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Abstract: When colossal gravity-driven mass flows enter a body of water, they may generate waves
which can have destructive consequences on coastal areas. A number of empirical equations in
the form of power functions of several dimensionless groups have been developed to predict wave
characteristics. However, in some complex cases (for instance, when the mass striking the water is
made up of varied slide materials), fitting an empirical equation with a fixed form to the experimental
data may be problematic. In contrast to previous empirical equations that specified the mathematical
operators in advance, we developed a purely data-driven approach which relies on datasets and does
not need any assumptions about functional form or physical constraints. Experiments were carried
out using Carbopol Ultrez 10 (a viscoplastic polymeric gel) and polymer–water balls. We selected
an artificial neural network model as an example of a data-driven approach to predicting wave
characteristics. We first validated the model by comparing it with best-fit empirical equations. Then,
we applied the proposed model to two scenarios which run into difficulty when modeled using
those empirical equations: (i) predicting wave features from subaerial landslide parameters at their
initial stage (with the mass beginning to move down the slope) rather than from the parameters
at impact; and (ii) predicting waves generated by different slide materials, specifically, viscoplastic
slides, granular slides, and viscoplastic–granular mixtures. The method proposed here can easily be
updated when new parameters or constraints are introduced into the model.

Keywords: viscoplastic slide; granular slide; landslide-generated waves; data-driven approach;
artificial neural network approach; empirical equation

1. Introduction

When colossal gravity-driven mass flows enter a body of water, such as a sea, a lake, or a reservoir,
they sometimes generate large waves. These events are particularly relevant in coastal areas and
mountainous countries. Such waves occurred, for example, in Lituya Bay in 1958 [1] and in Vajont,
Italy, in 1963 [2]. Predicting the characteristics of waves induced by subaerial landslides is of great
importance for risk management in coastal areas [3].

Researchers have conducted experiments using physical models that try to reproduce the physical
processes of impulse waves generated by subaerial landslides. They have simplified water geometry
by using 2D flumes or 3D basins and idealized the sliding masses as rigid blocks [4–8], granular
solids [9–14], or viscoplastic fluids [15,16]. Based on reliable experimental data, a number of empirical
or semi-empirical equations have been established, either by combining regression techniques with
dimensional analysis [11,17–19] or by a scaling analysis of governing equations [20,21]. Most equations
to date have expressed wave characteristics as power functions of several slide parameters on impact,
and some have occasionally involved an additive term [22].
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One significant issue has emerged from previous research: on many occasions, empirical equations
have fit well with their own experimental data, but they then exhibited large deviations from the
datasets obtained by other teams, especially when different slide materials were involved [10,15,16,23].
The performances of the different equations on a given dataset remain uncertain. This uncertainty
reflects the limitations of empirical equations with a given functional form. Heller and Spinneken
(2013) developed generic empirical equations for blocks of various shapes [24]. They also discussed the
data discrepancies between using blocks and granular slides. Actually, none of the existing empirical
equations can account for all range of materials used in experiments. Applying empirical equations may
be difficult when, for instance, the slide material involves different components. A typical example has
been Tang et al. (2018), who conducted experiments using blocks, granular slides and mixture of block
and granular slides [25]. Taking the viscoplastic–granular mixture as an example, the representative
parameters of these two materials are the yield stress and grain diameter, respectively. Due to the
current lack of understanding about how these two materials affect the underlying physics of the
slide–water interaction, integrating these two parameters into one equation might be problematic if
we have presumed a functional form for that equation in advance.

Another key issue is that all the existing empirical equations express wave characteristics from the
parameters relating to the sliding masses on impact; none use the parameters related to the initial stage
(i.e., when the mass is still on the slope and starts moving). Putting the emphasis of the parameters
on impact makes it easier to control the variables and to provide a quantitative analysis; however,
for engineering applications, there is a need to predict wave characteristics before the sliding has
occurred. For example, in May 2009, a slight slope failure occurred on the Guopu bank of the Laxiwa
reservoir, in China. Based on monitoring data, a faulted rock mass with an approximate volume of
3× 107 m3 showed signs of general displacement [26]. Although there is a very small probability,
should the mass drop into the reservoir, it would generate large waves which may well destroy the
nearby arch dam ([27]). In this situation, estimating the characteristics of the potential waves from
information on the potential landslide (which is still at rest on the slope) is more than warranted.
To study the various physical processes from the initial impact to wave propagation, Heller et al.
(2009) took a holistic approach based on a theoretical analysis and semi-empirical equations [17].
For more complex landslide materials, providing physical constraints on the mathematical operators
of prediction equations formulation of empirical equations becomes more challenging.

