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Abstract: While significant studies have been conducted in Intermittently Closed and Open Lakes
and Lagoons (ICOLLs), very few have employed Lagrangian drifters. With recent attention on the use
of GPS-tracked Lagrangian drifters to study the hydrodynamics of estuaries, there is a need to assess
the potential for calibrating models using Lagrangian drifter data. Here, we calibrated and validated
a hydrodynamic model in Currimundi Lake, Australia using both Eulerian and Lagrangian velocity
field measurements in an open entrance condition. The results showed that there was a higher level of
correlation (R? = 0.94) between model output and observed velocity data for the Eulerian calibration
compared to that of Lagrangian calibration (R? = 0.56). This lack of correlation between model
and Lagrangian data is a result of apparent difficulties in the use of Lagrangian data in Eulerian
(fixed-mesh) hydrodynamic models. Furthermore, Eulerian and Lagrangian devices systematically
observe different spatio-temporal scales in the flow with larger variability in the Lagrangian data.
Despite these, the results show that Lagrangian calibration resulted in optimum Manning coefficients
(n = 0.023) equivalent to those observed through Eulerian calibration. Therefore, Lagrangian data has
the potential to be used in hydrodynamic model calibration in such aquatic systems.

Keywords: estuary; Eulerian instruments; Lagrangian drifters; hydrodynamic model accuracy;
model calibration

1. Introduction

Hydrodynamic models are essential tools for estuarine and coastal management [1] and have
been used in studies of water quality [2], sediment transport [3], and predicting the impact of different
climatic scenarios on estuaries and coastal waters [4]. These models also play significant roles in flood
forecasting, contaminant modelling, and changes to estuaries and coastal morphology [5-7]. However,
many of these applications contain inaccuracies resulting from model uncertainties, including from
physical and numerical aspects of shallow water flow. Topography, boundary conditions, time steps
and modelling discretization and computational errors are the main sources of error that result in
uncertainties in the models [8-10]. The governing equations may not account for such complex
physical processes and their interactions. Simplifying the dimensions and forcing terms to conserve
computations [11], and inaccuracies in the input data, such as boundary conditions and bathymetry,
can also contribute uncertainties.
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Model calibration and validation by refining model parameters are standard approaches for
reducing uncertainties. Improving the accuracy of hydrodynamic model output through calibration
and validation is achieved by tuning the model parameters using a systematic comparison of simulated
to measured data [12,13]. The accuracy of hydrodynamic model outputs is restricted by the quality
and spatiotemporal coverage of available data. Direct measurement of water levels and velocities can
contribute to the understanding of the hydrodynamics of tidal estuaries and provide a reliable source
of data for the calibration and validation of hydrodynamic models [14]. To obtain confidence in this
understanding, measurements must cover a range of spatial and temporal variabilities of velocities
and water levels [15].

Flow parameters in estuaries have traditionally been obtained from Eulerian, fixed position devices
such as Acoustic Doppler Velocimeters (ADV) and Acoustic Doppler Current Profilers (ADCP) [16].
An alternative is the Lagrangian approach in which drifters that move with the flow are deployed to
obtain flow measurements [17,18]. While the Eulerian approach provides limited coverage and sparse
measurements, a combined Eulerian-Lagrangian approach provides more insight into environmental
hydrodynamics. ADCP can be supplemented by a cluster of GPS-tracked drifters to collect flow—current
measurements in the domain of interest [19,20]. GPS-tracked drifters have proved to be an efficient
instrument in characterizing the hydrodynamics of a water body as they provide both spatial and
temporal coverage [21].

Drifters validated in surf zones [15,22] and more recently in tidal inlets and estuaries [17], showed
that drifter-Lagrangian and fixed-device velocities agree well (R? > 0.92) in a tidal inlet with depths
<10 m and peak velocities < 1 m/s. Suara et al. [23] extended the evaluation of drifter data into the
inner section of a bounded tidal estuary with depth (2-3 m) and velocity (<0.5 m/s) using correlation,
spectral, and coherence analyses. It was shown that drifters can assess surface flow dynamics of tidal
waters in relation to large- and small-scale processes where ADCPs are not suitable. Although drifters
can cover large areas, facilitating better insights into estuarine dynamics, a more complete study of
such dynamics can only be achieved from hydrodynamics models. While recent efforts have focused
on the use of Lagrangian drifters to examine flow dynamics of estuaries [24-26], there is limited work
in evaluating the potential improvement in the accuracy of hydrodynamic models using Lagrangian
drifter datasets.

Intermittently Closed and Open Lakes and Lagoons (ICOLLs) are a dynamic form of estuary which
alternate between being open or closed to the ocean. They are mostly located in the South-East and
South-West of the Australian mainland, as well as in Tasmania [27]. Major pressures on ICOLLs include
sediment and nutrient transport and changes in entrance dynamics [28]. Recent studies highlight that
nutrient inputs lowered the water quality in Eastern Australian ICOLLs [29]. Management issues
are exacerbated by the cyclic nature of the entrance. Consequently, comprehensive spatio-temporal
monitoring and modelling are necessary to fully investigate the dynamics of an ICOLL and enhance
coastal management.

