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Abstract: The purpose of this study was to compare the removal efficiencies of manganese (Mn) and
iron (Fe) using pristine banana peel biochar (BPB) and phosphoric acid pre-treated biochars (PBPB)
derived from banana peels. The removal efficiencies of Mn and Fe were investigated under different
adsorbent dosages (0.4–2 g L−1), temperatures (15–45 ◦C), and ionic strengths (0–0.1 M), and were
directly correlated to the differences in physicochemical properties of BPB and PBPB, to identify the
removal mechanisms of heavy metals by adsorption processes. The removal of Mn by PBPB obeyed
the Freundlich isotherm model while the removal of Mn and Fe by BPB followed the Langmuir
isotherm model. However, the removal of Fe by PBPB followed both Freundlich and Langmuir
isotherm models. The removal efficiencies of Mn and Fe by BPB and PBPB increased with increasing
temperatures and decreased with increasing ionic strengths. PBPB more effectively removed Mn and
Fe compared to BPB due to its higher content of oxygen-containing functional groups (O/C ratio of
PBPB = 0.45; O/C ratio of BPB = 0.01), higher surface area (PBPB = 27.41 m2 g−1; BPB = 11.32 m2 g−1),
and slightly greater pore volume (PBPB = 0.03 cm3 g−1; BPB = 0.027 cm3 g−1). These observations
clearly show that phosphoric acid pre-treatment can improve the physicochemical properties of
biochar prepared from banana peels, which is closely related to the removal of heavy metals by
adsorption processes.
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1. Introduction

Water pollution by heavy metals released from various industrial activities such as metal
plating and cleaning, mining, refineries, coatings, batteries, and automobile radiators, is an
emerging environmental issue in water treatment engineering since heavy metals may pose
adverse effects on human health and aquatic ecosystems due to their high toxicity, carcinogenicity,
and non-biodegradability [1,2]. Among various heavy metals used in industrial activities, manganese
(Mn) and iron (Fe) are known to be major inorganic pollutants affecting water quality [3]. Although Mn
is essential to activate enzymes in the human system, high Mn concentrations can generate respiratory
diseases, and continuous administration can cause neurotoxicity risk in humans [3,4]. In the case of Fe,
it can cause undesirable aesthetic concerns (i.e., metallic tastes) and lead to the growth of ferrobacteria
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related to odor problems [3]. The World Health Organization (WHO) have set a safe drinking water
concentration of 0.05 and 0.3 mg L−1 for Mn and Fe, respectively [5]. Based on these reasons, there is
great need to develop an economic and efficient method for removing heavy metals from wastewater.

Several treatment techniques, including membrane filtration (e.g., reverse osmosis and
nanofiltration), chemical precipitation, and oxidation/reduction, are available for the removal of
heavy metals, including Mn and Fe, from industrial wastewater [6–10]. A commonly practiced Mn
and Fe treatment approach is to chemically oxidize dissolved Mn(II) to particulate Mn(IV) or dissolved
Fe(II) to particulate Fe(III), followed by physical separation of the insoluble precipitates from water
using clarification and filtration processes [9,11]. However, most of those are not applicable for
wastewater treatment due to their low removal efficiencies when the heavy metal concentrations are
lower than 100 mg L−1 [12]. In contrast, activated carbon may effectively remove heavy metals from
wastewater even at low concentrations [13]. Despite this advantage, the use of the activated carbon
adsorption process for the removal of heavy metals has been limited as it requires high maintenance
and operational costs [14]. In recent years, biochars, which can be produced at low cost, have attracted
great attention as an alternative to activated carbon [15–18]. Biochar is an ecofriendly adsorbent
produced using by-products of the agricultural industries and wastes from various crops, and is
effective for removing heavy metals from wastewater [18–21].

