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Abstract: Water quality forecasting is increasingly significant for agricultural management and
environmental protection. Enormous amounts of water quality data are collected by advanced
sensors, which leads to an interest in using data-driven models for predicting trends in water quality.
However, the unpredictable background noises introduced during water quality monitoring seriously
degrade the performance of those models. Meanwhile, artificial neural networks (ANN) with
feed-forward architecture lack the capability of maintaining and utilizing the accumulated temporal
information, which leads to biased predictions in processing time series data. Hence, we propose
a water quality predictive model based on a combination of Kernal Principal Component Analysis
(kPCA) and Recurrent Neural Network (RNN) to forecast the trend of dissolved oxygen. Water
quality variables are reconstructed based on the kPCA method, which aims to reduce the noise from
the raw sensory data and preserve actionable information. With the RNN’s recurrent connections, our
model can make use of the previous information in predicting the trend in the future. Data collected
from Burnett River, Australia was applied to evaluate our kPCA-RNN model. The kPCA-RNN
model achieved R2 scores up to 0.908, 0.823, and 0.671 for predicting the concentration of dissolved
oxygen in the upcoming 1, 2 and 3 hours, respectively. Compared to current data-driven methods like
Feed-forward neural network (FFNN), support vector regression (SVR) and general regression neural
network (GRNN), the predictive accuracy of the kPCA-RNN model was at least 8%, 17% and 12%
better than the comparative models in these three cases. The study demonstrates the effectiveness of
the kPAC-RNN modeling technique in predicting water quality variables with noisy sensory data.

Keywords: water quality; machine learning; recurrent neural network; PCA

1. Introduction

Surface water quality has a strong dependence on the nature and extent of agricultural, industrial
and other anthropogenic activities within a region’s catchments [1]. The reliable prediction of water
quality is crucial in order for decision-makers to improve water quality management and protection
activities [2]. However, forecasting the temporal variation of water quality parameters for surface river
system can be a significantly challenging task owing to rapidly changing environmental conditions
and insufficiently historical data records [3].

Dissolved oxygen (DO) content is one of the most vital water quality variables as it directly indicates
the status of the aquatic ecosystem and its ability to sustain aquatic life [4]. Rapid decomposition of
organic materials, including manure or wastewater sources, can quickly take the DO out of water
in few hours, resulting in deficient DO levels that can lead to stress and death of aquatic fauna [5].
For example, DO levels that remain below 1–2 mg/L for a few hours can result in large fish kills.
In pond management, an aeration system can quickly increase dissolved oxygen levels if the decreasing
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of dissolved oxygen in the water can be predicted. Hence, short-term predictions of DO are critical in
delivering good water quality management [6].

Various mechanism models have been applied for predicting the concentration of DO [7].
The mechanism model considers many factors such as physical, chemical, and biological factors
affecting the change of water quality. The common mechanism models include the BASINS model
system [8], the MIKE model system [9], and the QUAL2K model system [10]. However, it is often
challenging to simulate the target water quality systems when lacking adequate monitoring data or
background information [11]. Consequently, those models are not likely to be able to be generalized
without significant parameter adjustment [12].

Data-driven models have received increasing attention in predicting the concentration of DO
based on the sensory data. For example, in the study proposed by Zhang [13], a multi-layer feedforward
neural network (FFNN) is designed for predicting the trend of dissolved oxygen of the Baffle Creek
in Australia. In their approach, a mutual information-based feature selection strategy is introduced
to pick up the relevant water quality variables for DO forecasting. Antanasijević et al. [14] tested the
effectiveness of applying general regression neural network (GRNN) models for the forecasting of DO
in the Danube River, Europe. In their experiments, 19 water quality parameters, five different data
normalization methods, and three input selection techniques were tested to find the best combination.
In addition, Li et al. [15] evaluated the performance of support vector regression (SVR) for the
prediction of DO concentration based on multiple water quality parameters. The SVR was optimized by
the particle swarm optimization algorithm and achieved superior performance than linear regression
models. Though various data-driven models have been tested in predicting the trend of DO, most
existing models lack the mechanisms in processing temporal data. Under these circumstances, seasonal
or diurnal patterns within the water quality data are hard to be captured [16].

