heavy rain events, Pattern III, with durations
from 0–50% of the total duration, was regarded as the second-quartile rainfall; Pattern IV was classified
into the same category as Pattern III because the rainfall was concentrated in the duration period of
25–50%.

Through statistical analyses on the rainfall data in the study over the years, the first-quartile and
second-quartile rainfalls of Patterns I, II, III, and IV were applied to Xiongmao Gully in order to reveal
the hydrological response characteristics under typical rainfall conditions.

As mentioned above, the rainfall intensities within 24 h at frequencies of 1%, 2%, 5%, and 10% in
Xiongmao Gully were 211.5 mm, 190.8 mm, 162.0 mm, and 139.5 mm, respectively. The cumulative
rainfall curves of Pattern I, Pattern II, Pattern III, and Pattern IV tended towards y = x graph gradually
in Figure 7, and the rainfall intensity concentration degree decreased successively. The typical equations
of four cluster centers for the accumulated rainfall (Ra) vs. duration (t) for four types of rainfall pattern
were acquired by K-value clustering analysis:

Pattern I, Ra = 0.1219ln(t) + 0.9879, R2 = 0.9815
Pattern II, Ra = 1.7402t3

− 3.984t2 + 3.2591t, R2 = 0.9978
Pattern III, Ra = −0.7667t3 + 0.1624t2 + 1.5868t, R2 = 0.9996
Pattern IV, Ra = −1.8049t3 + 2.3173t2 + 0.4719t, R2 = 0.9997
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4.2. Runoff Discharge for Various Rainfall Patterns and Frequencies

The rainfall intensity at any period could be calculated according to the above equations.
The precipitation for a certain period and the distribution diagram of hourly rainfall intensity are
presented in the upper part of Figure 8 for varying recurrent periods. Additionally, the hourly rainfall
intensity distributions for different rainfall patterns are distinguished by different colors, corresponding
to the discharge hydrograph of the confluence of Junction 2 and 3 in Figure 6. To present the whole
discharge process of a valid rainfall event, the time period was set at 48 h.

Compared to the water volume curve in Xiongmao Gully, the lower part of Figure 8 shows
hydrographs at different junctions for different rainfall return periods and rainfall patterns. The rainfall
frequencies influenced the flow volumes, and it was found that the peak discharge was influenced by
the rainfall patterns. The time at which the peak flows of Pattern I, II, III, and IV emerged were after
480~510 min, 780~810 min, 1080~1110 min, and 1410~1470 min, respectively. However, as shown in
Figure 8d, the peak flow for a frequency of 10% appeared a little later and lasted for a longer time,
indicating that the storage capacity of the vegetation and soil in the catchment retarded and decreased
the peak flow.

Pattern I showed larger peak flows at rainfall frequencies of 1% and 2%, because the high intensity
rains for this pattern caused high runoff. The peak flows of Pattern I at the rainfall frequencies of 5%
and 10% were more or less equal to the peaks of other patterns at the same frequencies, or even less
than the runoff peaks of Pattern IV, meaning that larger peaks were more likely to appear in uniform
rainfall patterns.



Water 2020, 12, 552 11 of 18

Water 2020, 12, 552 11 of 18 

 

The rainfall intensity at any period could be calculated according to the above equations. The 
precipitation for a certain period and the distribution diagram of hourly rainfall intensity are 
presented in the upper part of Figure 8 for varying recurrent periods. Additionally, the hourly rainfall 
intensity distributions for different rainfall patterns are distinguished by different colors, 
corresponding to the discharge hydrograph of the confluence of Junction 2 and 3 in Figure 6. To 
present the whole discharge process of a valid rainfall event, the time period was set at 48 h. 