Over the wide range of crops, bananas cultivated in more than 130 countries are regarded to
be one of the most widely grown tropical fruits in the world [22]. The world production of bananas
was approximately 117.9 million tons in 2015 [23], and about 7 million tons of banana peel wastes are
produced annually (the proportion of banana peels in total dry weight = 25–30%) [24]. Currently, most
banana peel wastes are used as natural fertilizers on soils in agricultural fields, and some of them are
fed to animals [25]. Banana peels contain a large amount of pectins which are complex polysaccharides
consisting of galacturonic acids, arabinoses, galactoses, and rhamnoses. Among them, galacturonic
acids have a strong binding capacity to the metal cations in the aqueous phases due to the presence of
carboxyl groups [22,26]. Therefore, biochar derived from banana peels is considered to be a promising
option for removing heavy metals effectively from wastewater.

Raw biochars have showed feasibility for adsorbent material to remove contaminants including
heavy metals and organic pollutants [17,18,21,27,28]. However, the sorption capacities can be enhanced
by treatment with acids, nanocomposites, and activation agents [17,29,30]. For example, Chu et al.
showed that phosphoric acid treatment improved the porosity of biochars from pine sawdust, cellulose,
and lignin [31]. The modified biochars provided better sorption of carbamazepine and bisphenol
A. The sorption for 15 different pesticides by biochars from rice straw and corn stover was also
increased by phosphoric acid treatment due to increased functional groups and aromatization of the
biochars [32]. Considering the effects of phosphoric acid treatment on porosity and the modification of
functional groups of biochars, the treatment method can be applied to improve removal efficiencies
of heavy metals by biochars from other sources. In addition, phosphoric acid has advantages in low
pyrolysis temperature, low cost, and low corrosivity to the equipment [31]. Nevertheless, to the best
of our knowledge, phosphoric acid pre-treatment has not been used to enhance the physicochemical
properties of biochars from banana peels in association with the adsorption of heavy metals.

The main purpose of this study was to evaluate the effects of phosphate pre-treatment on the
adsorption of heavy metals (i.e., Mn and Fe) using biochars prepared from banana peels. First, the
physicochemical characteristics of pristine and phosphoric acid pre-treated biochars derived from
banana peels were rigorously characterized. Then, various adsorption experiments were conducted
to investigate optimum adsorbent dosages, adsorption kinetics, adsorption isotherms, and effects of
temperature and ionic strengths on adsorption. The improved adsorption efficiencies by phosphoric
acid treatment were analyzed based on the physicochemical characteristics of the biochar, and the
adsorption mechanisms of Mn and Fe were discussed. This study improves our understanding of the
effect of phosphoric acid treatment on modification of the surface structure and functional groups of
biochars for heavy metal removal.
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2. Materials and Methods

2.1. Materials

Banana peel wastes were collected in Chuncheon-si (Gangwon-do, Korea). Mn (KMnO4,
oxidation state = +7, concentration = 1000 mg L−1) and Fe (Fe(NH4)2·(SO4)2, oxidation state = +2,
concentration = 1000 mg L−1) AA standard solutions and phosphoric acid (H3PO4), were purchased
from Daejung Chemicals & Metals (Siheung-Si, Gyeonggi-Do, Korea). Mn(VII) and Fe(II) solutions
for adsorption experiments were prepared by diluting the concentrated standard solutions in
deionized water.

2.2. Production of Biochar

The banana peel wastes were dried in an oven at 105 ◦C for 24 h, ground using a mortar, washed
several times with deionized (DI) water to remove impurities on their surfaces, and then dried in
the oven at 105 ◦C for 12 h. From the resulting banana peel powder, 50 g was immersed in a 500 mL
phosphoric acid solution (20 wt. %) for 2 h to activate adsorption sites, and dried at 105 ◦C for 12 h.
Pristine and phosphoric acid pre-treated banana peel wastes (weight of each banana peel waste = 20 g)
were pyrolyzed in the tubular furnace (PyroTech, Namyangju, Gyeonggi-do, Korea) at 600 ◦C (heating
rates = 0.2 ◦C min−1) under N2 conditions (N2 flow rate = 0.25 L min−1) for 2 h and then cooled to
room temperature. Biochars prepared from banana peel wastes were washed several times with DI
water, filtered with a 0.7 µm GF/F filter (Whatman, Maidstone, UK), and then dried in the oven at
105 ◦C for 12 h. Biochars produced from pristine and phosphoric acid pre-treated banana peel wastes
are defined as BPB (banana peel biochar without pre-treatment) and PBPB (pre-treated banana peel
biochar), respectively.