Using an approach that did not assume the functional form of the equation in advance and relied
strictly on the data alone, would be preferable for dealing with both of the above issues. To overcome
the limitations of empirical equations, the present study presents a data-driven method, known as
an artificial neural network (ANN) method, which has been successfully employed in other fields to
cope with complicated parameters in experimental data processing and to develop highly accurate
predictive models [28–33]. In contrast to empirical equations, in which mathematical dependence was
fixed in advance, the ANN method provides an approach in which both the explanatory and explained
variables in the data ultimately define their internal relationship without any prior assumptions
about the equation’s functional form or physical constraints. Moreover, the model can be easily
calibrated when new data or parameters become available, which makes it powerful in solving
complex problems [34]. Panizzo et al. (2005) compared the ANN method and empirical equations on a
simple case (that is, predicting wave characteristics from solid block parameters on impact). The ANN
method’s predictive capacities were slightly better than those of empirical equations [35]. To the best
of our knowledge, no data-driven method has been used to deal with field data. The key advantage of
data-driven methods, namely, their high adaptivity to solving complex problems and dealing with
complex parameters, was not further investigated.

Using the ANN method, we (i) estimate the wave characteristics from the parameters of a subaerial
mass at the initial stage, when it is at rest and starts moving down the slope, and (ii) predict the wave
characteristics generated by different slide mass materials (specifically, viscoplastic slides, granular
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slides, and mixtures of them), all within one model. For each application, we refined the inputs,
outputs and network structures of the model.

2. Experiments

2.1. Physical Model

Figure 1 illustrates a physical model of a mass flow moving down a slope and intruding into
a body of water. The whole process can be divided into three stages: in stage I, the slide is at rest,
in the container box, and then starts moving; in stage II it moves down the slope and reaches the
shoreline; in stage III, it enters the body of water and generates waves. We consider a slope with an
inclination of θ entering a horizontal flume filled with water. The still-water depth is denoted by h0,
and the water density is denoted by ρw. We defined two coordinate systems. The first coordinate
system (x, y) is defined with its origin located at the shoreline, with the x-axis proceeding out across
the water, stream-wise, and the y-axis pointing directly upward. The second coordinate system (s, l) is
defined with the l-axis being along the slope and the s-axis being perpendicular to the slope. A slide
mass, with a volume of VI and density of ρs, is released at a distance ls from the shoreline. The slide’s
initial shape is idealized as a rectangle with a height of s0 and length of l0. When the sliding mass
moves down the slope, its thickness s(l, t) and depth average velocity vs(l, t) vary as a function of l
and t, respectively. The volume of the immersed slide is denoted by Vs. The free water surface η(x, t)
depends on the horizontal coordinate x and time t. The wave created by the incursion of the sliding
mass is evaluated quantitatively by its height h and amplitude a. The gravity acceleration is denoted
by g.

gate
s

ls

(a)
Vi

y

l

l

s
y

x
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xh(t)
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a(t)

Figure 1. Two dimensional physical model of a landslide generating wave: (a) the slide material is
at rest and then starts moving (stage I), (b) the slide material moves down the slope and reaches the
shoreline (stage II), and (c) the slide material intrudes into the body of water and generates waves
(stage III).
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2.2. Experimental Method

Experiments were conducted in a two-dimensional flume at the Swiss Federal Institute of
Technology Lausanne (see Figure 2). The experimental facility was devised to mimic snow avalanches
penetrating mountain lakes (for further information see [21]). The scale factor between the real world
and this facility was approximately 100. The flume consisted of two parts. The first part was a 1.5 m
long and 0.12 m wide chute, and it could be tilted at an angle θ ranging from 30◦ to 50◦. Its bottom
was lined with sandpaper to provide consistent basal friction and its side walls were made of PVC.
The second part was a water-filled, transparent glass flume, 2.5 m long, 0.4 m deep, and 0.12 m wide.
The slide mass material was initially contained in a box located at the chute entrance, closed off by a
0.4 m high and 0.12 m wide locked gate. The gate was pneumatically activated and could be opened in
less than 0.1 s to release the material from the box. The distance from the gate to the shoreline could
be varied from 0.5 m to 1.0 m. Once the slide mass material was released, it accelerated energetically,
under gravity, and reached velocities as high as 2.5 m/s. Each experiment’s initial settings, including
slide mass volume Vi, initial slide length l0, initial slide height s0, slope length ls, still-water depth
h0, and slope angle θ, were recorded before the slide mass material was released. Because of its
reduced dimensions, the set-up was also subject to scale effects due to surface tension and viscosity
which could have affected wave propagation when the still water depth h0 < 0.2 m and wave period
T < 0.35 s [36]. As h0 = 0.2 m and 0.38 s < T < 2.24 s in our experiments, we think such scale effects
were not significant.

