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Abstract: To better evaluate and enhance the performance and benefit of sustainable stormwater
management (SSWM) in developing countries, this study proposes a comprehensive evaluation
framework based on thorough literature review. This framework re-classifies evaluation goals
and indicators into four aspects—stormwater system, integrated management, social engagement,
and urban development. The purpose of this review is to provide a guideline for decision makers
to choose appropriate goals and indicators according to different regional context. Meanwhile,
a structured procedure for comprehensive evaluation of SSWM is proposed to guide a well-organised
decision-making process. Furthermore, pros and cons of eight decision support tools, as well as their
functional focus, are compared, aiming to provide references for SSWM in developing countries.
Outcomes presented in this review are expected to support decision makers in the process of screening
optimal SSWM strategies and monitoring SSWM projects.

Keywords: comprehensive evaluation framework; stormwater management; decision support tool;
sponge city

1. Introduction

In recent years, rapid urbanisation and high-density construction have caused continuous
expansion of impervious areas, leading to significant changes in the hydrology and ecosystem
in cities [1,2]. These changes include reduction of stormwater infiltration, generation of massive
stormwater runoff, decrease of groundwater recharge and continuous aggravation of non-point source
pollution, all leading to major challenges in urban stormwater management (SWM) [3,4]. Given these
challenges, traditional engineering solutions for SWM are increasingly recognized as not appropriate
because they are not environmentally sustainable. As an opposite approach, green infrastructure-based
sustainable stormwater management (SSWM) has been suggested as an alternative adaptive strategy
for mitigating the long-term impacts of urbanisation and climate change like more frequent occurrences
of extreme conditions of floods, droughts, heatwaves and other threats to human and nature [5,6].
Therefore, a holistic and integrated view of SSWM is needed to achieve best management practices.

In developed countries, a number of SSWM concepts have emerged in recent decades,
including sustainable urban drainage systems (SUDS), stormwater best management practices (BMPs),
green infrastructure (GI), low impact development (LID), and water sensitive urban design (WSUD) [7].
Although these concepts vary in scope and context, they generally aim to minimise the negative impacts
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posed by excessive urban stormwater and attempt to restore natural hydrological processes through
measures such as green roofs, rain gardens, permeable pavements, wetlands, and other measures.
Both academic and practical research reported that these SSWM approaches can provide environmental,
economic, and social benefits [8,9]. SSWM can further contribute to other aspects, such as enhancing
aesthetic appearance of built areas, public health improvement, recreational value, and ecological
protection [10]. Establishment of a comprehensive evaluation framework for SSWM is needed to assist
decision makers in identifying primary functions, operational performances, and extended benefits
of to multiple aspects. Additionally, a reliable and suitable comprehensive evaluation process and
methods can streamline the assessment process and dramatically reduce the associated time and cost
in decision making. Successful lessons and experience can be drawn from developed countries and
help other regions to develop SSWM strategies more scientifically.

It is commonly agreed that SSWM should integrate stormwater systems with environment,
economics, society, and other aspects of SSWM [8,11]. However, effective implementation of
SSWM might be challenging in rapid urbanizing regions, particularly in developing countries [12,13].
Furthermore, current SSWM approaches in many developing countries might not be systematically
formed [14,15]. Comprehensive evaluation of goals and indicators of SSWM is expected to provide a
common language for decision makers to facilitate the effectiveness of communication and the process of
elaborating optimal decisions [16]. Some researchers have tried to develop a comprehensive evaluation
system based on specific context [17–20]. For instance, Bai et al. [21] established a comprehensive
assessment system to evaluate the benefits brought by different LID scenarios in Sucheng, China;
Gogate et al. [22] developed a decision-making framework to assess the feasibility of SSWM options
in Pune, India. However, the evaluation goals and indicators proposed in such studies vary due to
different context and site characteristics. Moreover, the emphasis on the importance of SSWM from
different perspectives is still growing around the world. Many other factors, which can affect the
performance and added value of SSWM, need to be considered during the decision-making process.
For example, the significance of relations between SSWM and spatial suitability has been more
emphasised in recent years [23,24]. Lessons from developed countries, which show a broad range of
evaluation goals and indicators across different dimensions, can assist decision makers in addressing
the gap and in deriving a clear vision of SSWM for developing countries.

Establishment of a standard procedure for comprehensive evaluation of SSWM can further
assist decision makers in formulating a more inclusive and well-informed decision. Additionally,
methods of valuing various indicators can provide technical supports for the evaluation process [19,25].
Several researchers have reported different methodologies for evaluating the performance and benefits
of SSWM strategies. Generally, the evaluation steps and methods in these studies are based on
the conditions and the sufficiency of evaluation data of the study area [17,26]. Considering these
limitations in knowledge, a systematic summary of general comprehensive evaluation steps and
preferred methods for SSWM are needed in order to provide references for developing countries.
Meanwhile, comprehensive evaluation of SSWM is generally time-consuming due to high uncertainty
and the complexity of stormwater systems [27]. A decision support tool can assist decision makers in
solving this issue effectively and provide relatively reliable evaluation results. Several review articles
have addressed the classification of a wide range of existing decision aid tools, as well as their primary
focuses and barriers [28–30]. Nevertheless, there are limited studies focusing on the adaptability and
reliability of these tools for assisting SSWM in developing countries.