2.3. Characterization of Biochar

Element composition of BPB and PBPB was analyzed using an elemental analyzer (EuroEA3000
CHNS-O, Euro Vector S.p.A, Via Tortona, Milan, Italy). The ash content was calculated by subtracting
the quantities of carbon (C), hydrogen (H), nitrogen (N), and oxygen (O) from the total mass fraction of
the adsorbents. The specific surface area of biochar was determined with a Bronauer–Emmett–Teller
(BET) analyzer (BELSORP-mini II, MicrotracBEL, Japan). The functional group composition of the
adsorbents was identified using attenuated total reflectance-Fourier transform infrared spectroscopy
(ATR-FTIR) (Frontier Optica, Perkin Elmer, Waltham, MA, USA).

2.4. Adsorption Experiments

2.4.1. Optimal Adsorbent Dosages

Prior to the adsorption kinetics experiments, the optimum dosage of BPB and PBPB for each
heavy metal was determined. The adsorbents (dosage = 0.02–4 g L−1) were added to 25 mL of heavy
metal solution (each metal concentration = 10 mg L−1, pH = 7.0) and then mixed at 150 rpm and 25 ◦C
using a shaking incubator (VS-8480, Vision Scientific, Daejeon-Si, Korea) for 3 h. All the adsorption
tests were repeated three times to minimize experimental errors.

2.4.2. Adsorption Kinetics Analysis

For adsorption kinetics experiments, the optimum dosage of each adsorbent was added to 25 mL of
sample solutions (each heavy metal concentration = 10 mg L−1) and mixed at 150 rpm using the shaking
incubator for 0–24 h (temperature = 25 ◦C, pH = 7.0). The concentrations of Mn and Fe at the initial
and equilibrium states were measured using colorimetric methods with a UV-Vis spectrophotometer
(UV-1280, Shimadzu, Kyoto, Japan) at UV absorbances of 525 and 510 nm, respectively. All the
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adsorption tests were repeated three times to minimize experimental errors. The amount of adsorbed
heavy metals at time t (qt (mg g−1)) was calculated as follows [14]:

qt =
(C0 −C)V

m
(1)

where C0 and C are the initial and final concentrations (mg L−1) of heavy metals in the solutions, V is
the volume (L) of the solution, and m is the mass (g) of the used adsorbents.

The removal efficiencies of heavy metals were calculated using Equation (2) [14]:

Removal efficiency of heavy metal (%) =
(C0 −Ce)

C0
× 100 (2)

where Ce represents the concentrations of each heavy metal (mg L−1) at equilibrium of the solutions.
The adsorption kinetics of Mn and Fe were investigated using Equations (3) and (4):

Pseudo-first-order model : log(qe − qt) = log(qe) −
k1t

2.303
(3)

Pseudo-second-order model :
t
qt

=
1

k2q2
e
+

t
qe

(4)

where k1 (min−1) is the constant of the pseudo-first-order equation, and k2 (g mg−1 min−1) is the
constant of the pseudo-second-order equation. qe (mg g−1) is the adsorption capacity at equilibrium.

2.4.3. Adsorption Isotherm Analysis

The adsorption isotherms of Mn and Fe by BPB and PBPB were identified with 6 different initial
concentrations (each heavy metal concentration = 1–10 mg L−1) under controlled conditions (agitation
time = 24 h, mixing speed = 150 rpm, temperature = 25 ◦C, pH = 7.0). The adsorption results were
analyzed using the Langmuir and Freundlich isotherm models.

Langmuir isotherm : qe =
qmaxKLce

1 + KLce
(5)

where qe (mg g−1) is the maximum monolayer adsorption capacity of heavy metals, and KL (L mg−1) is
the equilibrium constant of the Langmuir equation.