In this research, we focused on improving the accuracy of hydrodynamic modelling of estuaries
using combined Eulerian and Lagrangian datasets. The current work was conducted in Currimundi
Lake, (Longitude 153°08’10” E, Latitude 26°45"40” S) (Figure 1), a coastal lagoon located on Queensland’s
Sunshine Coast. The estuary is classified within the context of Intermittently Closed and Open Lakes
and Lagoons (ICOLLs) and is significantly affected by urbanization, recreation, environmental, social,
and economic activities like many other Australian estuaries.

Using field data collected during open conditions in Currimundi Lake, we aimed at (i) evaluating
the agreement between fixed-position instrumentation (Eulerian) and drifter (Lagrangian) velocity
measurements in the channel, (ii) calibrating the hydrodynamic model (Delft3D FM) for Currimundi
Lake using Eulerian and Lagrangian datasets via an automatic calibration methodology, and (iii)
evaluating the improvement in model accuracies for the Lagrangian and Eulerian datasets. This
paper is organised as follows: the materials and methods which include study area, field experiment,
instrumentation, data analysis and hydrodynamic model setup are described in Section 2. A comparison
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between observed Lagrangian drifter and Eulerian ADV velocities in addition to a description of the
calibration and validation procedure and results are presented in Section 3. In Section 4, we discuss
the effects of Lagrangian calibration on hydrodynamic model accuracy, followed by a conclusion in
Section 5.

2. Materials and Methods

2.1. Study Area

The field study location, Currimundi Lake main channel, during an open inlet condition is
considered a micro-tidal estuary characterized by a semi-diurnal tidal pattern with a maximum spring
tide of 0.8 m. The depth of the channel in mid-estuary varies between 3-5 m while the width varies
between 300 m at the mouth and 70 m near the Pontoon (Figure 1). Freshwater discharges into
Currimundi Lake system through Lake Kawana via a weir located 3.6 km from the channel inlet.
The average discharge rate is 80 ML/day when the mouth is open. Since 1960, Currimundi Lake
catchment area has experienced changes in land use becoming significantly urbanized and a center for
recreational activities and fishing [26,30]. The Currimudi Lake main channel is connected to the ocean
and upstream is fed by a constructed canal water body and tributaries (Figure 1). There is a connection
to Lake Kawana via a weir, which is located 0.65 m above the AHD. A pumping regime of 1.8 ML/day
from Mooloolah River into Lake Kawana and then into Currimundi Lake also contributes to ensure
that water quality in the canal system is maintained [31].

2.2. Field Experiment Descriptions and Instrumentation

The field experiment was undertaken for 21 h during both ebb and flood conditions (27-28 April
2015) along the 2 km, relatively straight channel reach, downstream of the pontoon (Figure 1). The
key forcings during an open condition for Currimundi Lake are wind, tide and discharge. These
conditions varied during the 21-h experiment (Table 1). The field experiment focused on obtaining the
flow velocity at the near surface using GPS-tracked floating drifters and fixed ADV.

Lagrangian drifters used in this study are low cost, made of PVC cylindrical pipes with 4 cm
diameter and 50 cm length. The drifters design [18] contained off-the-shelf Holux GPS data loggers
with absolute position accuracy between 2-3 m and were sampled at 1 Hz. A flock of 18 drifters were
deployed in Currimundi Lake on 28 April 2015 in clusters of four at flood tide around 13:00 on 28
April and retrieved at around 16:00 the same day; two drifters were lost and two experienced logging
errors. Drifter deployments were undertaken during a flood tide within the straight section of the
channel between the bridge and pontoon (points A and B in Figure 1). Velocities were measured with a
SontekTM 3D side-looking probe micro-ADV (16 MHz).The ADV was mounted 0.5 m below the water
surface at the pontoon (B) and sampled continuously at 50 Hz during the 21 h period from 19:00 on 27
April to 16:00 on 28 April (Figure 2).
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Figure 1. Aerial view of Currimundi Lake catchment, main channel including ADV and drifter’s
deployment locations, model boundary, observation point (C) and tidal gauge station; (map is created
using ArcGIS software by Esri). Drifters were deployed at point A and retrieved at point B.
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Figure 2. Surveyed transect and 5 m, 2014 LiDAR bathymetry next to the pontoon near B (in Figure 1).
The solid line is the water level at high tide at 5:10 a.m. and the dashed line is the water level at low
tide at 14:00 on 27 April 2015.
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Table 1. Overview of the environmental conditions and instrumentation during the experiment.