In this review, we propose a comprehensive performance and benefit evaluation framework for
guiding SSWM implementation in developing countries. The selection of suitable evaluation goals and
indicators is based on a thorough literature review from three tiers—namely, international, national,
and context-specific tiers. The outcome will facilitate the development of suitable goals and indicators
for evaluating the performance and for measuring the benefits of SSWM under varying geographical
conditions. Meanwhile, a general procedure and recommended methods for comprehensive evaluation
of SSWM are summarised to facilitate the decision-making process. Furthermore, eight different
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types of decision aid tools are compared discussing their functional focus, adaptability, applicability,
and capacity for comprehensive evaluation of SSWM in developing countries. The major aim of this
comparison is to assist in screening for the most suitable tool during the decision-making process.
A secondary aim is to provide recommendations for further decision support tool development.

2. Materials and Methods

2.1. Literature Search

The framework, procedure, and tools for a more comprehensive performance and benefit
evaluation of SSWM summarised in this study are derived from an extensive literature review.
The reviewed material includes peer-reviewed journal articles, book chapters, conference proceedings,
case studies, fact sheets, and governmental reports. The searching databases include Web of Science,
ScienceDirect, ASCE Library, and Scopus. Literature selected (around one hundred and fifty articles)
mainly falls into six categories which are: (1) SSWM; (2) SWM performance and benefits; (3) stakeholders
and decision makers; (4) evaluation methods/methodology; (5) indicator/criteria quantification; and (6)
decision support tools/models. Detailed key words in each category are summarised in Figure 1.
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Figure 1. Key words of the literature search (overlaps may exist between each category box).

2.2. Development of a Comprehensive Evaluation Framework for SSWM

The analytical procedure of developing a comprehensive evaluation framework for SSWM is of
crucial importance for decision makers to gain important insights into current state and future trend of
SSWM [31–33]. The adopted approach in this study for developing a comprehensive performance and
benefit evaluation framework for SSWM in developing countries is illustrated in Figure 2 and can be
summarised into four steps as follows:

1. Review international SWM policies and best practices. In this step, the current situation and
future trend of SWM in a global perspective is identified. It is of great value to be open to the
common issues, novel ideas and solutions of SWM.

2. Review national SWM practices. The significance of SSWM has been recognised by many
countries in the past decades. Several countries have developed a relatively systematic and
comprehensive management framework. The experience learned from different nations can help
developing countries to leapfrog and accelerate the development of SSWM.

3. Review studies on comprehensive evaluation of SWM. Many studies focusing on the
comprehensive evaluation frameworks of SSWM of different scales and perspectives are reported.
Review of these studies helps to identify some important factors needed to be considered in
developing a comprehensive evaluation framework for SSWM.

4. Develop the comprehensive evaluation framework for SSWM in developing countries. Based on
an extensive literature review of related studies and current SWM situation in most developing
areas, a new comprehensive evaluation framework for SSWM in developing countries in a broad
perspective is proposed.
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Figure 2. The structure of developing the comprehensive evaluation framework for sustainable
stormwater management (SSWM).

Further, as an example for adopting this framework, the current limitations of existing assessment
system and possible future outlook of Sponge City Construction (SCC) in China, launched in 2015 as
the national SSWM programme [34], is discussed. China is in the process of rapid urbanisation and
has various geographical environments, climate conditions and hydrological characteristics which can
represent the development stages and existing conditions in most developing countries. Meanwhile,
the concept of Sponge City is like that of LID, SUDS, and WSUD, the main philosophy of which is to
mimic and restore natural hydrological processes in SSWM.

2.3. Summary of Procedures and Tools for Comprehensive Evaluation of SSWM

The comprehensive evaluation processes and methods for SSWM might be varying based
on different site conditions. However, the essential evaluation steps and sequences are similar.
Following an extensive review of comprehensive evaluation systems for SSWM, a general evaluation
procedure is summarised, and the evaluation methods are categorised according to their primary
focuses, required data and philosophy. In addition, adoption of appropriate decision support
tools should provide scientific support for the decision-making process. In developing countries,
limited decision support tools have been developed based on national condition. The applicability
and adaptability of different decision support tools for assisting SCC in China might provide a reliable
reference for other developing countries.

Therefore, the detailed review and summary are conducted (shown in Section 3.3) from the
following four aspects:

1. Establish a standard procedure for comprehensive evaluation of SSWM;
2. Classify methods for comprehensive evaluation of SSWM;
3. Compare existing decision support tools;
4. Analyse the suitability of different decision support tools for SCC in China as an example.
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3. Results and Discussion

3.1. Overview of Comprehensive Evaluation Framework Development for SSWM

3.1.1. SWM Policies of International Organisations

Comprehensive evaluation framework for SSWM is based on correct selection of management
objectives and evaluation indicators, which is crucial in guiding SWM of all stages. At the macro level,
SWM is included in integrated water resources management and environmental protection strategies,
for which relevant international organisations have formulated a series of objectives. For example,
in 2007, the United Nations (UN) issued Principles of Integrated Water Resource Management to
develop and manage the demands of the finite water resources in the world effectively, equitably and
sustainably [35]. In 2015, the 17 Sustainable Development Goals (SDGs) formulated by UN took effects
formally, among which the specific goals and indicators articulated in objectives 6, 11, and 13 are
related to SSWM [36,37]. The International Water Association (IWA) proposed 17 Principles for Water
Wise Cities (WWC) which include a four-level action plan for urban water management aiming to
formulate a common action plan for maximizing the benefits of SSWM [38].