Figure 2. The experimental facility.

We selected Carbopol Ultrez 10 viscoplastic material to mimic cohesive landslides, whose
rheological behavior can be described using the Herschel–Bulkley model:

τ = τc + Kγ̇n (1)

where τc is the yield stress, γ̇ is the shear rate, K is the slide mass consistency, and n is a power-law
index that reflects shear thinning (or shear thickening when n > 1). The rheological measurements of
Carbopol were conducted using a Bohlin Gemini rheometer equipped with striated parallel plates
(40 mm diameter; 1 mm gap size). The values of τc, K and n in the Herschel–Bulkley equation were
fitted to the rheological measurements. Table 1 shows how the rheological parameters of Carbopol
depend on its concentration C and the proportion of NaOH to Ultrez 10 in the composite. See [37] for
the Carbopol Ultrez 10 preparation procedure.
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We used polymer–water balls to represent granular avalanches. These were produced by soaking
dry, water-absorbent beads in water for 4–5 h. Both Carbopol and the polymer–water balls have a
density very close to that of water (1000 kg·m−3), which is also similar to that of the ice (910 kg·m3)
mobilized in snow or ice avalanches. Taking advantage of the similar densities of Carbopol and
polymer–water balls, we were able to investigate how mixtures of cohesive and granular materials
generated waves without having to consider the effects of the densities of the varying proportions
of each material in the mixtures. Due to the difficulties in finding materials with matching higher
densities, the question of how density and mixture proportions interact during wave formation could
not be investigated in the current study.

Table 1. Rheological characteristics of the Carbopol used in the present study.

C [%] Ultrez 10 [g] NaOH [g] H2O [L] τc [Pa] K [Pa · sn] n [-]

1.5 45 18.0 30 38 10.3 0.289
1.6 50 20.7 30 43 12.3 0.293
1.7 53 22.0 30 49 14.4 0.295
1.8 55 22.8 30 53 16.2 0.315
1.9 58 24.0 30 55 17.1 0.321
2.0 60 24.9 30 58 18.9 0.330
2.2 65 26.9 30 60 19.8 0.333
2.3 68 28.2 30 65 23.2 0.339
2.4 70 29.0 30 68 24.6 0.348
2.5 75 31.0 30 74 29.1 0.364
2.7 80 33.2 30 78 32.1 0.388
2.8 85 35.0 30 80 35.8 0.390
3.0 90 37.3 30 85 42.1 0.392

A high-speed camera was placed in front of the shoreline, with its optical axis perpendicular to the
sidewall. The camera collected images at a frequency of 200 frames per second, acquiring 600 × 800-pixel
images, corresponding to an observation window of 48 × 64 cm2. We used a 0.2 × 0.4 m2 mesh grid to
calibrate the raw images and determine the size conversion factor. For each image, we measured (a) the
free-water surface when the leading wave reached its maximum height, which helped to deduce the
wave amplitudes am and hm, (b) the velocity vs and thickness s of the sliding mass upon impact, and (c)
the volume of the underwater part of the sliding mass Vs.

3. The Artificial Neural Network Method

The ANN method is inspired by how the human brain processes information, and it is constructed
from interconnected processing elements called neurons [38] (see Figure 3). ANNs are receiving ever
greater attention because of their ability to express complex functions in a flexible form. A typical ANN
model consists of three main parts: learning rules, network architecture, and an activation function.
The network structure is formed of several layers: one input layer, one output layer, and one or several
hidden layers, with each layer containing several neurons. Each of the neurons in a layer is connected
to neurons of the adjacent layers via coefficients called weightings.

From a mathematical perspective, the principle of neural networks involves the composition of
non-linear functions. Starting with a linear model, considering a dataset z and a vector of inputs x,
a linear model for the output ẑ(x) can be constructed considering ẑ(x) = Wx + β, where the weighting
matrix W and the bias vector β are obtained by solving an optimization problem that minimizes the
overall difference between z and ẑ. This process is called model training. Such a simple model may lack
the flexibility to represent complex functional mapping and, therefore, intermediate variables (layers)
y are introduced: y = σ(W(1)x + β(1)) and z = W(2)y + β(2), where σ is a user-specified activation
function, like the hyperbolic tangent. The composition of several intermediate layers results in a neural
network capable of efficiently representing arbitrarily complex function forms.
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In this study, we selected a one-hidden-layer network, as an example, and adopted a
back-propagation algorithm to train the network. The algorithm programming was developed using
Matlab. Establishing an ANN model consists of three steps: (i) preparing the required data for training
the network; (ii) evaluating neural networks with different structures and choosing the optimal one;
and (iii) testing the neural network’s performance using data which have not been used previously for
training the network.