Compared to the water volume curve in Xiongmao Gully, the lower part of Figure 8 shows 
hydrographs at different junctions for different rainfall return periods and rainfall patterns. The 
rainfall frequencies influenced the flow volumes, and it was found that the peak discharge was 
influenced by the rainfall patterns. The time at which the peak flows of Pattern I, II, III, and IV 
emerged were after 480~510 min, 780~810 min, 1080~1110 min, and 1410~1470 min, respectively. 
However, as shown in Figure 8d, the peak flow for a frequency of 10% appeared a little later and 
lasted for a longer time, indicating that the storage capacity of the vegetation and soil in the catchment 
retarded and decreased the peak flow. 

Pattern I showed larger peak flows at rainfall frequencies of 1% and 2%, because the high 
intensity rains for this pattern caused high runoff. The peak flows of Pattern I at the rainfall 
frequencies of 5% and 10% were more or less equal to the peaks of other patterns at the same 
frequencies, or even less than the runoff peaks of Pattern IV, meaning that larger peaks were more 
likely to appear in uniform rainfall patterns. 

 
Figure 8. Runoff volumes of Junction 2 and Junction 3. (a–d) The rainfall intensity (upper) and runoff 
volume (lower) at the frequencies of 1%, 2%, 5%, and 10% in Xiongmao Gully. 

4.3. Discharge of Debris Flow and Threshold on 26 July  

Samples were taken from debris flow deposits and colluvial material at a depth of 0–50 cm for 
the particle grading test; a grading curve was then acquired from laboratory analyses and grading 
was done for particle samples smaller than 2 mm (Figure 9). 

Figure 8. Runoff volumes of Junction 2 and Junction 3. (a–d) The rainfall intensity (upper) and runoff

volume (lower) at the frequencies of 1%, 2%, 5%, and 10% in Xiongmao Gully.

4.3. Discharge of Debris Flow and Threshold on 26 July

Samples were taken from debris flow deposits and colluvial material at a depth of 0–50 cm for the
particle grading test; a grading curve was then acquired from laboratory analyses and grading was
done for particle samples smaller than 2 mm (Figure 9).
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The investigated section of the debris flow in Xiongmao Gully, B-B’, was d10 = 0.45 mm,
d16 = 0.8 mm, d30 = 1.24 mm, d60 = 18 mm, d84 = 36 mm, tanθ = 0.063; the critical unit discharge of
B-B’ was qc = 1.206 m3/s·m, and the critical discharge was Qc = 43.8 m3/s.

Referring to Figure 9, the granular size Test 4, P0.05 and P2 listed in Table 2, were calculated by
Equations (2) and (3); the debris flow density was γ = 1.67 × 103 kg/m3, the volumetric concentration
of the solids CV = 0.42. The field survey indicated that the maximum flow of debris flow on 26 July
2016 was Qc = 66.7 m3/s. Table 2 shows the results calculated from Figure 9 and Equation (3).

Table 2. Debris flow parameters at different points of Xiongmao Gully.

Test Location P0.05 P2 γD CV

Sample Test 4 1.3% 63.5% 1.67 0.42

As indicated in the critical discharge analysis, the rainfall conditions led to the outbreak of a debris
flow on 26 July 2016; except for the catchment topography and source distribution, the prediction of
the rainfall conditions under which debris flow could happen was the aim of this study. The debris
flow discharges at cross-section B-B’ under rainfall conditions at frequencies of 10% and 5%, calculated
using Equations (1) and (2), are shown in Figure 10, and it can be seen that debris flow was almost
impossible in Xiongmao Gully at the frequency of 10%, while debris flow was more likely under the
four rainfall patterns at the frequency of 5%.

Water 2020, 12, 552 12 of 18 

 

 
Figure 9. Grading curve of the debris flow deposits in Xiongmao Gully, for which the corresponding 
location is shown in Figure 2. 

The investigated section of the debris flow in Xiongmao Gully, B-B’, was d10 = 0.45 mm, d16 = 0.8 
mm, d30 = 1.24 mm, d60 = 18 mm, d84 = 36 mm, tanθ = 0.063; the critical unit discharge of B-B’ was qc = 
1.206 m3/s·m, and the critical discharge was Qc = 43.8 m3/s. 