Inlet . Tidal Wate‘r Discharge Wind Speed Instrument Sample
Condition Date Tide Range Elevation  Range Range (m/s) Deployed Frequency
(m) (m) (m®/s) (HZ)
ADV- Sontek-2D
Open 27/04/2015 Ebb 0.4 0.2 0.6-17 0-4.0 side-looking (16 MHz) 50
LR
drifters-Holux-GPS-
Open  28/042015 Flood/Ebb 0.6 07 0.15-30 0-4.0 tracked-specification: 1

diameter: 4 cm height:
50 cm with ~47 cm
submerged height

2.3. Quality Control and Data Analysis

The ADV data sets were quality-controlled and postprocessed to remove communication errors.
Data points with correlations <60% and signal-to-noise ratios <5 dB were removed [32,33]. The drifter
position data were quality controlled using velocity and acceleration de-spiking. Drifter positions with
velocities >0.4 m/s were removed using a threshold of at least twice the expected peak velocity based
on the previous flow history [23,34]. Sections of the trajectories where the drifters were trapped near
banks or affected by proximity to moving objects, like boats, were removed using MATLAB scripts and
experimental event logs. Unfiltered drifter data are not suitable for measuring small-scale processes in
low flow applications because of the inherent position error that manifests as a large speed variance
(02 ~ 0.0005 m? s72) in stationary tests at frequencies F>0.01 Hz. Therefore, position time series were
low-pass filtered with a cut off frequency of Fc = 0.01 Hz.

2.4. Model Setup

2.4.1. Hydrodynamic Model

The hydrodynamic model for Currimundi Lake was developed using Delft3D FM, which has
been widely used in coastal, river, and estuarine environments [35-39]. This multi-dimensional (2D or
3D) model is able to solve the Navier-Stokes equations for an incompressible fluid, under the shallow
water equations and the Boussinesq assumptions [40]. The shallow water equations are derived from
the Navier-Stokes equations assuming depth averaging and hydrostatic pressure distributions [41].
During the open condition of the entrance, salinity measured by the Sunshine Coast Council (SCC),
varied between 25 and 33 g/l and tends to be well mixed vertically over large parts of the lake, which
further justifies the use of a 2D model for the area of interest.

Calculations are performed in each cell using a cell-centred finite volume method. D-Flow FM
uses an explicit advection scheme, which means the movement of an advected quantity is strictly
limited to one grid interval in one-time step. To ensure the numerical stability of the explicit solver, the
time step size of the model (At) is calculated automatically by the computational kernel, such that the
maximum allowed Courant number is 0.7, the value advised in Delft3D FM manual. The Courant
number represents the spacing portion of a grid cell that a flow passes through in one-time step.
In vertically averaged simulations, dispersion is not simulated because the vertical profile of the
horizontal velocity is not resolved, but dispersion can be modelled as a viscosity coefficient and a
velocity gradient [40]. Horizontal eddy viscosity is held uniform throughout the domain of interest,
specified at a value of one based on a default setting in Delft3D FM manual. For bed roughness, a
Manning’s coefficient equivalent to 0.023 was specified in the first model simulation, selected based on
the bed material surveyed in the main body of Currimundi Lake [42]. This value falls within feasible
ranges of roughness parameters based on the literature [43,44]. Being in the middle of a sensible
range, this value is chosen to be large enough to compensate for the model errors—mostly bathymetric
errors—throughout the calibration. In the calibration process, Manning’s coefficient is adjusted to
achieve the best match between modelled and observed measurements.
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2.4.2. Flow Grid and Bathymetry

An unstructured, curvilinear finite-element grid was developed following the channel morphology
with a relative high-resolution average grid of 5 m at the study site (Figure 1). To ensure that the model
output was independent of the grid resolution, a grid independency test was performed. Five different
grids were constructed in the minimum size range from 25 m down to 2 m. The cross-sectional average
velocity at the middle of the domain (Point C in Figure 1) was used to examine the mesh convergence.
The velocity was chosen in lieu of water level because the water level measured via a gauging station
(Figure 1) was used for the downstream boundary condition. Results showed that the average velocity
was not sensitive to further refinement beyond a minimum grid size of 5 m. However, an increase
in the minimum grid size caused an increase in the cross-sectional average velocity. The bathymetry
for the model to cover the model domain of interest was a LIDAR 5 m dataset [45], which had the
highest coverage in the area of interest compared to the acoustic and manual bathymetry available
at the time of this experiment. However, due to the uncertainties associated in LiDAR bathymetry
that cause potential bias, a bathymetry correction process was undertaken in Section 3.2.1. A uniform
roughness parameterised using Manning’s coefficient, n, was assumed throughout the domain, and
hence a constant value was adopted for each simulation.

2.4.3. Model Forcing and Boundary Condition

The area of focus for this work was the main channel of Currimundi Lake, which is directly
connected to the ocean through a tidal inlet. The modelled domain extends from this inlet to about 2
km upstream of the channel (Figure 1). The model is forced using discharge for the upstream boundary
and water level at the downstream boundary. The discharge data were obtained from cross-sectional
averaging of the ADV measurements at the pontoon and the water level data were obtained from
the tidal gauging station at the bridge, approximately 1 km upstream from the boundary located
at the mouth (Figure 1). The model time window was 21 h from 19:00 on 27 April to 16:00 on 28
April. A spin up time of 21 h including one high and two low tides was included for a realistic initial
condition propagation.