3.1.2. SSWM Practices of National Governments and Institutions

From the perspective of regions, different countries have formulated corresponding objectives and
indicator systems for SSWM according to national or local conditions. For instance, with the objectives
of flood mitigation, controlling soil erosion and reducing non-point source pollution, the United States
(US) has developed BMPs and LID for integrated management [39,40]. In 2015, the United States
Environmental Protection Agency (US EPA) published a guideline to provide assistance in choosing
measurable goals and indicators for SSWM in specific areas. In addition, economic evaluation of
different LID programmes in Seattle, New York, Washington. and other cities showed the potential
benefits of LID and provided a framework for stakeholders to assess specific LID planning and
design outcomes [31]. SSWM regulations in the US have jurisdiction across communities, regions,
and states to address nation’s environmental problems [41]. For instance, the National Pollutant
Discharge Elimination System (NPDES) programme requires permits for stormwater discharges in
construction sites larger than one acre (0.405 ha) [42]. By doing this, different state governments can be
authorized to develop local SWM policies and initiatives to meet federal regulations [43]. In addition,
development of stormwater pollution prevention plans (SWPPPs) can aid operators in assessing and
monitoring SWM practices at construction sites and stay in compliance with local requirements [44].
Originating from the perspective of surface water drainage system, combing both environmental
and social benefits, Europe established SUDS to improve urban water cycle management by taking
integrated measures [45]. The Construction Industry Research and Information Association (CIRIA) in
the UK published a literature review of benefits brought by SUDS and methods for benefit assessment
both qualitatively and quantitively [32]. However, the US and Europe have not established frameworks
to assist stakeholders in evaluating SSWM practices at a national level.

In this regard, Australia and Singapore offer more distinct and detailed evaluation frameworks.
Based on historic policies related to urban water management, The Cooperative Research Centre for
Water Sensitive Cities (CRCWSC) in Australia placed the development of Australian cities into six
stages to guide urban transformation and sustainable urban water management [46]. Seven goals of
Water Sensitive Cities (WSC) and 34 indicators under them were developed as the WSC index tool
to guide cities to transform into more productive, resilient, sustainable, and liveable cities [33,47].
Meanwhile, corresponding assessment and benchmarking of goals and indicators was performed
based on local context in Melbourne, Sydney, Brisbane, and other regions. In Singapore, responding
to the challenges of water supply security, water shortage and water pollution, Singapore’s Public
Utilities Board (PUB) started Active, Beautiful, Clean (ABC) waters management programmes to
convert pipelines and drainage channels into community public green spaces in order to enhance
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urban liveability and help raise the public awareness to environmental protection in Singapore [48–50].
The ABC waters programme consists of four overarching objectives, including active, beautiful,
clean and innovation. Under each objective, there are various indicators to evaluate and score the
projects. The aim of this programme is to integrate environment, water and community into the city
environment and lifestyles for SSWM [51,52].

3.1.3. Comprehensive Evaluation Framework of SWM at a Site-Specific Scale

Scholars from various countries also worked on comprehensive evaluation of SSWM.
Li et al. [53,54] proposed comprehensive benefit evaluation systems for SCC based on principal
component analysis method and analytic hierarchy process, respectively. They classified the evaluation
indicators into three aspects which were the environmental, economic and social benefits, under each
of which corresponding sub-indicators were included to guide decision makers in choosing the
most appropriate SSWM measures. Zhou [30] and Morales-Torres et al. [55] summarised the SUDS
evaluation indicators relating to various related simulation models and decision aid tools, respectively.
The former suggested that when formulating SSWM plans, influences of several fundamental indicators
(e.g., water quantity, water quality, biological diversity) should be taken into consideration. In the
latter work, the indicators were classified into stormwater infrastructure performance, benefits and
costs, energy consumption and carbon emissions. Jia et al. [56] and Kuller et al. [23] considered spatial
factors in multi-criteria evaluation. These included site adaptability and system space requirement to
achieve a more holistic and inclusive decision-making process. In a review of selecting SSWM strategies
in developing countries, Gogate et al. [22] proposed a decision-making framework and summarised
four major criteria to assess SSWM options, namely: technical, economic, environmental and social
indicators. Similarly, Zhan and Chui [57] put forward a life cycle benefit framework for the selection
of LID measures at an urban scale in order to conduct quantitative evaluation on environmental,
economic and social benefits.

3.2. Comprehensive Evaluation Framework for SSWM in Developing Countries.

The development stage of SSWM in developing countries varies dramatically based on different
urban context. Generally, the primary goals of SWM are similar, addressing water-related issues, such as
drinking water scarcity, flood and drought events, aquatic environment pollution, and water resource
contamination [58–60]. However, this leads to the fact that the current SSWM evaluation systems
in many developing countries narrowly focus on water-related goals and indicators. For instance,
in Malaysia, India and China, the effectiveness of SSWM in reducing runoff and pollutants is the
major indicator to assess SSWM practices, while indicators like public engagement, aesthetics and
educational benefits are not well considered in the assessment criteria [61–63]. Based on the current
SWM practices in most developing countries and extensive review of related policies and research,
a comprehensive performance and benefit evaluation framework for SSWM is proposed in this review.
This framework classifies the management objectives into the following four levels described below.
The relationship between each level of objectives is illustrated in Figure 3.

• Stormwater system—focusing on the overall operation effects of the SSWM system,
including surface runoff control, system performance, economic sustainability and
technical innovation.

• Integrated management—emphasising the relations between SSWM and urban water management
as well as other components, including environmental governance, disaster resilience and
resource efficiency.