Apart from model architectures, the quality of input data also has an enormous influence on the
data-driven model’s performance [17]. The high-frequency data collected by sensors are prevalent in
building water quality forecasting models. However, random errors generated by the environment,
instruments or network transmission are unavoidable when monitoring water quality variables [18,19].
Though techniques such as z-score and min-max are used in preprocessing input data for data-driven
models [14], those techniques aim to rescale the numeric range of water quality variables instead of
reducing sensor noise. Accordingly, the unwanted noise would be accepted by the data-driven models,
which increases the challenges for generating accurate predictions for water quality variables.

In this paper, we propose a water quality predictive model based on Kernel Principal Component
Analysis (kPCA) and Recurrent Neural Network (RNN) to solve the above issues. Our work differs
from other comparative approaches in the following two aspects:

• Kernel Principal Component Analysis (kPCA) is implemented to reconstruct the input water
quality data. Instead of feeding the water quality sensor data into the data-driven models directly,
we pick up the top-ranked principal components as the new inputs. Meanwhile, the dropped
principal components are expected to contain background noise. In this way, the reconstructed
inputs only have useful information included.

• A recurrent neural network (RNN) is designed to capture the temporal variations within water
quality variables and utilize the historical changing patterns as a guide for predicting water
quality in the future.

This study aims to evaluate the predictive accuracy of the kPCA-RNN model by comparing it
with three data-driven methods discussed above. The evaluation is undertaken on a case study of DO
concentrations in Burnett River, Australia.
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2. Material and Methods

2.1. Study Area and Monitoring Data

2.1.1. Overview

The Burnett River is located on the southern Queensland coast and flows into the coral sea of
the South Pacific Ocean. Cultivation of sugar cane and small crops are important land uses in this
region. The total area of the catchment is about 33,000 km2. Figure 1 illustrates the location and
extent of the catchment. Time series physiochemical water quality variables analysed in this study
were obtained by a YSI 6 Series sonde sensor near the Bundaberg Co-op Wharf (Figure 1) [20]. Water
quality variables such as temperature, electric conductivity (EC), pH, dissolved oxygen (DO), turbidity,
and chlorophyll-a (Chl-a) are recorded with 1 h time interval for 5 months in 2015 (Table 1).

Figure 1. Burnett River catchment area and the monitoring site. This monitoring site is part of the
Queensland Government’s water quality monitoring network [21].

Table 1. Water quality data from 1 June 2015 to 31 October 2015.

Variables No. of Data Unit Min Max Median Mean SD 1 CV 2 (%)

Temperature 3672 ◦C 16.1 27.9 21.0 21.4 2.3 11
EC 3672 uS·cm−1 613.0 49,150.0 45,750.0 44,712.1 3566.8 8
pH 3672 7.5 8.4 7.9 7.8 0.1 2
DO 3672 mg·L−1 5.2 13.0 6.8 6.9 0.9 13
Turbidity 3672 NTU 2.6 63.0 8.2 9.5 4.7 50
Chl-a 3672 µg·L−1 0.1 137.6 2.6 3.5 3.6 102

1 standard deviation; 2 coefficient of variation.
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2.1.2. Water Quality Statistical Analysis

As demonstrated in Table 1, Chl-a and turbidity have larger variability than other water quality
variables (CV > 50%). In the case of turbidity, this is due to extreme weather events [22]. The variability
of Chl-a concentration can be affected by the discharge of river, temperature, and salinity variation.
The high variability in turbidity and Chl-a are caused by a small number of observations with high
values (Figure 2). Additionally, outliers of EC tend to have lower measurement values. These outliers
can be caused by variations in river flow of other characteristics of the catchment. Ignoring those
variations may cause serious information loss.

Figure 2. Data distribution for six water quality variables.

Figure 3 illustrates the changing patterns of DO both within a day and over a consecutive number
of days. It is obvious that the concentration of DO follows a similar daily pattern, which makes it
possible to predict the changing of DO. However, when tracking the concentration of DO in a larger
time scale, it is plain to see that the mean value of the concentration of DO is increasing incrementally
in the first half of the month and reach the peak value around 21 September. After keeping the
high-level concentration for a few days, the DO level decreases gradually till the end of the month.
This situation happens when unexpected activities are happening, such as heavy rainfall, excessive
algae, and phytoplankton growth. In these circumstances, the predictive models should capture the
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daily temporal pattern when forecasting future DO concentration. Moreover, the model should be
robust so it can have stable prediction performance at different time steps.

Figure 3. The concentration of DO measured in October 2015. The orange line describes the overall
trend of DO concentration in this month. The green shape is an example of the daily pattern of DO
concentration.