Currimundi Lake is characterized by a small tidal range from 0.4 to 0.6 m. The discharge in the
lake ranges between 0.15-30 m3/s as a function of the tidal phase while the depth ranges between
4.2 m- 0.15 mAHD. With the restricted model domain extent, there was a need to compare the
contributions of the unmodeled sections of the Currimundi Lake to the hydrodynamics of the main
channel. The percentage by volume of the water contribution from the unmodeled sections of the
Currimundi Lake was estimated to be 16%. The comparison between the model results with and
without the addition of 16% discharge from the South-West channel showed no discernible difference
in velocities and water levels in the main channel. In addition, the total rainfall within the catchment
seven days prior to the field measurements used in the study was less than 10 mm, thus, the stormwater
runoff was assumed insignificant [26]. The input from the unmodelled section was therefore assumed
negligible and ignored in the model.

3. Results and Discussion
3.1. Comparison and Correlation Analysis: Lagrangian and Eulerian Measurements

3.1.1. Comparison

The temporal variability of mean horizontal velocity measured by the ADV is presented in Figure 3.
A 200 s interval moving average was applied to the entire dataset; the moving average interval was
chosen based on work by Chanson et al. [46] in a similar estuary. The surface water velocity collected
by drifters during the experiment covered an area from 1000 m downstream to ~200 m upstream (from
A to B in Figure 1) of the fixed instrument (ADV).
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Both the drifter and ADV data captured the tidal scale fluctuation and the oscillation of the
velocities at time periods less than the tidal period, likely related to the resonance within the channel.
The drifter velocities are relatively higher than ADV velocities during peak flows and the reverse
during the slack water. These larger flow velocities are likely related to the combined contribution
of the large surface current and wind-induced surface current flows and cannot be captured by the
ADV, which is a point measurement placed 0.5 m above the water surface. On the other hand, the slack
periods had velocities, which were approximately zero, which were within the noise level of the drifter
when evaluated from stationary tests [23]. In addition, slack water is typically characterized by low
frequency eddies with frequencies >0.01 Hz larger than the useful frequency range of the drifters [23].
This limitation of drifters at such low velocities has been highlighted in previous studies [17]

0.25 T T T T T T T T T T 1.1
---------- LR drifter (m/s)
o2l ADV (m/s) o
|| — * —Water level (m) s 41
0.15 [ 05
01F ¢ E
:é; ;f 10.8 %
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. \
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-0.05 - % ¥
01 ¥ X 10.5
_0.15 1 | | 1 | | 1 1 | 1 0.4
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Time in hours from 00:00 on 27/04/2015

Figure 3. Mean horizontal velocity for Eulerian (ADV) and Lagrangian (drifters) surface measurements
as a function of time. Mean velocities were estimated by a moving average with a window size of 200 s.

3.1.2. Correlation Analysis

The field experiment was designed so that all drifters passed through the transect where the
ADV was installed allowing a correlation comparison of the Lagrangian-drifter velocity with the
Eulerian-fixed position velocity measurements. For each drifter release, the drifter mean horizontal
Lagrangian velocity (V1) was an average of all velocities from those drifters that passed within a
specific radius (r) of the ADV at a specific time interval. Therefore, the velocities from multiple drifters
that passed through the ADV could contribute to Vy.

To investigate the correlation that exists between drifter-mean Lagrangian (V) and Eulerian (V)
horizontal velocities, Vi, and Vg were calculated at different proximities from the ADV. To properly
describe the flow field, a spatial binning was undertaken for drifter observations. Considering the
streamwise velocity, which is positive in the upstream direction, we examined this correlation in bins
with a radius varying from 20 to 100 m. The streamwise velocity was obtained following the work in
Suara et al. [23].
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To ensure the mean velocity in each bin was statistically stable, we calculated the degrees of freedom
(DoF), which measures the number of independent measurements, for each bin. A minimum of five
DoF is required for statistical stability [47,48]. For Lagrangian data where consecutive measurements
are not necessarily independent, DoF is calculated as a function of data density in a bin, i.e., product of
the number of drifters and the average time each drifter spends in a bin, normalised by the decorrelation
time scale, i.e., eddy turnover time. Following [47], the DoF can be calculated from Equation (1):

n T
=17

DoF = ———
(6] TL

)
where j denotes each individual drifter, TT is the time each drifter spends inside an individual
bin, and Ty, is the Lagrangian integral time obtained from calculating the ensemble average of the
auto-covariance function of Lagrangian velocity [47,48]. Here, T1, is approximately 20 s, according
to [48] in a small estuary. Thus, 100 s of drifter data within each bin is required to meet the minimum
five DoF criterion to be statistically significant.

The Eulerian velocity (Vg) corresponding to (V) is calculated as the time averaged over the
period the drifters were within the specific radius of the ADV.