• Social engagement—highlighting the relations between SSWM system and social benefits and
values, including public participation and effective governance.
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• Urban development—focusing on the influences of SSWM system on future development of the
city, including improvement of urban space quality and liveability, renewal of public infrastructure,
and increase of city resilience as well as the corresponding indicators.
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3.2.1. Selection of Evaluation Indicators

The evaluation indicators which are needed to be considered in each level of objectives and
the rationale for the indicator selection are discussed below. Based on the selected indicators,
the comprehensive evaluation framework for SSWM is proposed (Table 1).



Water 2020, 12, 1231 8 of 27

Table 1. Comprehensive evaluation framework for SSWM.

Objective Classification Specific Objectives Indicators

Stormwater system

Surface runoff control

Runoff quantity control *
(e.g., peak flow reduction, peak delay and runoff control efficiencies)

Non-point source pollution control *
(e.g., reduction of TSS, TN, TP, and COD)

System performance

Meet design objectives *
(e.g., meeting target volume and/or peak flow reduction goals; meeting target non-point source

pollutants reduction in receiving water bodies)
Operational reliability #

Space requirement *
Site adaptability #

(e.g., land use, soil type, topography and groundwater conditions)
System flexibility #

System complexity #
System accessibility and safety #

Suitable system layout/structure #
(e.g., design of planting scheme, depth of media, layer configuration and other design parameters)

Conformity with technical specifications and standards #

Economic sustainability

System maintainability #
Self-sufficiency *

Capital cost *
Operation and maintenance cost *

Technical innovation

System operation intelligence #
(e.g., adoption of monitoring sensors, wireless communications and online data platform)

Adoption of innovative design and equipment #
System optimisation #

(e.g., structural optimisation of porous media or engineered soil to achieve the highest
cost-effectiveness of the system)

Integrated management

Environmental
governance

Restore water bodies and the ecological environment #
Improve the quality of surface water *

Water security and sanitation *
Increase biological diversity #

Restore ecological habitat #
Protect areas with high ecological values #

Improve groundwater quality *
Groundwater recharge *

Watershed wide impact *

Disaster resistance Flood control and defense *
Drought minimisation and defense *

Resource efficiency

Stormwater harvesting and reuse *
Reduce cost of grey infrastructure *

Pipe damage control *
(e.g., reduced runoff volume in underground drainages to avoid the risk of drainage damage and

operational failure)
Reduce energy consumption *

Reduce greenhouse gases emission *
Reduce potable water supply *

Social engagement

Public participation

Citizen’s willingness to pay #
Increase waterside activities #

Increase public educational significance #
Increase public activity space #

Shared ownership, management and responsibility of the public #
Preparedness for and response to extreme weather events #
(e.g., community information sharing about flood warning)
Local community participation in water-related planning #

(e.g., participation of communities in developing SSWM visions)
Community activities organisation #

Information transparency #
(e.g., A public website for updating news and events relating to SSWM projects)

Effective governance

Water-related business opportunities (industrialisation) #
Assessment of professional capacities #

Inter-disciplinary, inter-agency cooperation #
Multiple stakeholders and policy makers involvement #

Assessment of leadership capability #
Multi-sectoral benefits #

Urban development

Urban space quality
improvement

City liveability and landscape improvement #
Consider water as a major factor of urban planning and design #

Activate blue-green space #
Improve vegetation coverage #

Improve city aesthetics #
Increase recreational space #
Increase property values #

Public infrastructure
renewal

Construction of multifunctional water-related infrastructure #
Accessibility and affordability of water-related public facilities #

City resilience
enhancement

Adaptability to extreme weather events *
Urban heat island effect mitigation *

Note: # quantitative variables; * qualitative variables; TSS—Total Suspended Solids; COD—Chemical Oxygen
Demand; TN—Total Nitrogen; TP—Total Phosphorus.
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1. Indicators for stormwater system evaluation
The SSWM measures can control the quantity and quality of surface runoff effectively at a site

scale [5]. Such measures include rain gardens, wetlands, retention and detention pond, bioswales,
green roofs, and other nature-based solutions. These have their corresponding efficiency in decreasing
total runoff, delaying peak flows and removing pollutants [22]. Runoff quantity control can be
quantified by calculating the total runoff reduction, peak discharge reduction and peak flow delay [64].
Non-point source pollution control can be represented by reduction of typical pollutants carried by
runoff, such as total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN),
and total phosphorus (TP) [65].

For operational performance of SSWM system, the primary indicators are about meeting specific
design goals as well as local technical specifications and standards that are sometime dependent
on the site conditions [66]. Site adaptability, including the conditions of land use, soil, topography,
groundwater level etc., is another key criterion for screening appropriate BMPs. In addition, the required
area for suitable BMPs are different for achieving desirable performance goals [56,67]. For instance,
bioretention systems generally requires less space than detention basins and retention ponds [22]. Thus,
space requirement can be considered as one evaluation indicator for operational performance objective.
Moreover, reliability, stability and risk of malfunction (such as equipment breakdown and soil clogging)
also influence whether the system can achieve expected performance [56,68]. The system flexibility
and complexity are also mentioned as indicators for assessing the technical performance of SSWM
alternatives. For example, bioswales are generally more flexible in locations, shapes and planting
schemes than detention basins and retention ponds in various urban environment conditions [22].
Accessibility and safety of SSWM assets are also important evaluation indexes because they can reflect
whether the system can further provide recreational and educational services [23,69]. Also, a suitable
system layout/structure can improve the performance of the SSWM system. For example, different types
of vegetation have different pollutant removal capacities [70]. Furthermore, design parameters like
soil depth and composition of LID practices also influence the cost-effectiveness of the system [9,71].