(a)

(d)

(b)

(c)

Figure 3. A biological neuron in comparison to an artificial neural network: (a) human neuron;
(b) artificial neuron; (c) biological synapse; and (d) ANN synapses [39].

The back-propagation artificial neural network algorithm (BP-ANN) consists of two paths:
the feed-forwards and the feed-backwards paths. The feed-forwards path is expressed by Equations (2)
and (3).

yi = F
(
Xj
)
= F

(
Woj +

I

∑
i=1

Wijxi

)
(2)

Zk = F (Yk) = F

(
Wok +

J

∑
j=1

Wjkyi

)
(3)

where xi, yj, and Zk represent the input, hidden, and output layers, respectively, Woj and Wok are
the bias weights for setting the threshold values, Xj and Yk temporarily represent computing results
before using the activation function, and F is the activation function applied in the hidden and output
layers. For the activation function, we chose the sigmoid function, which ranges between 0 and 1
(see Equation (4)). The activation function is defined on each layer’s neurons and is applied to the sum
of the weighted inputs and to each neuron’s bias to generate the neuron output.

F(a) =
ea

ea + 1
(a = Xj, Yk) (4)

Equation (5) displays the residual function for residual back-propagation training.

E =
1
2

K

∑
k=1

e2
k =

1
2

K

∑
k=1

(tk − zk)
2 (5)



Water 2020, 12, 600 7 of 18

where tk is the predefined target value and ek is the residual of each output node. E is the residual
between the expected and actual output values. We used a gradient-descent strategy to adjust the
weightings, aiming to obtain a minimum E. Equations (6)–(9) express the weightings between the
hidden and output layers.

∂E
∂wjk

= −ek
∂F(Yk)

Yk
yj = −δkyj (6)

and hence
δk = ekF′(Yk) = (tk − zk)F′(Yk) (7)

Therefore, the weighting adjustments in the hidden and output link ∆wjk can be expressed by
Equation (8).

∆wjk = η × yj × δk (8)

where η is the learning rate ranging between 0 and 1. With a lower learning rate, the network model
will take longer time to converge. Conversely, a higher learning rate may lead to a widely oscillating
network. In addition, maintaining a consistent learning rate across the model is preferable. The new
weighting wjk is updated by Equation (9), where r is the number of iterations.

wjk(r + 1) = wjk(r) + ∆wjk(r) (9)

Similarly, the error gradient in the links between the input and hidden layers can be derived from
the partial derivative with respect to wij.

∂E
∂wij

=

(
K

∑
k=1

∂E
∂zk

∂z
∂Yk

Yk
yj

)
× ∂yi

∂Xj
×

∂Xj

∂wij
= −∆jxi (10)

where

∆j = F′(Xj)
K

∑
k=1

δkwjk (11)

The new weighting dominates the link between the input layer and hidden layer, δwij, can be
updated as:

δwij = η × xi × δj (12)

wij(r + 1) = wij(r) + δwij(r) (13)

All the input data were normalized in the range between 0 and 1 using the following equation:

Y =
X− Xmin

Xmax − Xmin
(14)

where X is the raw data and Y is the normalized data. The initial parameter settings are shown in
Table 2.

Table 2. Initial settings for the parameters in the ANN model.

Parameters Initial Setting

Initial weightings 0.2–0.5
Learning rate 0.1
Maximum number of epochs 200
Objective mean square error 0.00001
Training function traingdx
Momentum parameters 0.9
Activation function Sigmoid function
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4. Results

In Section 4.1, we validate the ANN method by comparing its prediction accuracy against
empirical equations, using the experimental data generated by the viscoplastic flow. In Section 4.2,
we predict the wave characteristics from the slide mass features at rest and as it started moving (stage I
in Figure 1). In Section 4.3, we develop an ANN model which aims to cope with the parameters of a
landslide with complex properties, specifically, a mixture of cohesive and granular slide mass materials.

Each model’s performance was evaluated by its coefficient of determination (R2), mean square
error (MSE), and its sum of squares due to error (SSE), which are expressed as follows:

R2 = 1−
ε

∑
i=1

((
yp,i − yo,i

)2(
yp,i − ȳo

)2

)
(15)

MSE =

√
∑ε

i=1
(
yp,i − yo,i

)2

ε
(16)

SSE =
ε

∑
i=1

(yo,i − yp,i) (17)

where ε is the number of series of experimental data, yp,i and yo,i are the predicted and observed data,
respectively, and ȳo is the average of observed data.