1 (™
Vg f V; ot 2)

-t Jy,

where V; is instantaneous ADV velocity, and ty, t; are the entering and departing times of drifters
corresponding to V.

A sensitivity analysis was undertaken to obtain the optimum radius (r). The criteria used in the
sensitivity analyses were a DoF >5 with the greatest number of independent data points. The radius
(r) varied from 60 m down to 5 m and the optimum radius was determined to be 20 m with an R? =
0.76 (Figure 4). Increasing r to 40 m resulted in R? = 0.72. However, reducing r to 10 m, reduced the
number of points required to meet the DoF >5 constraint without improving the linear regression.
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Figure 4. Relationship between Lagrangian (V1) and Eulerian (V) mean streamwise velocities in a 20
m radius.

Cross stream velocities of the drifters (Vi) and the ADV (Vg) were rather poorly correlated
with the drifter velocities larger than ADV velocities (Figure 4). Some of the disagreements between
Eulerian velocity (Vi) and Lagrangian velocity (Vi) may be related to: (i) The difference in Eulerian and
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Lagrangian instrument sampling location: the ADV measures water velocity 0.5 m below the surface
while the drifters measure surface velocity. Because water profiles in wide open channels follow power
law functions, we corrected the ADV velocities by applying a power law for uniform equilibrium flows
in a wide-open channel. (ii) The difference in sampling volumes: the small sample volume of the ADV
responds faster to the underlying flow field compared to the larger sample volume of drifters, which
acts as a filter and is not able to capture small fluctuations. The small control volume of ADV impairs
the insight into spatial structures and dynamics of the flow [49,50] and requires the application of
considerable units of ADV [51]. (iii) Wind-induced surface flow effects on the drifters: drifters are more
responsive to the surface flow velocities induced by the wind while the ADV captures the velocity of
subsurface layers. (iv) Wind-induced slip of the drifters: approximately 30-mm unsubmerged height
of each drifter is exposed to direct wind drag resulting in the horizontal motion of the drifter, which is
dissimilar to the current motion [52]. The wind effect could impact the path and velocity of the drifter.
This effect could not be eliminated and should be considered in drifter applications particularly in low
velocity environments.

3.2. Model Calibration

Herein, the calibration of the hydrodynamic model was undertaken with two categories of datasets
and was therefore categorised into two parts: Eulerian calibration using velocity measurements collected
from a fixed-instrument (ADV) and Lagrangian calibration using velocities from GPS-tracked drifters.
Both methods were based on an error criterion and correlation between observed and simulated
velocities and were mainly used to fine tune the bed roughness coefficient through the Manning’s
coefficient (n) [53,54]. Although the Eulerian calibration [55,56] is still used for hydrodynamic models,
it is limited to sections of the water body and only reflects discrete information of flow hydrodynamics.
This limitation can be improved with a larger observation density to represent the flow condition over
a large area, which can be obtained from Lagrangian datasets. To investigate how the Lagrangian
calibration improves model performance, we calibrated and tested the model with Eulerian and
Lagrangian data separately. During the calibration process, the root-mean-square error (RMSE) of the
observed Eulerian velocity (Vops) versus Delft3D FM model velocity (Vi) was minimized to identify
an estimate of uncertain bathymetry and the roughness parameter [57] (Equation 3).

= Y v v
RMSE = Jn Y (Vsim = Vobs) ©

i=1

where Vi, is the model velocity, Vops is the measured velocity, and n is the total number
of measurements.

3.2.1. Bathymetry Correction

In most hydrodynamics models of estuaries, the pivotal calibration parameter is the bottom
roughness coefficient [58,59]. This is because there are high levels of uncertainties associated with
the estimation of bed friction from observational data [60]. However, the velocity field in estuaries is
highly dependent on the variation of the cross-sectional areas, which is dictated by the bathymetry,
especially in intertidal zones of shallow waterbodies [61,62]. Measurement uncertainties from different
survey techniques, systematic offsets due to datum differences, and channel morphology evolution are
major sources of error in bathymetry [53,63]. Therefore, prior to calibrating the hydrodynamic model
based on bed friction, we first quantified the uncertainties associated with the hydrodynamic model
output due to these bathymetric errors. The comparison of the LIDAR 5 m bathymetry data with the
manual measurements at selected cross sections showed that the LIDAR data were offset about 0.75 m
above the manual measurements (Figure 2) throughout the channel. The manual bathymetry survey
was undertaken in 2015 by our team. A manual technique was employed using a staff gage and rope.
Three sections were compared but only one is shown here. In addition to manual surveyed transects,
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we compared two transects from the main body of Currimundi lake with the LIDAR bathymetry. The
surveyed section of the main body of Currimundi lake extended from the mouth (the lake and ocean
intersection) up to 1 km upstream of the channel and was surveyed with a multibeam echo sounder in
2015. The positioning accuracy (horizontal and vertical) for this survey data was 1-2 cm. Comparing
the accuracy of manual and acoustic bathymetry to the LIDAR dataset, the first two were considered
accurate. We then corrected the LiDAR dataset to remove the bias while the manual and acoustic
data were considered as the ground truth. The bathymetric correction process was validated, and the
offset was found to be consistent with the difference between the LiDAR and the ground truth at all
locations where acoustic and manual measurements were available. Therefore, a valid bathymetry
was utilized in the model to further investigate the objective of calibrating the hydrodynamic model
by adjusting Manning’s coefficient. Because the channel was reasonably sheltered and the tide was
the major forcing during the open inlet condition in Currimundi Lake, [26] the only model parameter
for the calibration process was the roughness. This was consistent with practices in literature where
obtaining improved flow velocities is the goal [64].