Figure 4 depicts the autocorrelation of DO for 48 hourly time steps over two days. The plot shows
the correlation after the 26th lag is not statistical significance. It means that, in order to predict the
trend of DO concentration, the information in the previous 26 h is the most important. This result is
also supported by the fact that the concentration of DO follows a daily pattern (Figure 3).

Figure 4. Partial autocorrelation of DO. The concentration of DO is collected hourly.
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Hence, by both considering the partial autocorrelation results and the trends of DO under different
time scales, we choose to use the data from 24 historical time steps as the input for our predictive
model. In this way, the input can cover the information from the previous 24 h, which indicates the
complete daily pattern of the DO concentration.

2.2. kPCA-RNN Model Description

2.2.1. Kernel PCA Based Input Abstraction

Principal component analysis (PCA) is routinely applied for linear dimensionality reduction
and feature abstraction [23]. The diagonal of the correlation matrix transforms the original principal
correlated variables into principal uncorrelated (orthogonal) variables called principal components
(PCs), which are weighed as linear combinations of the original variables. The eigenvalues of the PCs
are a measure of associated variances, and the sum of the eigenvalues coincides with the total number
of variables.

The standard PCA only allows linear dimensionality reduction. However, the multivariate water
quality data have a more complicated structure which cannot be easily represented in a linear subspace.
In this paper, kernel PCA (kPCA) [24] is chosen as a nonlinear extension of PCA to implement nonlinear
dimensionality reduction for water quality variables. The kernel represents an implicit mapping of the
data to a higher dimensional space where linear PCA is performed.

The PCA problem in feature space F can be formulated as the diagonalization of an l-sample
estimate of the covariance matrix [25], which can be defined as Equation (1):

Ĉ =
1
l

l

∑
i=1

Φ(xi)Φ(xi)
T, (1)

where Φ(xi) are centred nonlinear mappings of input variables xi ∈ Rn. Then, we need to solve the
following eigenvalue problem:

λV = ĈV,

V ∈ F, λ ≥ 0.
(2)

Note that all the solutions V with λ ≥ 0 lie in the span of Φ(x1), Φ(x2), ..., Φ(xl). An equivalently
problem is defined below:

nλα = Kα, (3)

where α denotes the column vector such that V = ∑l
i=1 αiΦ(xi), and K is a kernel matrix which satisfies

the following conditions: ∫∫
K(x, y)g(x)g(y)dxdy > 0,∫

g2(x)dx < ∞,
(4)

where K(x, y) = ∑∞
i=1 αiψ(x)ψ(y), αi ≥ 0. Then, we can compute the kth nonlinear principal component

of x as the projection of Φ(x) onto the eigenvector Vk:

β(x)k = VkΦ(x) =
l

∑
i=1

αk
i K(xi, x). (5)

Then, the first p < l nonlinear components are chosen, which have the desired percentage of data
variance. By doing this, the complexity of the original data series can be greatly reduced.
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2.2.2. Recurrent Neural Network

Recurrent Neural Networks (RNN) have gained tremendous popularity over the last few years
because of their capability in handling unstructured sequential data. In contradistinction to the
feed-forward neural network, RNN has the information travelling in both directions. Computations
derived from the earlier input are fed back into the network, which is critical in learning the nonlinear
relationships between multiple water quality variables.

The general input to an RNN model is a variable-length sequence x = {x1, x2, ..., xT} where
xi ∈ Rd and d represents the dimention of xi. At each time step, RNN maintains its internal hidden
state h, which results in a hidden sequence of {h1, h2, ..., hk}. The operation of an RNN at time step t
can be formulated as:

ht = f (wxhxt + whhht−1), (6)

where f () is an activation function, wxh is the matrix of conventional weights between an input layer x
and a hidden layer h, and whh is the matrix between a hidden layer h and itself at adjacent time steps.

The output of RNN is computed by:

yt = whyht, (7)

where why is the matrix of weights between the hidden layer h and output y.
As exhibited in Figure 5, the structure of the RNN model across time can be expressed as a deep

neural network with one layer per time step. Because this feedback loop occurs at every time step
in the series, each hidden state contains traces not only of the previously hidden state, but also of all
those that preceded ht−1 for as long as memory can persist.
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Figure 5. Recurrent neural network for predicting DO.