4.1. Model Validation

Most commonly used empirical equations to predict waves generated by landslides involve the
following dimensional parameters:

η(x, t) = η(h0, s, vs, g, Vs, θ, t, ρw, ρs) (18)

Based on a dimensional analysis or a scale analysis, the scaled wave characteristics can be
expressed as a function of several dimensionless groups:

Xn = δ
N

∏
i=1

Πβi
i (19)

where X represents the scaled wave characteristics (e.g., the scaled maximum wave amplitude, wave
height, wave length, wave period); Πi indicates the explanatory variables selected, where N is the
number of explanatory variables.

The predicting equations developed by Zitti et al. [21] were the best fit with our experimental
data (see Equation (20)).

X1,2 = δΠβ1
1 Πβ2

2 Πβ3
3 (20)

where X1,2 = Hm, Am, and Π1 =
vs√
gh0

is the slide mass Froude number, Π2 =
s

h0
is the scaled slide

mass thickness, and Π3 =
ρsVs

ρwBh2
0

is the scaled impacted slide mass, where B is the width of the flume.

The coefficients of explanatory variables δ and β1,2,3 were acquired by fitting the experimental
data based on a linear regression technique. The empirical equations of Am and Hm for the present
study were:

Am = 1.2973Π0.6170
1 Π0.1626

2 Π0.6406
3 (21)

Hm = 1.4368Π0.9700
1 Π0.0768

2 Π0.6076
3 (22)
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Using the same database and explanatory variables as Equation (21), we modeled the experimental
data using our ANN method. Thus, the three neurons in the input layer and the two neurons in the
output layer were:

• Three inputs: Π1, Π2, and Π3

• Two outputs: Am and Hm

Of the 291 samples of Carbopol mass slides in the experimental database, 80% (233 samples) were
selected as training data for model construction and 20% (58 samples) were saved as test data for
model validation, providing an independent measure of ANN performance after training. Samples for
each group were selected randomly.

We used a basic three-layer network structure, namely, one input layer, one hidden layer, and one
output layer. To select the optimal number of neurons in the hidden layer, we set a random number of
neurons and ran the program, determining their performance by R2. Each run was repeated five times
and R2 was calculated by eliminating the maximum and minimum coefficients of determination and
averaging the results of the remaining three tests. As shown in Figure 4, the R2 of both Hm and Am

reached their maximum values when the hidden layer contained six neurons. Thus, the optimum
network for the present study was a three–six–two structure (input–hidden–output).

Figure 4. Variation of R2 versus the number of neurons in the hidden layer.

Model training was constrained by the following indicators: the maximum epoch number was
initially set to 100; the objective MSE was set to 1× 10−4; the minimum gradient was set to 1× 10−5;
and the maximum number of validation fails, which represents the number of successive iterations
that the validation performance fails to decrease, was initially set to six. Training would stop once one
of the indicators mentioned above reached its initial value; for instance, in the present study, training
stopped when the number of validation fails reached 6. Figure 5 illustrates the evolution of these
indicators (i.e., gradient, validation fails, and MSE) at each epoch until the training is stopped.

In Figure 5c, the MSEs of the training data and the test data were counted separately. The curves
of the evolution of the MSE for these three data series were very close, indicating the model’s high
level of adaptability. The best validation performance was an MSE = 0.00025337 at epoch 43, and the
training terminated at epoch 48 as the number of validation fails reached six. The gradient = 0.0011736
at epoch 48. Figure 6 displays a histogram of the residuals between the predicted Am and the observed
Am. The probability density of the residuals approximately follows a Gaussian distribution.
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(a)

(b)

(c)

Figure 5. Variations in (a) the gradient, (b) the number of validation fails, and (c) MSE, against epochs.

Figure 6. Error histogram of Am with 20 bins. The red part denotes test data and the grey part denotes
training data.

Figure 7 displays the observed Am and Hm versus the predicted data modeled using the ANN
model and the empirical equations. The R2 of Am and Hm of the test data in the ANN model were
0.9682 and 0.9479, respectively; the R2 of Am and Hm of the test data predicted by the empirical
equations were 0.9214 and 0.9062, respectively. The ANN model outperformed the best-fitting
empirical equation. In addition, the R2 of Am was always slightly higher than that of Hm, in both
models, which may result from measurement errors in the experiments which have been defined in
our previous publications [15,16].
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Figure 7. Q-Q plot of observed and predicted (a) Am and (b) Hm, for the empirical equations and the
ANN model. Training data and test data in the ANN model are displayed separately.