Simulations are run with a systematic bathymetry data offset in a sensible range of 0.5-1.3 m,
guided by the offset observed between LiDAR and the manual measurements. A constant offset
was applied across the domain to find the best agreement between the simulated and observed
Eulerian velocities. Using the optimised bathymetry, a further calibration was applied by fine tuning
Manning’s coefficient. This was undertaken using n = 0.01-0.03 based on [65]; this range was used to
represent a roughness from firm soil to gravel bed material, which are representative substrates in
Currimundi Lake.

Figure 5 shows the R? and RMSE values between the model and ADV horizontal velocities for
different values of bathymetry offset. The RMSE reached a minimum at Az = 1 m, while the R? value
had a maximum at Az = 0.75 m. Therefore, we conclude that an optimum bathymetry offset of 1 m is
suitable to improve the model velocity in the system. The corresponding velocity time series before
and after applying the bathymetry offset are shown in Figure 6 and the corresponding scatter plots
are shown in Figure 7. Prior to the bathymetry offset, the amplitude of the simulated velocity was
considerably higher than the observed velocity contributing a systematic error that could only be
removed by bathymetry offset. It should be noted that an attempt was made to calibrate the model
with Manning’s coefficient prior to the bathymetry offset, however, this did not obtain a plausible
correlation between the simulated and observed velocities.
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Figure 5. Root-mean-square error (RMSE) and R? variations against variation in bathymetry values
show the optimum bathymetry offset.
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Figure 7. Relationship between simulated and observed velocities: (a) before 1 m bathymetry offset
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and (b) after 1 m bathymetry offset.
3.2.2. Eulerian Calibration

Further model improvement was achieved by adjusting the roughness coefficient for the entire
lake. To allow independence between the calibration and validation, 70% of the data were allocated for
calibration and 30% for validation. To optimize the roughness coefficient, the Manning’s coefficient (n)
was altered while the bathymetry was kept constant at 1 m, the optimal bathymetry offset.

The result of the optimization is presented in Figure 8. The minimum RMSE (0.0193) was obtained
atn = 0.027, while the R? value reached a maximum (0.941) at n = 0.025. Based on the range of variation
for both RMSE and R? values, a Manning’s coefficient equal to 0.025 was selected as an optimum.
Simulated and observed velocities were compared when n = 0.025 was applied. When comparing
RMSE and R? with n = 0.023 after optimum bathymetry offset (Figure 5), some improvement in the
model resulted (Figure 8). Figure 9a and b shows a good agreement and correlation between simulated
and observed velocities at n = 0.025, respectively, with 70% of the data.
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Figure 9. Eulerian calibration: (a) Observed vs. Simulated velocity at n = 0.025, (b) correlation between
observed and simulated velocity at n = 0.025.

3.2.3. Lagrangian Calibration

Difficulties in the calibration of Lagrangian data originate from the difference in the frame of
reference. The model state is characterized by Eulerian variables, which are obtained from a fixed grid
point. Here, we propose a method by which the hydrodynamic model is calibrated using Lagrangian
drifter data. Lagrangian data collected during the field experiment are used as reference data for
the calibration of the hydrodynamic model. Velocity data were obtained from a total of 16 drifters
deployed within the domain of interest, 1 km from the mouth. Drifter trajectories in the main channel of
Currimundi Lake on 28 April 2015 in flood condition when the mouth was open is shown in Figure 10.
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Figure 10. Trajectories from 13:30 to 16:00 on 28 April 2015 with an open entrance and flood condition.
Source: ArcGIS software by Esri.

The drifter trajectories were recorded every second and postprocessed as discussed in Section 2.3.
To allow quantitative comparison of the drifter data with the model velocities, a spatio-temporal
binning of the drifter data was undertaken. All drifter data points were first binned into the model
grids. As multiple trajectories can constitute elements falling into a single bin, all the drifters present in
the model grids are then averaged to represent the mean Lagrangian velocity for each bin. The average
of the times for the drifter velocity for each bin represent the observation time for the corresponding bin.
It should be noted that not all model grids and times had an observation within this spatio-temporal
binning (Figure 11).