Compared to the transitional feed-forward neural network, the recurrent structure in RNN can
preserve the sequential information in its hidden state. In this approach, the input information can
be spanned many time steps as it cascades forward to affect the processing of each new example.
The features of RNN networks are especially suitable for processing time series water quality data
because of the following reasons: Firstly, water quality data are periodically collected from different
sensors and the previous values have strong relationship with the following changing. Secondly,
the pattern of many water quality variables can only be recognized when enough historical data are
involved and analysed.
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In the proposed water quality predictive model, we apply the RNN structure with the LSTM
cell [26]. To predict the concentration of DO at time step t + 1, the input time series include data in
previous m time steps. Additionally, each time step has n water quality variables. Consequently, each
input of the RNN model can be interpreted as a m× n matrix. The explicit hyperparameters of our
RNN model will be outlined in the following Section 3.2.

2.3. Model Evaluation

We compared the kPCA-RNN model with the following three machine learning methods:

1. Feed-forward neural network (FFNN). FFNN has been broadly adopted for water quality analysis
due to its capability in capturing nonlinear relationships within the short-term period [13].

2. General regression neural network (GRNN). GRNN [27] is a type of radial basis function neural
network that has good nonlinear approximation ability and fast convergence speed. It has been
widely applied in short-term water quality forecasting [14,28].

3. Support vector regression (SVR). SVR is a classic machine learning technique which can map
inputs into higher dimensional space and interpret the problem as a linear regression [29].

The following performance indicators were applied to evaluate the predictive results. Those
are the mean absolute error (MAE), the coefficient of determination (R2), the root mean square error
(RMSE), and the percent of prediction within a factor of 1.1 (FA1.1) [30]:

MAE =
1
n

n

∑
i=1
| fi − f̂i| (8)

R2 = 1− ∑n
i=1( fi − f̂i)

2

∑n
i=1( fi − fi)2

(9)

RMSE =

√
1
n

n

∑
i=1

(| fi − f̂i|)2 (10)

FA1.1 =
m
n

, m = |0.9 <
f̂i
fi
< 1.1| (11)

where fi, f̂i, n, and m represent the observed value, the predicted value, the number of observations,
and the number of predictions within a factor of 1.1 of the observed values, respectively. Additionally,
fi =

1
n ∑n

i=1 fi.

2.4. Workflow of Predicting DO

Figure 6 depicts the workflow of predicting the concentration of DO by using the kPCA-RNN
model. There are two key steps in this workflow: applying the kPCA to denoise and reconstruct input
data and implementing the RNN model to forecast the trend of dissolved oxygen in future time steps.

Firstly, the kPCA method is implemented on the tabulated water quality data (Table 1) to create
corresponding principal components. The principal components with less importance are dropped
to reduce the background noise in the original water quality dataset. Consequently, the remaining
principal components are selected as new inputs for the predictive model.

Next, the input data are formed to m× n matrix as we explained in Section 2.2.2. After training
and testing the RNN model, the concentration of DO in the upcoming time steps can be estimated.
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Figure 6. Workflow for predicting DO by applying the kPCA-RNN model. The dotted box highlights
the key components of this proposed workflow.

The kPCA-RNN model described in Figure 6 differs from most existing DO forecasting models in
the following aspects:

1. Instead of using the sensor data directly, the kPCA method is implemented to the water quality
sensor data to construct new inputs based on principal components. This step can help reduce
the background noise and keep the most useful information for DO forecasting tasks.

2. The recurrent neural network is applied to process the time series water quality data. The recurrent
structure offers a powerful way of capturing the temporal patterns across a period of time, which
is critical in forecasting the changing of DO concentration in the future.

3. Model Application

3.1. Applying kPCA on the Water Quality Data

We applied the kPCA method to the water quality dataset (Table 1) and obtained five principal
components (Table 2).

Table 2. Descriptive statistics of five principal components.

Principal Components Eigenvalue Cumulative Variance Proportion (%)

PC1 466.6 44.4
PC2 285.3 71.5
PC3 129.8 83.8
PC4 114.8 94.8
PC5 55.1 100.0

Five principal components (Table 2) are ordered by their corresponded eigenvalue. The first
principal component is the linear combination of all the variables that have a maximum variance,
so it accounts for as much variation in the data as possible. After that, each succeeding component,
in turn, has the highest variance possible under the constraint that it is orthogonal to the preceding
components. The cumulative variance proportion of the first four principal components is 94.8%.
This indicates that, retaining only the first four principal components, one can explain 94.8% of the
full variance.
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Figure 7 demonstrates the correlation scores between each water quality variable and a principal
component (PC). The value at each cross point represents the correlation between two different items
which are named on the left and bottom of the figure. This figure shows how each water quality
variable contributes to each PC and also gives one the insight into how each PC can represent the
information contained in different water quality variables.