4.2. Prediction of Wave Characteristics from Initial Slide Parameters

Previously, empirical or semi-empirical equations determined wave characteristics from the mass
slide features on impact (illustrated as stage II in Figure 1), and most equations were established in
the form of the power-law equations of several dimensionless groups (see Equation (20)). When we
predict the wave characteristics from the slide features at stage I, it is difficult to provide physical
constraints on the mathematical structure of predictive equations because of the complex physical
mechanisms involved in the whole process. In this case, assuming a functional form for the prediction
equation in advance might be problematic. Therefore, a data-driven approach that relies strictly on the
data rather than on a fixed form equation is preferable, and the ANN method thus fits this requirement.
The process involves the following parameters:

η(x, t) = η(τc, K, n, l0, s0, ls, h0, θ, ρw, ρs, t, g) (23)

The slide mass’s rheological parameters include τc, K, and n. Although they have little effect on the
slide mass–water interaction and wave formation [16], they have great effects on the slide mass flowing
down the slope. The Pearson correlation coefficients between each pair of these three parameters
were all above 0.9 (see Table 3), indicating that all three parameters correlated highly. We therefore
selected the yield stress τc, namely the stress at which the material starts yielding, to represent the
rheological parameters.

Table 3. The Pearson correlation coefficients between τc, K, and n.

τc K n

τc 1 0.9739 0.9604
K 0.9739 1 0.9633
n 0.9604 0.9633 1

Figure 8 provides a first insight into how the wave characteristics depend on the rheological
properties of the slide mass and on its parameters at the initial stage. It shows experimental data with
the yield stress set at τc = 41 Pa, 62 Pa, and 80 Pa. Overall, the maximum wave amplitude am increased
with rising yield stress τc and initial slide mass mI , and decreased with slope length ls.
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Figure 8. Variations in wave amplitude am against mI l−1
s , with the water depth h0 = 0.2 m and slope

angle θ = 45◦.

ε =
l∗
h∗

and ς =
s∗
h∗

are aspect ratios for the l-axis to the y-axis, and for the s-axis to the y-axis,

respectively. The natural choice for defining the typical scale introduced by these ratios was to take
the dimensions of the reservoir: l∗ = l0, h∗ = h0, and s∗ = s0. The Bingham number can be expressed

as Bi =
τc

K(v∗/s∗)
, which is a dimensionless yield stress (relative to the viscous forces). We assumed

that the viscoplastic flow reached a near-equilibrium regime, where viscous forces balanced gravity
acceleration, and the velocity scale was then v∗ = (ρsg sin θ/K)1/ns1+1/n

∗ . The Bingham number then

became Bi =
τc

ρsgs0 sin θ
(see [40] for further information).

The dimensions involved in Equation (23) are length [L], mass [M], and time [T]. We chose three
scaling parameters: water density ρw, still-water depth h0, and gravitational acceleration g [19]. Thus,
the dimensionless form can be expressed as:

η′ =
η(x, t)

h0
= η′

(
τc

ρgs0 sin θ
,

l0
h0

,
s0

h0
,

ls
l0

, θ,
ρs

ρw

)
(24)

where η′ is the scaled free-water surface elevation. As in Section 4.1, we selected the scaled maximum
wave amplitude Am and height Hm to represent the water surface elevation. As the slide mass density

ρs and water density ρw were constant throughout our experiments,
ρs

ρw
can be eliminated. There were

therefore five neurons in the input layer and two neurons in the output layer:

• five inputs: Bi, ε, ς,
ls
l0

, and θ

• two outputs: Am and Hm

The modeling method used was the same as in Section 4.1. First, based on the optimal number of
hidden neurons determined, a five–ten–two network structure was developed; then, the experimental
data were divided into training data and test data; finally, the ANN model was trained using the
training data and validated using the test data. The R2, MSE, and SSE of Am were 0.8983, 0.00089,
and 0.2591, respectively. The R2, MSE, and SSE of Hm were 0.8497, 0.00295, and 0.8483, respectively.
Because R2 > 0.8, the present model is validated. Yet compared with the scenario that predicted wave
characteristics from the slide mass parameters on impact, the prediction accuracy of the ANN method
in the present scenario was lower. The more complicated the physical process is, the more information
could be lost in prediction.
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4.3. Waves Generated by Viscoplastic–Granular Mixtures

Most studies have mimicked landslides in the real world by using a single slide mass material,
including granular slides, viscoplastic materials, or solid blocks. However, many landslides in the
natural world are mixtures of granular and viscoplastic materials. In the present study, we conducted
experiments using mixtures of polymer–water balls and Carbopol, with the percentage of Carbopol in
volume varying symmetrically (0%, 20%, 50%, 80% and 100%). Figure 9 shows raw images, captured
by a high-speed camera, of Carbopol, polymer–water balls, and mixtures of them, entering the body of
water. These represented landslides with different degrees of cohesion.