Regards to economic sustainability, the indicators of system maintainability, capital cost as well as
operation and maintenance cost of the SSWM system can generally reflect whether the system can
provide economic benefits [9,17,57]. The self-sufficiency indicator means that the SSWM system can
treat and supply water on site, which will increase the cost-effectiveness of the system [72,73].

For technical innovation, smarter SWM technique can effectively improve system performance
(such as monitoring sensors, wireless communications and online data platform) [74,75].
System optimisation, like structural optimisation of porous media or engineering soil, can achieve
higher cost–effectiveness [76]. Adoption of novel strategies, products, and approaches can also
reflect the technical innovation of SWM [77]. Integration of intelligent control and incorporation
of innovative design/device are individually adopted as assessment indicators in WSC index and
ABC waters certification [33,52]. Therefore, intelligent operation, adoption of innovative design and
equipment, and system optimisation are used as evaluation indicators in the specific objective of
technical innovation.

2. Indicators for integrated management evaluation
For environmental governance, many studies have proved that SSWM can restore and enhance

the environmental health [78,79]. In particular, a wide range of studies discuss the benefits relating
to water body and ecological environment restoration, surface water resource quality improvement
as well as water security and sanitation [46,80,81]. In addition, indicators of enhancing biodiversity,
habitat restoration, protection of areas with high ecological values, groundwater quality improvement
and groundwater recharge can also be considered for a comprehensive assessment [23,82,83].
Some research further showed that the implementation of multiple SSWM infrastructures can have
positive impact on hydrology and water quality as well as enhancing biodiversity, protecting habitats
etc. at a watershed scale [84]. Therefore, watershed wide impact can also be one important indicator
when assessing the environmental benefits brought by SSWM.
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A range of studies have shown that SSWM has the ability to mitigate floods and alleviate water
scarcity problems by increasing water storage capacity of land and reusing harvested rainwater [85,86].
Thus, for the disaster resistance objective, flood reduction and mitigation as well as drought control
and defense are chosen to be the evaluation indicators.

SSWM can maximise utilisation efficiency of natural and human-made resources. For example,
stormwater harvesting and reuse are effective means of water saving. Also, on-site water recycling
and reuse can reduce potable water demand [85]. Additionally, GI (such as urban trees and shrubs) in
SSWM has positive effects on energy consumption reduction and greenhouse gas emission control.
For example, urban trees can provide shading and cooling effect in hot summer for reducing air
conditioner use, and CO2 can be stored in biomass form, resulting in urban forests as carbon sinks [87,88].
Construction of decentralised SSWM measures, as an alternative approach to control flood and water
pollution on site, can avoid large upfront costs of constructing grey infrastructure (such as dam,
potable water treatment plants, and drainage systems) [89]. In addition, decentralised SSWM measures
can reduce runoff volumes in underground drainages which subsequently decrease the risk of drainage
damage and operational failure [14]. Therefore, reducing the cost of grey infrastructure and pipe
damage control are considered as the indicators of resource efficiency.

3. Indicators for social engagement evaluation
Public participation is vital for the success of SSWM [90]. Generally, people’s willingness to pay

(WTP) is an indicator to measure the social value of SSWM systems [91,92]. An increase of waterside
activities, public activity space, and community activities can reflect public awareness and perception
of SSWM [93]. This can subsequently increase the educational value of SSWM [23]. Shared ownership,
management and responsibility of the public, public engagement in water-related planning and design
as well as the transparency of SSWM information are important indicators for the public to be the
members of the stakeholders and decision makers [94]. The public’s preparation for and response
to extreme weather events from community warning is also an important indicator that should be
considered in social engagement [95].

For effective governance, the indicators of the comprehensive management capacity of
professionals and leaders, multiple stakeholders and policy makers involvement as well as
inter-disciplinary and inter-agency cooperation of the management level have to be assessed for
improving the quality of the decision-making process [96,97]. An integrated SSWM can also provide
water-related business opportunities and multi-sectoral benefits [98].

4. Indicators for urban development evaluation
The SSWM contributes to public space quality by improving liveability, landscape quality,

and aesthetics of the city, as well as increasing urban vegetation coverage and urban recreational
spaces [23,99]. Green spaces provided by SSWM practices can consequently form the interconnection
of blue and green network in the city [100]. The indicator of considering water as a major factor of
urban planning and design is of vital importance in WSUD in order to minimise negative impacts of
urbanisation [101]. As indicated by previous studies, a decrease of the distance to green space can
result in an increase of the property price [102].

For the specific objective of urban infrastructure renewal, accessibility to and affordability of
water-related public facilities (such as an increased number of public water supply facilities) supplies
certain social needs relating to water [99]. Construction of multifunctional water-related infrastructure
can satisfy multiple needs (e.g., water management, energy saving, and transport) for future urban
development [100].