Figure 7. Correlations between water quality variables and principal components.

As has been pointed out, the first principal component (PC1) has the highest correlation (dotted
box, Figure 7) with variables like temperature, pH and turbidity. The three dotted boxes in line 5 (PC1)
highlight the highest correlation scores one got from the corresponding water quality variables (listed
in the bottom axis). Furthermore, the second principal component (PC2) has the highest correlation
(dotted box in line 6) with the remaining variables EC and Chl-a. This indicates that, by utilizing only
principal components PC1 and PC2, most information involved in those five water quality variables
can be presented. Furthermore, PC3 and PC4 also have a strong correlation with EC, pH, and Turbidity
(solid box). On the contrary, PC5 has a low value of correlation coefficient to all water quality variables,
which means it carries much noise information [31]. Accordingly, we accept the first four principal
components as new inputs. The kPCA method can reduce the input size by 20% while still keeping the
most valuable information.

3.2. RNN Hyperparameters Settings

One challenge of building a neural network model is optimizing the hyperparameters for
predictive accuracy [32]. Generally, different neural network settings are required to achieve the
promising results for different forecasting tasks. Hence, we need to choose proper neural network
parameters for forecasting DO concentration in three different predictive horizons.
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Three RNN models were designed to predict the next one, two, and three hours of DO concentration
independently. Each RNN model has various parameters and they all accept four months of data
(2928 samples) for training and one month of data (744 samples) for testing. Based on the partial
autocorrelation analysis in Section 2.1.2, data from the previous 24 time steps were accepted as the
model’s input when predicting the concentration of DO in each future step.

The hyperparameters of the three RNN models were defined in Table 3.

Table 3. Experiments settings.

Model Settings
Experimental Cases

1 h Ahead 2 h Ahead 3 h Ahead

No. of Hidden Layers 1 2 3
No. of Hidden Units 40 30 20
Recurrent Cell LSTM 1 LSTM 1 LSTM 1

Optimizer Adam 2 Adam 2 Adam 2

No. of Historical Time Steps 24 24 24
No. of Training Data 2928 2928 2928
No. of Testing Data 744 744 744

1 Long short-term memory [26]; 2 Adam [33].

3.3. Results and Discussion

Figure 8 illustrates the forecasting of DO concentration during October 2015 under three different
predictive horizons. The upper part of each subfigure compares the actual measurements and
predictions of the DO concentration at each time index. In all the three subfigures, over 90% of
the predictions are located in the F1.1 range. This means that the proposed kPCA-RNN model can
capture the moving average of the DO concentration. By learning information from the previous 24
time steps, the model can avoid most of the severe bias estimations.

The model yields predictions with R2 value of 0.908 for 1 h ahead forecasting in Figure 8a. For 1 h
ahead prediction, there is no time gap between the model’s inputs and the prediction. In order to predict
DO concentration at a specific time step, the model can learn all the historical measurements until the
previous hour. Thus, the proposed kPCA-RNN reaches the highest accuracy for 1 h ahead forecasting.

Similarly, our proposed model achieves R2 value of 0.823 for 2 h ahead forecasting in Figure 8b.
When increasing the predictive horizon, the model does not predict what will happen after the last
true measurement. Instead, the model needs to take a further step to generate the prediction. This
usually happens when the model acts as an early warning system so there can be enough time for
delivering management activities based on the forecasting results. In this circumstance, the model can
only utilize what has been measured already to make the prediction. Hence, the prediction accuracy
decreases slightly in this case.

In Figure 8c, the model obtains R2 value of 0.671 for 3 h ahead forecasting. As we discussed above,
it becomes more challenging when one increases the predictive horizon, while, in this case, around
93% prediction results are still within ± 10% range of the original observations (FA1.1). This gives us
confidence that the proposed kPCA-RNN model can still yield promising estimations. As we discussed
in Section 1, the rapidly changing of DO concentration in a few hours can put aquatic life under high
stress. Hence, the promising predictions in a few hours ahead are significant in early warning and
changing management activities.