Referring to Figure 9, the granular size Test 4, P0.05 and P2 listed in Table 2, were calculated by 
Equations (2) and (3); the debris flow density was γ = 1.67 × 103 kg/m3, the volumetric concentration 
of the solids CV = 0.42. The field survey indicated that the maximum flow of debris flow on 26 July 
2016 was Qc = 66.7 m3/s. Table 2 shows the results calculated from Figure 9 and Equation (3). 

Table 2. Debris flow parameters at different points of Xiongmao Gully. 

Test Location P0.05 P2 γD CV 
Sample Test 4 1.3% 63.5% 1.67 0.42 

As indicated in the critical discharge analysis, the rainfall conditions led to the outbreak of a 
debris flow on 26 July 2016; except for the catchment topography and source distribution, the 
prediction of the rainfall conditions under which debris flow could happen was the aim of this study. 
The debris flow discharges at cross-section B-B’ under rainfall conditions at frequencies of 10% and 
5%, calculated using Equations (1) and (2), are shown in Figure 10, and it can be seen that debris flow 
was almost impossible in Xiongmao Gully at the frequency of 10%, while debris flow was more likely 
under the four rainfall patterns at the frequency of 5%. 

 

Figure 10. Discharge (under consideration of blocking while Dc = 1.5) of B-B’ under the conditions
of different rainfall patterns; square represents the debris flow discharge induced by rainfall at the
frequency of 10%; inverted triangle represents the debris flow discharge induced by rainfall at the
frequency of 5%; dash/dot line represents the critical discharge on B-B’.

The horizontal dotted line in Figure 10 was the critical discharge at B-B’ corresponding to Junctions
2 and 3, showing four possible rainfall patterns leading to debris flow at the B-B’ cross-section and
that critical precipitation and duration varied for different rainfall patterns. The rainfall threshold was
maximum in 1h and 6h for Pattern I, and it was the lowest for Pattern IV.



Water 2020, 12, 552 13 of 18

5. Discussion

As shown in Figure 10, the peak discharge and time were affected by various rainfall patterns
and frequencies. In addition, the input parameters in HEC-HMS had great influence on the simulated
response, so the sensitivity analysis should be taken into consideration. Some confusion emerged on
the debris flow discharge based on Equation (1), due to the uncertainty of Dc value in particular. The
main topics discussed herein in terms of debris flow discharge include rainfall patterns, parameters,
and uncertain values.

5.1. Statistical Rainfall Patterns

Huff (1967) [24] divided the curve into first-quartile, second-quartile, third-quartile, and
fourth-quartile, and, further, a dimensionless curve was depicted by dividing it into nine probability
levels from 10%, 20%, through to 90%. According to the above listed rainfall data and K-value clustering
analysis, four patterns, cumulative percentage–duration percentage, were categorized as shown in
Figure 11. Most studies used the median curve as the typical curve, and 50% probability level was the
most suitable level for the simulation of runoff discharge in practice. Figure 11 depicts the Huff curve
at a 50% probability level, stressed by the varying dot/dash lines.
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For all of the 165 rainfall events, 14 events belonged to Pattern I (8.48%), 40 events to Pattern II
(24.24%), 71 events were Pattern III (43.03%), and the rest were Pattern IV (24.24%). The antecedent
precipitation dominated in Pattern I. The research results revealed that Pattern I tended towards a
temporal rainfall duration of less than 12 h in general. Pattern II represented rainstorms of temporal
rainfall as well.

Zhou et al. (2014) [21] pointed out that the rainfall thresholds varied in the range of 7.8~38.4 mm/h
for debris flows which occurred in the Wenchuan earthquake area. For many rainfall events, different
rainfall patterns resulted in various discharges and initial water content. Compared with Table 3,
the rainfall threshold of the critical discharge of debris flow varied with rainfall patterns, and the
maximum hourly rainfall intensities of Pattern II, Pattern III, and Pattern IV at earlier stage were
consistent with the results of the pre-study, while the maximum hourly rainfall intensity was 97.3
mm/h for Pattern I, the abrupt heavy rain mode. It was shown from the maximum rainfall threshold at
earlier stage of 1 h and 6 h that antecedent precipitation made the threshold value decrease compared
to heavy rainfall of a short duration (Pattern I).