Increase of urban resilience can be achieved by enhancing the adaptability of cities to extreme
weather events [103]. For example, SSWM measures can alleviate damages caused by flood events and
climate change. Also, many studies have showed that the increased green spaces provided by SSWM
can mitigate urban heat island effects [104,105].
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3.2.2. Adoption of the Comprehensive Evaluation Framework: SCC in China as an Example

Sponge City, as the concept of SSWM in China, has developed rapidly in recent years [60]. A robust
decision-making process for SCC can help stakeholders identify optimal development strategies or
monitoring programmes for existing SCC projects based on specific context and factors [106]. However,
the existing evaluation system of SCC has not comprehensively represented various managing objectives
and indicators that should be considered. Currently, the SCC management goals proposed by the
construction guideline in China focus on total annual runoff reduction and non-source pollution control
only [107]. Subsequently, the China Ministry of Housing and Urban-Rural Development (MHURD)
issued the Performance Evaluation and Examination Methods for Sponge City (on provisional)
(PEEMSC). The PEEMSC proposes that the performance evaluation system in China should include
eighteen indicators of six categories, namely: water ecology, water environment, water resources,
water security, system construction and implementation, as well as visibility and demonstration at
scale [108]. In the Assessment Standard for Sponge City (GB/T51345-2018) (ASSC), MHURD assesses
SCC from seven aspects, including volume capture ratio of annual rainfall, road surface ponding
and local flood control, urban water quality, projects implementation effectiveness, natural ecological
pattern management and ecological water front, variation trend of groundwater depth, and urban heat
island effect mitigation [63]. However, most of the evaluation goals and indicators in PEEMSC and
ASSC emphasise the ecological benefits brought by SSWM.

The objective and indicator setting in current SCC assessment system are compared with the
framework established in Table 1. This comparison aims to summarise the limitations of the existing
assessment system for SCC. Meanwhile, the evaluation objective and indicator setting in several
other organisations or countries are also included in order to examine the comprehensiveness of the
proposed framework.

Regarding the SSWM objective setting, UN SDGs, IWA Principles for WWC, Australia WSC index,
certification criteria for Singapore ABC waters programme, and current assessment standards for
SCC in China are summarised and compared under the proposed framework in parallel (Table S1).
It should be noted that the UN SDGs, IWA Principles for WWC, and Australia’s WSC index all
consider the 12 specific objectives of Table 1. Singapore ABC waters programme does not include
objectives relating to economic sustainability, effective governance, renewal of public infrastructure
and promotion of disaster resilience. China adopted the UN SDGs as a universal target in 2015 [109].
Therefore, UN SDGs is chosen to be the highest achievement level for SCC. To achieve UN SDGs goals,
the assessment standards of SCC should not be limited to assessing the operational capacity and the
ecological benefits of SSWM systems. Instead, it should extend the objectives of SCC to cover economic
sustainability, technical advancement, public participation, and renewal of urban public infrastructure.

Regarding SSWM indicator settings, the evaluation indicators for comprehensive SSWM of
Australia, Singapore, and China are summarised and compared under the proposed framework
(Table 2). It should be noted that indicators of system flexibility, system complexity and reduced cost of
grey infrastructure are not reflected in the existing indicator setting in WSC, ABC waters programme,
and SCC at a national level. However, these indicators have been emphasised in related research for
site-scale evaluation. This provides a crucial insight into considering these indicators when developing
stormwater management criteria in the future. The results in Table 2 also suggest that the indicator
options under different objectives of WSC are more comprehensive, while Singapore’s ABC waters
program and China’s SCC contain lower number of evaluation indicators. The evaluation indicators
of Singapore’s ABC waters program are relatively narrow covering specific objectives of economic
sustainability, technical advancement, disaster resistance, and resource efficiency. The evaluation
indicators for China’s SCC under the objectives of effective governance and urban space quality
improvement are also rare. Indicators under scientific governance are designed to assess whether SSWM
can provide corresponding industrialisation opportunities to promote the economic development
of the city only. Also, there are neither indicators (inter-disciplinary or inter-sectoral cooperation)
set to evaluate professional capabilities nor indicators to promote participation of stakeholders and
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leadership capabilities. The objective of promoting urban space quality lacks indicators relating to city
liveability, landscape improvement, city aesthetic improvement, and property value enhancement.
Indicator options under the specific objectives of system performance, environmental governance
and resource efficiency are not comprehensive. In particular, indicators relating to site adaptability,
system optimisation, benefits of enhancing biodiversity, value of habitat protection and energy saving
benefit are limited.

Table 2. SSWM indicators—comparison between Australia Water Sensitive Cities (WSC), Singapore
Active, Beautiful, Clean (ABC) waters program, and China Sponge City Construction (SCC).

Objective
Classification Specific Objective Indicators Australia

WSC
Singapore ABC
Waters Program China SCC

Stormwater system

Surface runoff control
Runoff quantity control

√ √ √

Non-point source pollution control
√ √ √

System performance

Meet design objectives
√ √ √

Operational reliability
√ √ √

Space requirement
√

Site adaptability
√

System flexibility

System complexity

System accessibility and security
√

Suitable system layout/structure
√

Conformity to technical specifications and standards
√ √ √

Economic
sustainability

System maintainability
√ √

Self-sufficiency
√

Capital costs
√

Operation and maintenance cost
√

Technical innovation
System operation intelligence

√

Adoption of innovative design and equipment
√ √

System optimisation
√

Integrated
management

Environmental
governance

Restore water body and ecological environment
√ √

Improve the quality of surface water
√ √

Water security and sanitation
√ √

Increase biological diversity
√ √

Restore ecological habitat
√ √

Protect areas of high ecological values
√

Improve the groundwater quality
√

Groundwater recharge
√ √

Watershed-wide impact
√

Disaster resistance
Flood control and defense

√ √

Drought mitigation and defense
√

Resource efficiency

Stormwater harvesting and reuse
√ √ √

Reduce cost of grey infrastructure

Pipe damage control
√

Reduce energy consumption

Reduce greenhouse gases emission
√

Reduce potable water demand
√

Social engagement

Public participation

Citizen’s willingness to pay
√

Increase waterside activities
√ √

Increase public educational significance
√ √

Increase public activity space
√

Shared ownership, management and responsibility of the public
√

Preparedness for and response to extreme weather events
√

Local community participation in water-related planning
√

Community activities organisation
√

Information transparency
√

Effective governance

Water-related business opportunity (industrialisation)
√ √

Assessment of professional capacities
√

Inter-disciplinary, inter-agency cooperation
√

Participation of stakeholders and policy makers.
√

Assessment of leadership capability
√

Multi-sectoral benefits
√
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Table 2. Cont.