Freundlich isotherm : qe = KFc1/n
e (6)

where KF (mg1−(1/n) L1/n g−1) is the Freundlich adsorption constant, and n is the dimensionless empirical
coefficient related to adsorption strength, which depends on the surface heterogeneity.

2.4.4. Effects of Temperatures and Ionic Strengths

The effects of temperature and ionic strength on the adsorption of heavy metals by BPB and
PBPB were investigated at various temperatures (15–45 ◦C) and ionic strength conditions (0.005–0.1 M)
(each heavy metal concentration = 10 mg L−1, agitation time = 6 h, mixing speed = 150 rpm,
temperature = 25 ◦C, pH = 7.0). The removal efficiencies of Mn and Fe using BPB and PBPB were
calculated using Equations (2) and (3) as described in the previous section.

3. Results and Discussion

3.1. Physical Properties of Biochar

Figure 1 illustrates the functional group composition of BPB and PBPB, measured using ATR-FTIR.
The functional group composition of BPB and PBPB was similar, but the intensities of the IR peaks of



Water 2020, 12, 1173 5 of 13

the functional group composition affecting the adsorption of heavy metals were different. The IR peaks
related to O-H stretching and C-O stretching of alcohols appeared at 3500–3000 cm−1 (BPB = 3443 cm−1,
PBPB = 3431 cm−1) and 1210–1100 cm−1 (BPB = 1103 cm−1, PBPB = 1180 cm−1) due to the presence of
alcohol functional groups (-CH2OH-) derived from the cellulose component of the banana peels [33].
The IR peaks related to N-H stretching of amides were found in the range of 1650–1550 cm−1

(BPB = 1565 cm−1, PBPB = 1575 cm−1). Furthermore, C-H stretching of alkanes and C-H stretching
of aromatics exhibited relatively strong IR peaks in the range of 1500–1300 cm−1 and 900–670 cm−1,
respectively [34]. The IR peak derived from C-O stretching of alcohols exhibited a relatively high
IR intensity in PBPB compared to BPB in the range of 1210–1100 cm−1 because the phosphoric acid
pre-treatment promoted the formation of oxygen-containing functional groups closely associated with
the adsorption of heavy metals [34,35].
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Figure 1. Attenuated total reflectance (ATR)-FTIR spectra of banana peel biochar without pre-treatment
(BPB) and pre-treated banana peel biochar (PBPB).

Table 1 shows the elemental composition and surface properties of BPB and PBPB. Although
the hydrogen, nitrogen, and ash content of BPB and PBPB were similar (H content of BPB = 1.6%,
H content of PBPB = 1.9%; N content of BPB = 2.9%, N content of PBPB = 2.2%; ash content of BPB
= 19.0%, ash content of PBPB = 16.4%), PBPB had lower carbon content (54.7%) and higher oxygen
content (24.8%) compared to BPB (C content = 75.4%, O content = 1.1%). Therefore, the H/C, O/C, and
N/C ratios of PBPB were much higher than those of BPB. These observations indicate that increases in
hydroxyl and carboxyl functional groups in PBPB after phosphoric acid pre-treatment may enhance
electrostatic attractions between heavy metals and the adsorbent surfaces intimately related to the
adsorption of heavy metals [36]. Furthermore, the specific surface area and total pore volume of PBPP
(specific surface area = 27.41 m2 g−1; total pore volume = 0.032 cm3 g−1) were considerably greater
compared to BPB (BPB = 11.32 m2 g−1; total pore volume = 0.027 cm3 g−1). These results suggest that
heavy metals can be adsorbed more readily by PBPB than BPB due to its abundance of adsorption
sites [12].
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Table 1. Physicochemical properties of BPB and PBPB.