Drifter trajecto
(a) ] ry

Y IYIYYi /\2//////

7777 7777 P AP 7777 7277
Sampling window
(b) /////\/////////_L

77 77 ///K/ F77 7777777
Simulated velocity mesh

Figure 11. Schematic spatio-temporal window of the domain. Grey dashed lines show the schematic
drifter trajectories. The velocity arrow (V)) in (a) denotes the mean velocity of drifters inside each cell,
while the velocity arrow (Vs) in (b) denotes the mean simulated velocity obtained from the model in

the same time frame.

To undertake Lagrangian calibration, an algorithm was developed in MATLAB that identified the
optimum values of Manning’s coefficient through minimizing the difference between simulated and
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observed velocities using RMSE and R? criteria. The calibration process iteratively alters Manning’s
coefficient until the best possible adjustment between the simulated and the drifter velocities is achieved.
The bathymetry used for calibration is the improved bathymetry (after 1 m offset). For calibration
purposes, the velocity extracted from the model was compared to the corresponding depth-averaged
velocity of the drifter location throughout the domain.

In Eulerian calibration, the best model performance was obtained with a Manning’s coefficient
of 0.025 and the best correlation achieved when the Manning’s n = 0.025 was assigned (Figure 9b).
Comparing the Eulerian calibration with Lagrangian calibration results, there was a slight difference in
achieving an optimum Manning’s coefficient; the optimum Manning’s coefficient through Eulerian
calibration is n = 0.025; for the Lagrangian calibration, the optimum coefficient was n = 0.023 (Figure 12a).
On the other hand, the RMSE comparison between Eulerian and Lagrangian calibrations showed
approximately 50% less improvement in the Lagrangian calibration (Figures 8 and 12a). The correlation
between observed and simulated velocities through Lagrangian calibration also shows about 40% less
improvement in the results (Figures 8 and 12b).

0.35 : . . . ; . .
0.045 - . T 0.565 e
—o— RUSE (i)
—e—R2 03} ) -~ :
10.56 ¢ -
0.0448 |- —~ %o -~
5 .
Lo25) o9
. 10555 < & o
3 L = 0,0 © 3
2 0.0446 S 02 00 00 5K
= = o
w 1055 K [ Oo ®
- | ®
= 0.0444 015 A
©
10545 =
£ 01
0.0442 @
- 1054
0.05
0.044 0.535 % | | I I
0.015 0.02 0.025 003 0.035 0.04 | 01 015 02 025 03 035
Manning's coefficient (n) Observed Lagrangian velocity (m/s)
(a) (b)

Figure 12. Lagrangian calibration: (a) RMSE and R? variations against Manning’s coefficient iterations,
(b) relationship between observed Lagrangian drifters and simulated velocities.

3.3. Model Validation

Our calibrated model was validated by comparing simulated velocities with 30% of the velocity
measurements for both Eulerian and Lagrangian data. Based on the Eulerian calibration results in
Section 4, the optimum Manning’s coefficient was n = 0.025. The Eulerian comparison between
observed and simulated velocities is illustrated in Figure 13a. The RMSE and R? calculated for
this simulation was 0.014 m/s and 0.954, respectively, yielding a successful calibration and some
improvement in model performance.

A corresponding Lagrangian validation was also undertaken by using 30% of the drifter velocity
data when the model simulations used a Manning’s coefficient of n = 0.023 as noted in Lagrangian
calibration (Section 4). The calculated RMSE and R? criteria showed less improvement compared to the
Eulerian validation results (Figure 13b). However, RMSE and R? values for this simulation were 0.042
m/s and 0.53, respectively, which in comparison to the RMSE and R? values for Lagrangian calibration
(0.044 m/s and 0.56 respectively), reflected a successful calibration.
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using 30% of the data; (b) relationship between observed Lagrangian velocity and simulated velocity.

4. Discussion

A direct comparison between Eulerian derived (ADV) velocity and Lagrangian derived (drifter)
velocity data was undertaken. The drifter observations had the best correlation in streamwise velocities
with the ADV positioned next to the surface within a horizontal radius r = 20 m of the fixed ADV
instrument. Consistent with this, Suara et al. [23] achieved a strong correlation between Eulerian and
Lagrangian velocity measurements in the streamwise direction in a tidal estuary. Schmidt et al. [22]
and Spydell et al. [17] found a very good correlation in the streamwise direction between the velocity
measurements of drifters and a fixed-position instrument in a surf-zone and a tidal inlet, respectively.
These findings highlight the potential in the use of Lagrangian field data to calibrate Eulerian-based
hydrodynamic models. Figure 4 shows some disagreement between the Eulerian velocity measured by
ADV and Lagrangian velocity measured by drifters. The large values of drifter streamwise velocity
compared to ADV velocity can be explained by methodological and practical limitations that exist
in the application of Eulerian and Lagrangian devices. These limitations include: (1) the differences
in distances from the free surface water, which means that the drifters measure the surface velocity
while the ADV measures the velocity in a corresponding depth; (2) the inability of the ADV to sample
the spatial structure of a large volume in the domain; (3) the wind-induced currents, which affect
the drifters more than the ADV; and (4) the inevitable wind drag effect on the unsubmerged height
of the drifter. These restrictions are unavoidable and require attention when interpreting results of
comparison between drifter and fixed Eulerian devices.