Objective
Classification Specific Objective Indicators Australia

WSC
Singapore ABC
Waters Program China SCC

City development

Urban space quality
improvement

City livability and landscape improvement
√

Consider water as a major factor of urban planning and design
√

Activate blue-green space
√ √

Increase vegetation coverage
√ √ √

Improve city’s aesthetics
√

Increase recreational space
√

Increase property values

Public infrastructure
renewal

Construction of multifunctional water-related infrastructure
√

Accessibility and affordability of water-related public facilities
√

City resilience
enhancement

Adaptability to extreme weather
√ √

Urban heat island effect mitigation
√ √

Note: WSC—Water Sensitive Cities; ABC—Active, Beautiful, Clean; SCC—Sponge City Construction.

Following the above, one can see that the objectives and evaluation standards currently established
by SCC mostly focus on operational capacity of the stormwater system and the ecological benefits that it
can bring. Little is provided to assess whether SSWM initiatives are applied in the appropriate context
such as climatic zones, site condition, economy, technology, society, governance, and urban development.
These objectives and indicators have been mentioned to varying degrees in SSWM standards of other
international organisations and countries. Hence, the comparison shows that the comprehensive
evaluation of SSWM in China, as well as many other developing countries, should consider the
relationship between SSWM with environment, economics, technology, management, and city
development in the future. On the other hand, the evaluation goal and indicator setting in the proposed
comprehensive evaluation framework of SSWM should cover the most goals and indicators set by
different organisations and countries.

3.3. Procedures and Methods for Comprehensive Evaluation of SSWM

3.3.1. Procedures for Comprehensive Evaluation of SSWM

Undoubtedly, the establishment of comprehensive evaluation framework for SSWM will play
an important guiding role in implementation of SSWM projects. Selecting appropriate evaluation
goals and indicators from the framework is a crucial step when evaluating various SSWM options
and monitoring of existing projects. Decision makers will be able to analyse and report the evaluation
results by scoring the selected indicators directly and subjectively. However, to avoid errors and
reduce subjectivity of this individual perspective evaluation method, a more objective and inclusive
decision-making process is necessary. A clear procedure for the comprehensive evaluation of SSWM
can reduce the evaluation time and facilitate the decision-making process. Many researchers have
summarised the evaluation procedure based on different locations and contexts [17,19,22].

Based on an extensive review, the essential steps of a comprehensive performance and benefit
evaluation of SSWM are summarised in Figure 4. The procedures are as follows:

1. Investigating and analysing construction site conditions (hydraulic and hydrology situation,
land use type, drainage layout, etc.). The aim is to identify the existing water-related issues and
appreciate the need for SWM.

2. Determining the primary goals of SWM according to site analysis. The primary goals can be set
based on local management standards to meet the minimum requirement for SWM. For example,
annual total runoff control rate should not be less than 75% for reconstruction project in China [17].

3. Developing different SSWM scenarios for future projects or analysing the condition of existing
projects. For future projects, different SSWM strategies and layouts can be formulated to meet
the primary goals. For existing projects, a detailed analysis of the project conditions can provide
basic monitoring data for further evaluation of the project performance.
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4. Selecting suitable evaluation goals and indicators from the proposed comprehensive evaluation
framework (Table 1). It is necessary to consider data availability, relevance, sensitivity and other
attributes when selecting indicators [110]. To achieve a comprehensive evaluation from various
aspects, representative indicators should be selected from each objective level.

5. Using effective methods/tools to assign values or provide simulated/monitored data for the
selected indicators. In this step, the objectivity of the evaluation can be enhanced, and errors
caused by individual evaluation methods should be minimised.

6. Valuing and normalising the selected evaluation indicators on a unified scale. Different valuing
methods might have different measurement units for the same indicator. Therefore, evaluation
result of each indicator should be provided after normalisation.

7. Evaluating and scoring SSWM scenarios/projects. Performance and benefits of the SSWM
scenarios/projects can be evaluated comprehensively with respect to the selected indicators from
various perspectives.

8. Obtaining and reporting the comprehensive evaluation results. Inclusive and reliable evaluation
results can be provided at the final step to guide SSWM construction. For future projects,
the optimal design/layout can be determined by comparing and analysing the evaluation
outcome of each scenario. For existing projects, evaluation results can assist in monitoring and
improving the performance of SSWM systems.

3.3.2. Methods for Comprehensive Evaluation of SSWM

Evaluation indicators are classified into quantitative and qualitative variables in the proposed
evaluation framework (Table 1). If indicators can be quantitatively simulated and evaluated using
effective methods and tools during decision-making process, then the evaluation time can be
greatly reduced, and scientific support can be offered for the scheme. Scholars have conducted
extensive systematic studies on quantitative evaluation methods for various indicators. For example,
when assessing the control capacity of runoff volume, total runoff reduction rate, peak discharge
reduction and peak flow delay can be simulated by models [111]. In terms of complex economic
benefits, life cycle assessment can be adopted to estimate the cost of the facilities, operation and
maintenance at all stages [89,112]. In addition, cost-effectiveness analysis is an important method to
assess varying SSWM options based on the relationship between system performance and costs [9,113].