Elements Composition (%) Atomic Ratio SBET
(m2 g−1)

Pore Volume
(cm3 g−1)C H O N Ash H/C O/C N/C

BPB 75.4 1.6 1.1 2.9 19.0 0.022 0.014 0.038 11.32 0.027
PBPB 54.7 1.9 24.8 2.2 16.4 0.035 0.453 0.039 27.41 0.032

3.2. Effects of Adsorbent Dosages

Figure 2 presents the change in the removal efficiencies of Mn and Fe as a function of adsorbent
dosages. The removal efficiencies of Mn and Fe using BPB and PBPB were increased with increasing
adsorbent dosages because of the increased availability of adsorption sites on the adsorbent surfaces [14].
The lower removal efficiencies of Mn by BPB and PBPB compared to those of Fe might be attributed to
differences in the electronegativity and ion radius of Mn and Fe. Since Fe has a higher electronegativity
than Mn (Fe = 1.8, Mn = 1.5) and a small ion radius, it can more easily diffused into the pores of PBPB
and BPB [37,38]. In the equilibrium state, PBPB exhibited higher removal efficiencies of Mn and Fe
than BPB (removal efficiency of Mn by BPB = 32%, removal efficiency of Mn by PBPB = 46%, removal
efficiency of Fe by PBPB = 96%, removal efficiency of Fe by BPB = 85%). These results mean that
phosphate pre-treatment promoted the formation of functional groups on the biochar surfaces capable
of adsorbing heavy metals [27,39]. The removal efficiencies of Mn by BPB and PBPB reached the steady
state at an adsorbent dosage of 3 g L−1 while the steady states of Fe adsorption occurred at 0.1 g L−1 for
BPB and 0.3 g L−1 for PBPB, respectively. Hence, the PBPB and BPB dosages obtained at their steady
states for Mn and Fe were applied for further adsorption experiments.

Water 2020, 12, x FOR PEER REVIEW 6 of 13 

 

attributed to differences in the electronegativity and ion radius of Mn and Fe. Since Fe has a higher 
electronegativity than Mn (Fe = 1.8, Mn = 1.5) and a small ion radius, it can more easily diffused into 
the pores of PBPB and BPB [37,38]. In the equilibrium state, PBPB exhibited higher removal 
efficiencies of Mn and Fe than BPB (removal efficiency of Mn by BPB = 32%, removal efficiency of Mn 
by PBPB = 46%, removal efficiency of Fe by PBPB = 96%, removal efficiency of Fe by BPB = 85%). 
These results mean that phosphate pre-treatment promoted the formation of functional groups on 
the biochar surfaces capable of adsorbing heavy metals [27,39]. The removal efficiencies of Mn by 
BPB and PBPB reached the steady state at an adsorbent dosage of 3 g L−1 while the steady states of Fe 
adsorption occurred at 0.1 g L−1 for BPB and 0.3 g L−1 for PBPB, respectively. Hence, the PBPB and 
BPB dosages obtained at their steady states for Mn and Fe were applied for further adsorption 
experiments. 

(a)

Dosages (g L-1)
0.4 1 2 3 4

R
em

ov
al

 e
ffi

ci
en

cy
 (%

)

0

20

40

60

80

100

120
BPB
PBPB

(n = 3)

Dosages (g L-1)

0.02 0.03 0.04 0.1 0.2 0.3 0.4

R
em

ov
al

 e
ffi

ci
en

cy
 (%

)

0

20

40

60

80

100

120
BPB
PBPB

 (b)
(n = 3)

 

Figure 2. Effects of biochar dosages on the adsorption of heavy metals using BPB and PBPB: (a) Mn 
and (b) Fe (agitation time = 3 h, agitation speed = 150 rpm, initial concentration of Mn and Fe = 10 mg 
L−1, pH = 7, and temperature = 25 °C). 