In addition, we also listed the RMSE value at each time step for all the three experimental
cases (lower part of each subfigure in Figure 8). This offers us a detailed insight into the prediction
performance of the proposed kPCA-RNN model. The RMSE figures clearly indicate that our model
has a stable performance accuracy at most of the time steps. This is critical in applying the model in
processing the real-world water quality sensor data.
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(a) 1 h Ahead DO Concentration Prediction.

(b) 2 h Ahead DO Concentration Prediction.

(c) 3 h Ahead DO Concentration Prediction.

Figure 8. 1, 2 and 3 h ahead predicting for the concentration of DO. In the upper part of each subfigure,
the grey shadow, solid line and dotted line represent the FA1.1 range, DO observations and predictions,
respectively. The lower part of each subfigure describes the RMSE value at each time step.
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As can be seen, most biased estimations happened between 21 October 2015 and 29 October 2015,
where there was a strong fluctuation of DO concentration. In the water monitoring reports published
by the Queensland Government, there was a large amount of discharge for total nutrients, dissolved
and particulate nutrients during that period of time. On the contrary, the discharge in the previous
months was low. It indicates that the trend of concentration of DO was changing more frequently
and heavily in October. However, the kPCA-RNN model is trained based on the concentration of DO
obtained from historical months with regular DO change. Consequently, there are some predictions
below the high points of the observations; for example, the predictions around 22 October 2015. Hence,
it is necessary to involve extra water quality data to cover a longer time period.

We additionally compared the performance of the kPCA-RNN model with three models stated in
Section 2.3. The same data set described in Section 2.1.1 was applied in all cases. For FFNN, we set the
same neural network size as in the kPCA-RNN model. For GRNN, the standard deviation is set to
10 for the high dimensional inputs. For SVR, the Radial Basis Function kernel (RBF) is taken as the
nonlinear kernel. The corresponding results are listed in Table 4.

Table 4. Performance comparison with the FFNN, SVR and GRNN.

Predictive Models
Evaluation Criteria

MAE R2 RMSE FA1.1

1 h Ahead Prediction
kPCA-RNN Model 0.149 0.908 0.208 0.995
FFNN 0.175 0.893 0.224 0.989
SVR 0.219 0.810 0.299 0.962
GRNN 0.263 0.727 0.355 0.944
2 h Ahead Prediction
kPCA-RNN Model 0.211 0.823 0.288 0.973
FFNN 0.258 0.757 0.338 0.958
SVR 0.314 0.594 0.437 0.890
GRNN 0.295 0.648 0.403 0.926
3 h Ahead Prediction
kPCA-RNN Model 0.303 0.671 0.394 0.926
FFNN 0.455 0.358 0.550 0.756
SVR 0.358 0.515 0.478 0.858
GRNN 0.320 0.562 0.450 0.910

The kPCA-RNN models offer the best performance in all three of the prediction cases (Table 4).
For example, in the 1 h ahead prediction, 99.5% of the predictions are within the FA1.1 range, which
demonstrates that the model has a stable accuracy for most predictions.

Specifically, the kPCA-RNN model has 8%, 17% and 40% improved performance on the RMSE
than the FFNN in all three of the cases, respectively. Similarly, the kPCA-RNN model achieves 43%,
52% and 21% improved performance on the RMSE over the SVR. Compared to GRNN, our proposed
model gains 41%, 29% and 12% performance improvement on the RMSE scores. The FFNN, SVR and
GRNN are ineffective in predicting the changing of DO concentration with 2 or 3 h predictive horizon
because their model structures are not designed to handle time series data and the temporal pattern
cannot be efficiently captured.

Hence, the kPCA-RNN model can perform as an early warning predictor for DO in application
areas such as aquaculture ponds. By providing the DO significant changing alarm, farmers can consider
appropriate actions to maintain the DO on a suitable level for the health of the aquatic ecosystem.

4. Conclusions

To summarize, the kPCA-RNN model was able to successfully predict the trend of DO in the
following 1 to 3 h. We evaluated our model based on water quality data from Burnett River, Australia
and compared it with the FFNN, SVR and GRNN methods. The results demonstrate that our method
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is more accurate and stable to the alternative methods, especially when the predictive horizon is
increasing. Furthermore, as a data-driven modeling method, the kPCA-RNN model is not limited to a
specific hydrological area and can be extended to predict various water quality variables.

For future work, inputs can be improved to include extra information such as rail fall and cover
more extended periods of time. In addition, the water quality predictive model can be extended to
support predicting multiple water variables simultaneously.
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