(a) (b) (c)

Figure 9. Raw images of landslides intruding into a body of water, as recorded by a high-speed camera:
(a) Carbopol, (b) mixture of 50% Carbopol and 50% polymer–water balls, and (c) polymer–water balls.

As shown in Figure 10, larger waves are generated with higher proportions of Carbopol in the
mixture, which implies that the slide mass material’s composition influenced wave generation. Here,
to provide identical criteria for all slide mass materials, we quantified the slide mass properties using a
universal dimensionless group named the Impulse product parameter P, which was proposed by [12]:

P = Π1Π1/2
2 Π1/4

3 cos(6/7θ)1/2 (25)

where Π1, Π2, and Π3 denote the same parameters as in Equation (20).
One issue which should be noted is that the properties of granular slides are usually represented

by their grain diameters, whereas the rheological behavior of viscoplastic materials is commonly
described using yield stress. It is difficult to integrate these two parameters into one equation in the
form of a power-law equation. To overcome this limitation and provide a compatible model for these
parameters, we applied the ANN method so as to avoid assuming the functional form of a prediction
equation. Here, we predicted the wave characteristics from the mixture’s parameters on impact.

Figure 10. Effects of slide mass material composition on the scaled maximum wave amplitude Am.

As highlighted above, the dimensionless parameters in modeling experiments with a single
material commonly involve the slide Froude number Π1, relative slide mass Π2, and the relative slide
thickness Π3. To quantify the properties of mixed viscoplastic and granular slides, we introduced

the following dimensionless groups: the Bingham number Bi=
τc

ρsgs0 sin θ
, which represents the
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rheological properties of a cohesive material; the scaled diameter of the granular slide mass Ds =
dg

h0
,

where dg is the diameter of a granular particle; the volume ratio of the viscoplastic material in the

mixture RV =
Vs

Vg + Vs
, where Vs is the volume of the viscoplastic slide mass and Vg is the volume of

the granular slides; and the density ratio between the two materials Rρ =
ρs

ρg
, which is a constant in

the present study.
Hence, the input layer contained six neurons {Π1, Π2, Π3, Bi, Ds, and RV}, and the output layer

contained again {Am and Hm}. Using the same method presented in Section 4.1, the number of hidden
neurons was determined, and the network’s optimum structure was six–eight–two. The R2, MSE,
and SSE of Am were 0.9325, 0.0072, and 0.2172, respectively. The R2, MSE, and SSE of Hm were 0.9173,
0.00178, and 0.6154, respectively. As R2 of both Am and Hm were greater than 0.8, the model can
be considered as valid. The predicted Am and Hm are illustrated against the experimental data in
Figure 11.

Figure 11. Predicted (a) Am and (b) Hm with a six–eight–two ANN model versus experimental data.
Training data and test data in the ANN model are displayed separately.

5. Discussion

5.1. Model Adaptability

In Sections 4.2 and 4.3, we presented two applications which were difficult to model using
empirical equations with a fixed functional form:

• One application was predicting wave characteristics from slide mass features at the initial stage
I. When doing this, it is difficult to provide physical constraints on the mathematical structure of
predictive equations because of the complex physical mechanisms involved in the whole process.
In this case, assuming a functional form for the predictive equation in advance might be problematic.

• Another application was predicting waves generated by viscoplastic–granular mixtures. The properties
of granular slides are usually represented by their grain diameters, whereas the rheological
behaviors of viscoplastic materials are commonly described using yield stress. It is difficult to
integrate these two parameters into one equation in the form of a power-law equation.

Both these scenarios can easily be adapted using the ANN method’s high prediction accuracy
(see Table 4). This clearly demonstrates the advantage of using a purely data-driven method in terms
of model adaptability (and this is not limited to an ANN method). In contrast to equations with fixed
formulae, the ANN method has no external constraints, making it a scalable open system. In addition,
it has the ability to self-update and is highly adaptable when new parameters become available or
fresh constraints appear (they are not limited to the two scenarios presented in this study). With more
informative, richer datasets, stronger correlations can be built from the input layer to the output layer.
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Table 4. The R2, MSE, and SSE values of the models described.

Empirical Equations ANN Model (3–6–2) * ANN Model (5–10–2) ** ANN Model (6–8–2) ***

Am Hm Am Hm Am Hm Am Hm

R2 0.9214 0.9062 0.9682 0.9479 0.8983 0.8497 0.9325 0.9173
MSE 0.00081 0.00197 0.00025 0.00107 0.00089 0.00295 0.00072 0.00178
SSE 0.2571 0.6266 0.0865 0.3088 0.2591 0.8483 0.2172 0.6154

* Wave characteristics were predicted from dimensionless parameters on impact (see Section 4.1). ** Wave characteristics
were deduced from the slide’s initial parameters (see Section 4.2). *** Waves generated by viscoplastic-granular mixtures
(see Section 4.3).