3.3. Adsorption Kinetics of Mn and Fe 

Figure 3 depicts the adsorption kinetics of Mn and Fe by BPB and PBPB. The adsorption 
proceeded rapidly in the beginning for both heavy metals (Mn ≤360 min; Fe ≤180 min) and almost 
reached equilibrium at 10 h. A possible explanation for these results is that the availability of 
adsorption sites plays key roles in the adsorption of Fe and Mn by BPB and PBPB [19]. Table 2 
presents the kinetic model parameters for the adsorption of Mn and Fe by BPB and PBPB. Based on 
the correlation coefficient values (R2), the pseudo-second-order model better described the 
adsorption of Mn and Fe by BPB and PBPB than the pseudo-first-order model. These observations 
indicate that the adsorption of Mn and Fe by BPB and PBPB is predominantly governed by chemical 
adsorption (i.e., covalent bonding or ion/electron exchange) [27]. As shown in Figure 3, the 
adsorption capacities at equilibrium (qe) of Mn and Fe by BPB were 1.14 and 31.61 mg g-1, respectively. 
Meanwhile, the qe of Mn and Fe by PBPB were 2.03 and 32.99 mg g-1, respectively. The higher qe 
values by PBPB support the assumption that PBPB is more effective for the adsorption of heavy 
metals than BPB due to its higher content of oxygen-containing functional groups [34,35].  

 

Figure 2. Effects of biochar dosages on the adsorption of heavy metals using BPB and PBPB: (a) Mn
and (b) Fe (agitation time = 3 h, agitation speed = 150 rpm, initial concentration of Mn and Fe = 10 mg
L−1, pH = 7, and temperature = 25 ◦C).

3.3. Adsorption Kinetics of Mn and Fe

Figure 3 depicts the adsorption kinetics of Mn and Fe by BPB and PBPB. The adsorption proceeded
rapidly in the beginning for both heavy metals (Mn ≤360 min; Fe ≤180 min) and almost reached
equilibrium at 10 h. A possible explanation for these results is that the availability of adsorption
sites plays key roles in the adsorption of Fe and Mn by BPB and PBPB [19]. Table 2 presents the
kinetic model parameters for the adsorption of Mn and Fe by BPB and PBPB. Based on the correlation
coefficient values (R2), the pseudo-second-order model better described the adsorption of Mn and Fe
by BPB and PBPB than the pseudo-first-order model. These observations indicate that the adsorption
of Mn and Fe by BPB and PBPB is predominantly governed by chemical adsorption (i.e., covalent
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bonding or ion/electron exchange) [27]. As shown in Figure 3, the adsorption capacities at equilibrium
(qe) of Mn and Fe by BPB were 1.14 and 31.61 mg g−1, respectively. Meanwhile, the qe of Mn and Fe by
PBPB were 2.03 and 32.99 mg g−1, respectively. The higher qe values by PBPB support the assumption
that PBPB is more effective for the adsorption of heavy metals than BPB due to its higher content of
oxygen-containing functional groups [34,35].Water 2020, 12, x FOR PEER REVIEW 7 of 13 
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Table 2. Kinetic model parameters for the adsorption of Mn and Fe by BPB and PBPB (n = 3).

k R2

BPB
Mn

First-order (min−1) 0.008 0.944
Second-order (g mg−1 min−1) 0.029 0.999

Fe
First-order (min−1) 0.007 0.867

Second-order (g mg−1 min−1) 0.004 0.999

PBPB
Mn

First-order (min−1) 0.009 0.965
Second-order (g mg−1 min−1) 0.003 0.977

Fe
First-order (min−1) 0.019 0.892

Second-order (g mg−1 min−1) 0.006 0.999
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3.4. Adsorption Isotherms of Mn and Fe

The adsorption mechanisms of Mn and Fe by BPB and PBPB were analyzed using the Langmuir
and Freundlich adsorption isotherm models (Figure 4 and Table 3). The Langmuir isotherm model was
well-fitted to the adsorption of Mn and Fe by BPB (R2 of Mn = 0.972, R2 of Fe = 0.869). These results imply
that monolayer adsorption is responsible for the adsorption of Mn and Fe by BPB [7]. The adsorption
of Mn by PBPB followed the Freundlich isotherm model (R2 = 0.993) more closely than the Langmuir
isotherm model (R2 = 0.898). It is evident that multilayer adsorption strongly contributes to the
adsorption of Mn by PBPB [13]. However, the adsorption of Fe by PBPB followed both Freundlich
(R2 = 0.933) and Langmuir isotherms (R2 = 0.949). The n value of the Freundlich isotherm model was
used to examine the adsorption affinity of Mn and Fe onto BPB and PBPB (Table 3): (i) n > 1 (favorable),
(ii) n = 1 (linear), and (iii) n < 1 (unfavorable) [30]. The adsorption of Mn and Fe by BPB (n value of
Mn = 7.267, n value of Fe = 1.069) and the adsorption of Mn by PBPB (n value = 2.471) were favorable
whereas the adsorption of Fe by PBPB (n value = 0.977) was not favorable. The separation parameter
RL value, based on RL = 1/(1 + KLC0) of the Langmuir isotherm model, was also calculated to assess
the adsorption preference of Mn and Fe toward BPB and PBPB: (i) RL > 1 (unfavorable), (ii) RL = 1
(linear), (iii) 1 > RL > 0 (favorable), and (iv) RL = 0 (irreversible) [40]. Since the RL values of Mn and
Fe by BPB and PBPB were in the range of 0–1 (RL of Mn by BPB = 0.003; RL of Fe by BPB = 0.146; RL