Table 3. The rainfall threshold at the time of critical discharge on C-C’.

Rainfall Pattern Time (min)
Maximum Precipitation at Earlier Stage (mm)

1 h 6 h

Pattern I 410 97.3 132.7
Pattern II 720 20.9 96.1
Pattern III 1010 10.7 64
Pattern IV 1320 9.9 53.5

5.2. Parameter Sensitivity Analysis of HEC-HMS

For the hydrograph discharge, sampling tests ensured the accuracy of values such as initial storage,
maximum surface storage, and CN values, geographical and climatic factors, potential maximum
retention, and maximum vegetation interception proposed in the literature [34,36,38,45]. Based on the
method of sensitivity analysis [13], the sensitivity of HEC-HMS simulated flow discharge with four
parameters, as presented in Table 4.

Table 4. Parameters sensibility analysis for HEC-HMS simulations of hydrological response.

Parameters
The Change Ratio of Peak Flow after a Certain Proportion of Single

Increase/Decrease

The Basic Condition Increased by 10% Lowered by 10%

CN 85 0.28 −0.16
Vegetation interception 13 mm −0.2 2

Initial storage 6% 0.01 −0.01
Surface storage 14 mm −0.02 0.02

With the increasing/decreasing parameters from the simulations, the results were simulated as
different percentages of discharge relative to the base case, revealing that CN values plus 10% or
minus 10% led to a 28% increase and 16% decrease of peak discharge, respectively. The valuing of
CN had a significant influence on flow discharge, while other parameters had a weak influence in
Xiongmao Gully.

5.3. Debris Flow Discharge

For the debris flow discharge, Qp and Cv were based on particle size and specific weight of debris
flow or water, and Equation (1) was selected to avoid more parameters beyond Dc. Dc, valued with
the blocking degree of channel, affected discharge significantly. The lowest early warning area when
channel blocking (while Dc = 1.0) was neglected is shown in Figure 12. Compared with Figure 10
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(Dc = 1.5), considering the slight blocking, C-C’ was selected as the analytic crossing section for
observable initiation, which could reduce influence on the prediction results for various Dc values.
All the patterns at 2% rainfall frequency led to sediment initiation, while discharge may increase along
the channel in reality. At the frequency of 5%, shorter durations at 2% frequency generated larger
runoff in the Xiongmao catchment.
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6. Conclusions

It was indicated by field survey that the 2016 outbreak of debris flow in Xiongmao Gully was
due to rainfall runoff flooding and erosion of earlier alluvial deposits along the channel banks and
bed. Laboratory test relations were used to calculate the debris flow discharge on 26 July 2016, which
was lower than the discharge recorded in the field survey. Based on the analyses presented above,
the following conclusions were drawn.

Increasing concentrations of runoff and abundant channel sediment incurred debris flow.
The gentle gradient and straight channel upstream and midstream ensured that debris flow on
Xiongmao Gully developed slightly with increasing concentration and discharge. With a return period
of 2%, deposition was initiated primarily in the wide middle of the stream.

The critical discharge at the B-B’ cross-section was 43.8 m3/s, lower than that recorded in the
morphological survey on the critical discharge of debris flow Qc = 66.7 m3/s (at the frequency of 2%).

K-value clustering analysis of the precipitation revealed that there were four rainfall patterns.
Pattern I and Pattern II represented cumulative rainfall growing fastest in the duration from 0% to 25%,
characterized by heavy rainfall with short duration, which accounted for 32.7% of events; the duration
period in which rainfall was concentrated most was in the range of 25~50% for Pattern III and Pattern
IV, in proportion of 67.3%.

Debris flow was more likely to occur under four rainfall patterns at the frequency of 5% in
Xiongmao Gully; however, with the debris material decreasing upstream, a rainfall frequency of 2%
would be required.
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