Eulerian and Lagrangian methods of calibration were applied using velocity time series data
and GPS-tracked drifter velocities, respectively, and a comparison between Eulerian and Lagrangian
calibration was established to investigate the effect of Lagrangian calibration on the hydrodynamic
model improvement. The comparison showed both similarities and differences. Although, an optimum
roughness was obtained, results here showed that for both calibrations, the sensitivity of the simulated
velocity to bed roughness coefficient was low. This indicates that, in the case of Currimundi Lake,
the velocity field is not very sensitive to errors in the imposed bed friction. RMSE and R? variations
calculated through the Eulerian method showed that the optimum Manning’s coefficient that minimized
the error and maximized the correlation between observed and simulated velocity was in accordance
with the one obtained through the Lagrangian method in the range of n = 0.023 to 0.025.

Considering the empirical uncertainties associated with calculating Manning’s roughness, the
Lagrangian calibration method can be an alternative to the Eulerian method. This study showed that
the correlation between the observed and simulated velocity was much higher when the model was
calibrated using Eulerian time series velocity. However, the level of agreement between velocity values
in Figures 8 and 12a confirms that there are no discrepancies between the observed and simulated
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velocities. Some of the disagreements between observed and simulated velocities in the Lagrangian
method of calibration can be justified based on the application of a two-dimensional model with
vertically-averaged velocity, which is inherently different compared to the surface velocities of the
drifters. The effect of wind drag, the submerged length of the drifter compared to the submerged
length of ADV, and the different reference frame between drifters (Lagrangian frame) and the model
(Eulerian frame) are also possible factors for disagreement between the observed and simulated values.
The level of correlation observed between the drifters and the hydrodynamic model output (R? = 0.56)
was consistent with similar comparisons in other research. For example, the work of Huhn et al. [66]
showed the correlation between drifters and modelled velocity in a tidal driven estuary with hourly
position data, where R? varied between 0.64 and 0.8 during four experiments. While in the work
undertaken by Abascal et al. [67] in the coast of Spain with hourly averaged currents, the correlation
observed was R? =0.67 to 0.74. These levels of correlation are expected because the hydrodynamic
model outputs represent a special mean velocity covering the minimum size of the grid (5 m) while
drifters respond to higher frequency fluctuation. We performed a comparison of the model and drifters
using two time average windows, 400 s and 800 s. The results showed that in comparison with the
correlation observed using the 200 s window proposed in the paper, the correlation increased to
R? = 0.66 and R? = 0.75 for 400 s and 800 s windows, respectively. This shows that the comparison
improves when higher frequency values of the drifters are removed through averaging.

5. Conclusions

Generally, performance of a hydrodynamic model depends on two sources of information; first
the properties of the system under simulation such as bed roughness, viscosity and bathymetry,
and second, measurements of the system state, such as velocity and water level. In our calibration
process, we adjusted the former until the agreement between the latter and the model results could
be judged as “reasonably good”. However, as such, “prior information” of the system was generally
associated with a certain level of noise and even when the model result is considered as a good match
to measurements, it may have significant errors [68]. Furthermore, Tiedeman et al. [69] indicated that
model calibration only cannot definitely decrease model uncertainties. Data assimilation, based on
Bayes theorem incorporates these two sources of information into a “posterior parameter distribution”
that defines both the limitation of the calibration process and knowledge of parameters that have
not been “touched” in this process. Based on these considerations and findings, data assimilation is
suggested as a tool by which the residual uncertainties associated with the two sources of information
outlined above can be reduced further. Our results indicated a good model performance when
Eulerian calibration was undertaken even without data assimilation. However, applying a data
assimilation technique can favourably compensate for the discrepancies in model performance when
Lagrangian assimilation is undertaken. Lagrangian data covers a wide range of spatio-temporal
scales within the system and captures the underlying physical processes that cannot be captured by a
hydrodynamic model. Therefore, the result of Lagrangian calibration here highlights that a Lagrangian
data assimilation approach currently under investigation has the potential to further improve the
accuracy of hydrodynamic models.

The results show that there is a higher level of correlation (R? = 0.94) between model output
and observed velocity data for the Eulerian calibration compared to that of Lagrangian calibration
(R? = 0.56). This lack of correlation between the model and Lagrangian data is a result of apparent
differences between Lagrangian data and Eulerian (fixed-mesh) hydrodynamic model outputs. These
differences can be due to the application of a two-dimensional, average velocity model, and the effects
of wind-induced currents and turbulence in the flow. However, an increase in the correlation factor
was detected when the time average window increased to 400 s and 800 s. Despite this, the results show
that Lagrangian calibration resulted in optimum Manning coefficients (n = 0.023) equivalent to those
observed through Eulerian calibration. Therefore, it is expected that through the application of a data
assimilation methodology, the hydrodynamic model can be further improved using Lagrangian data.
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