of Mn by PBPB = 0.012; RL of Fe by PBPB = 0.156), the adsorption of Mn and Fe by BPB and PBPB
seemed to be favorable.
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Figure 4. Adsorption isotherms of heavy metals onto BPB and PBPB: (a)–(b) Mn and (c)–(d) Fe 
(agitation time = 24 h, agitation speed = 150 rpm, adsorbent dosage of BPB and PBPB for Mn = 3 g L-1, 
adsorbent dosage of BPB for Fe = 0.1 g L−1, adsorbent dosage of PBPB for Fe = 0.3 g L−1, initial 
concentration of Mn and Fe = 10 mg L−1, pH = 7, and temperature = 25 °C).  

Figure 4. Adsorption isotherms of heavy metals onto BPB and PBPB: (a,b) Mn and (c,d) Fe (agitation
time = 24 h, agitation speed = 150 rpm, adsorbent dosage of BPB and PBPB for Mn = 3 g L−1, adsorbent
dosage of BPB for Fe = 0.1 g L−1, adsorbent dosage of PBPB for Fe = 0.3 g L−1, initial concentration of
Mn and Fe = 10 mg L−1, pH = 7, and temperature = 25 ◦C).
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Table 3. Isotherm model parameters for adsorption of Mn and Fe by BPB and PBPB (n = 3).

Mn Fe

BPB

Langmuir

KL (L mg−1) 32.204 0.583
qe (mg g−1) 0.796 27.355

RL 0.003 0.146
R2 0.972 0.869

Freundlich
KF (mg1−(1/n) L1/n g−1) 0.821 3.864

n 7.267 1.069
R2 0.81 0.826

PBPB

Langmuir

KL (dm3 mg−1) 7.943 0.540
qe (mg g−1) 2.319 29.55

RL 0.012 0.156
R2 0.898 0.949

Freundlich
KF (mg1−(1/n) L1/n g−1) 1.161 4.611

n 2.471 0.977
R2 0.993 0.933

3.5. Effects of Temperature on Adsorption of Mn and Fe

The effects of temperature on the adsorption of Mn and Fe by BPB and PBPB are compared
in Figure 5. The removal efficiencies of Mn and Fe by both BPB and PBPB were increased with
increasing temperatures from 15 (removal efficiency of Mn by BPB = 17%, removal efficiency of Mn
by PBPB = 46%, removal efficiency of Fe by BPB = 88%, removal efficiency of Fe by PBPB = 97%) to
45 ◦C (removal efficiency of Mn by BPB = 32%, removal efficiency of Mn by PBPB = 65%, removal
efficiency of Fe by BPB = 97%, removal efficiency of Fe by PBPB = 99%). These results suggest that
high temperatures may provide sufficient energy for the adsorption of heavy metals on the surficial
and interior layers of biochars [41]. From the higher removal efficiencies of Mn and Fe by PBPB than
BPB, it can be concluded that the abundance of oxygen-containing functional groups facilitates the
adsorption of heavy metals by carbonaceous adsorbents [36].
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(b) Fe (agitation time = 6 h, agitation speed = 150 rpm, adsorbent dosage of BPB and PBPB for Mn = 3 g
L−1, adsorbent dosage of BPB for Fe = 0.1 g L−1, adsorbent dosage of PBPB for Fe = 0.3 g L−1, initial
concentration of Mn and Fe = 10 mg L−1, pH = 7, and temperature = 15–45 ◦C).
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3.6. Effects of Ionic Strength on Adsorption of Mn and Fe