5.2. Prediction Accuracy

Table 4 displays the coefficient of determination R2, mean square error (MSE), and sum of squares
due to error (SSE) values for each of the models presented in Section 4. The following features are
worth noting:

• Compared with the empirical equations based on regression techniques, the ANN model gives
more precise predictions. Using the same explanatory variables, the coefficient of determination
R2 improved from 0.9214 to 0.9682 for Am, and from 0.9062 to 0.9479 for Hm. Of course,
the improvement in prediction accuracy is not large.

• The prediction precision for Am was greater than for Hm in predictions made with empirical
equations and with the ANN models. This may be because the experimental measurement
errors of wave heights hm were larger than those for wave amplitudes am. Prediction precision
not only depends on the prediction performance of the model selected, but it also relies on
experimental accuracy.

• The predictions of wave features from the parameters at impact were better than the predictions
from the parameters at the initial stage. Also, prediction precision decreased when the dataset
involved combinations of different slide mass materials. Thus, prediction precision decreased as
experimental complexity increased and more parameters were involved.

5.3. Multicollinearity

Multicollinearity is a phenomenon where one explanatory variable in a multiple regression model
can be linearly predicted from the others with a substantial degree of accuracy. This may lead to the
problem that the multiple regression’s coefficient estimates change erratically in response to small
changes in the model. The natural logarithmic form of empirical equation (Equation (20)) can be
written as:

ln X = ln δ + α ln Π1 + β ln Π2 + γ ln Π3 (26)

The coefficients ln δ, α, β, and γ were estimated using the least squares (linear regression) method
based on experimental data. As length [L] was scaled by the still-water depth h0, h0 appears in the three
aggregated parameters Π1, Π2 ,and Π3, and specifically, they are correlated with h−1/2

0 , h−1
0 , and h−2

0 ,
respectively. The high correlations among explanatory variables may result in multicollinearity
during the linear regression. However, to date, none of the studies using empirical equations has
discussed multicollinearity.

To estimate the correlations between each pair of explanatory variables, we calculated their
Pearson correlation coefficients r. As illustrated in Figure 12, the Pearson correlation coefficient r
between Π1 and Π2 is relatively high (r = 0.69), however, it is still under the upper limit of 0.8.
Furthermore, to determine how influential the water depth h0 was in wave generation, we determined
the sensitivity of the maximum wave amplitude am to a ±20% change in each of the following
parameters (taken in isolation from the others): slide volume on impact Vs, slide velocity on impact vs,
slide thickness s and still water depth h0. We obtained similar results to those obtained by [17]: the am

variations due to changes in these parameters were smaller than 20%, and am was more sensitive
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to vs and Vs rather than h0. We may therefore consider that the multicollinearity lies within an
acceptable range.

Figure 12. Correlation matrix of explanatory variables Π1, Π2, and Π3 in Equation (20).

5.4. Limitations

The present study explored the possibility of extracting models purely from data, however,
data-driven models may suffer from a lack of interpretability, e.g., the difficulty in explaining causal
relationships between the data, the discrepancy, and the corresponding prediction. The use of deep
learning strategies and vast amounts of data in the inference process exacerbate this issue. In addition,
when ANN produces a solution, it does not give any clue as to why and how. This reduces trust in the
network relevance because of the lack of visual links between outputs, inputs and neurons.

6. Conclusions

This study applied an artificial neural network (ANN) method—one of the most commonly used
machine learning methods—to predict the characteristics of waves generated by gravity-driven slide
masses. Laboratory experiments were conducted using a viscoplastic material (Carbopol), a granular
material (polymer–water balls), and mixtures of them. After validating the ANN model by comparing
its prediction accuracy with that of empirical equations, we applied the model to two scenarios:
(i) predicting wave characteristics from the parameters of landslides initially at rest on the slope
and (ii) integrating the parameters of different categories of slide mass material into one model,
i.e., a Bingham number for the viscoplastic material and the grain diameter for the granular material.
For each scenario, the inputs, outputs and network structures of the ANN model were refined. In the
first scenario, the R2 for the scaled maximum wave height Hm and scaled maximum wave amplitude
Am were 0.8983 and 0.8497, respectively, and in the second scenario, the R2 for Hm and Am were 0.9325
and 0.9173, respectively. As a purely data-driven method, this ANN method was easy to adapt when
new parameters were included or fresh constraints occurred.
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