Figure 6 illustrates the effects of ionic strength on the removal of heavy metals by BPB and PBPB.
The removal efficiencies of Mn and Fe by BPB and PBPB were gradually decreased with increasing ionic
strengths. For example, when ionic strength was increased from 0 to 0.1 M, the removal efficiencies of
Mn by BPB and PBPB were decreased from 35% and 54% to 21% and 32%, respectively. Meanwhile,
the removal efficiencies of Fe by BPB and PBPB were decreased from 95% and 99% to 84% and 96%,
respectively. These observations imply that increases of ionic strength may reinforce the electrostatic
repulsion between heavy metals and the biochar surfaces and reduce the availability of adsorption
sites on the biochar surfaces through the aggregation of biochars [42]. The removal efficiencies of
Fe by BPB and PBPB were less affected by the changes in ionic strength compared to the removal
efficiencies of Mn by BPB and PBPB because Fe has a smaller ion radius and higher electronegativity
than Mn [37,38]. These inherent natures allowed Fe to exhibit higher attractive charges in the nucleus
on the electron orbital [37,38]. Therefore, Fe more easily penetrated into the pores of biochars compared
to Mn [37,38]. In addition, the higher removal efficiencies of Mn and Fe by PBPB (removal efficiency
of Mn = 32–54%; removal efficiency of Fe = 96–99%) than BPB (removal efficiency of Mn = 21–35%;
removal efficiency of Fe = 84–95%) at all the tested ionic strengths provide evidence that the surface
structural features and oxygen-containing functional group abundance govern the adsorption of heavy
metals by carbonaceous adsorbents [12,21,22].
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Figure 6. Effects of ionic strength on the adsorption of heavy metals using BPB and PBPB: (a) Mn
and (b) Fe (agitation time = 6 h, agitation speed = 150 rpm, adsorbent dosage of BPB and PBPB for
Mn = 3 g L−1, adsorbent dosage of BPB for Fe = 0.1 g L−1, adsorbent dosage of PBPB for Fe = 0.3 g L−1,
initial concentration = 10 mg L−1, pH = 7, and temperature = 25 ◦C).

4. Conclusions

In this study, phosphoric acid pre-treatment on banana peel biochar was investigated for
enhancement of Mn and Fe removal efficiencies. The physicochemical characteristics of pristine
and phosphoric acid pre-treated biochars were characterized using the elemental analyzer, BET,
and ATR-FTIR. These characterizations revealed that phosphoric acid pre-treatment facilitated the
formation of oxygen-containing functional groups (i.e., hydroxyl and carboxyl functional groups),
which could enhance the adsorption of heavy metals on the biochar surfaces. In addition, phosphoric
acid pre-treatment improved specific surface area and pore volume for more adsorption sites for heavy
metals. The adsorption experiments showed that phosphoric acid pre-treatment can improve the
removal of Mn and Fe significantly. The results of the adsorption kinetics of Mn and Fe by BPB and
PBPB were well-matched to the pseudo-second-order, indicating that adsorption was predominantly
governed by chemical adsorption. The adsorption of Mn and Fe by BPB obeyed the Langmuir
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isotherm model, whereas the Freundlich isotherm model described the adsorption of Mn by PBPB well.
The adsorption of Fe by PBPB followed both Freundlich and Langmuir isotherm models. Furthermore,
the adsorption of Mn and Fe by both BPB and PBPB increased with increasing temperature. However,
the removal efficiencies were decreased with increasing ionic strength. From the excellent adsorption
performance of Mn and Fe by PBPB compared to BPB, it can be concluded that phosphoric acid
pre-treatment is a promising method to enhance Mn and Fe removal by banana peel biochar.
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