Some indicators, like most indicators under social engagement and urban development objectives
in the proposed evaluation framework, are qualitative variables. In many cases, both the quantitative
and qualitative indicators need to be considered to ensure that the evaluation aspects are comprehensive.
Generally, one of the most common methods for valuing qualitative variables is to use experts’
opinions and stakeholders’ preferences [96,114]. Experts and/or stakeholders can provide their
preferences on the indicators’ weights. Thereby, the values and priorities of these indicators can be
represented. Another valuation method is to convert indicator importance into monetary value.
However, this method might be used only for benefit-related indicators, such as the indicators of
improving city aesthetics, increasing recreational space as well as increasing property values. Monetary
values of various water-related benefits can be found in Gunawardena et al. [115]. In terms of
social benefits, there are generally two quantitative methods to elicit people’s willingness to pay
(WTP)—namely, revealed preference techniques to quantify people’s preferences by observing their
behaviours in monetisation, and stated preference methods to reveal people’s potential preferences by
investigation/interviewing [57,116,117]. Following this, benefit transfer methods might be needed to
predict values for specific sites from original study sites [118].

Both quantitative and qualitative indicators can be further comprehensively evaluated considering
uncertainty, sensitivity, conflicting interests and complex interactions [119]. Commonly, there are two
types of evaluation methods which are widely used in this step. One is multi criteria analysis (MCA),
which uses statistical methods, such as analytic hierarchy process, principal component analysis and
correlation methods, to weight multiple indicators. The obtained evaluation results from MCA may
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be varying when using different multivariate methods with small amount of data [25,120]. This will
provide decision makers a clear and straight forward comparison of the evaluation results.

When valuing the selected indicators, different measuring units need to be normalised.
Common normalisation methods for MCA include linear scale method, vector normalisation and
extreme value method [53]. Another approach is benefit cost analysis (BCA) which assigns monetary
values to each indicator and predicts the net present value of the proposed investment throughout the
lifespan. In BCA approach, all indicators need to be expressed in monetary terms and professional
advices might be required from economic experts [121,122]. Finally, each SSWM scenario/project can be
comprehensively evaluated and an overall evaluation score can be provided by the selected indicators.
The above methods are integrated with the evaluation procedures in Figure 4.
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3.3.3. Existing Decision Support Tools for Evaluation of SSWM

Organisations across the world have developed a variety of decision support tools for quantitative
evaluation of SSWM to ensure that SSWM can perform well from the conceptual stage to implementation,
operation, and maintenance. However, different models have different focuses. For example, though the
Storm Water Management Model (SWMM) developed by the US can simulate changes of total annual
runoff and pollutant loads in SWM systems [123], other associated evaluation software is required to
evaluate system optimisation and economic benefits [11]. The Australian Model for Urban Stormwater
Improvement Conceptualisation (MUSIC) focuses on overall evaluation and optimisation of the
preliminary concept planning of SWM systems, but the event mean concentrations (EMCs) needed
by MUSIC might lead to large deviations between the simulated and observed results of runoff

quality [124]. Nevertheless, MUSIC model can help Australian government, developers and relevant
consultants verify their design plan quickly in complying with local guidelines and requirements
that has been set in advance through MUSIC-link [125]. In recent years, many scholars have begun
to simulate and evaluate Sponge City practices with various tools, including SWMM, System for
Urban Stormwater Treatment and Analysis Integration (SUSTAIN), MIKE URBAN, and Infoworks.
For instance, these tools have been used for the simulation of runoff volume control and pollutants
removal, analysis of flood risk and evaluation of cost-effectiveness of LID measures [17,126–128].

Based on the functions and focuses of the decision support tools for SWM, scholars have adopted
various methods to classify them. For example, Bach et al. [28] classified models focusing on integrated
urban water management into four levels according to their degree of integration. Lerer et al. [129]
classified various tools according to the types of question types (how much, where, which) that can
be answered by the decision-making tools, and explained the functions, limitations and differences
of tools in use. Zhou [30] compared and discussed the functions of a variety of decision-aid tools
from four aspects, which are water quality, water quantity, sustainable drainage facilities and spatial
planning. Jayasooriya and Ng [29] screened 10 models for detailed description based on popularity
and classified them into three types according to their functions. Kuller et al. [23] proposed a new
framework based on the principles of involving multiple factors, scales and stakeholders to classify
decision support tools into three levels and to support better planning and implementation of WSUD.

3.3.4. Selection of Suitable Decision Support Tools: SCC as an Example

There are a variety of decision support tools that can assist decision makers in assessing the
performance and benefit of SSWM. Appropriate tools can effectively facilitate the evaluation process
and holistically develop SSWM strategies. However, in developing countries, limited decision support
tools are developed based on national conditions. Therefore, the selection of most suitable decision
support tools for context specific SSWM is necessary.

China, as the fourth largest country in the world, has huge differences in geographical
environments, precipitation conditions, hydrological characteristic, and water resources utilisation
between different regions. The applicability and adaptability of the decision support tools in China
can provide a reference to other developing countries.

Hence, in this section, several well-known decision support tools are selected to compare their
adaptability and applicability for the comprehensive evaluation of SCC. The rationale for screening
appropriate decision support tools is illustrated in Figure 5. First, an extensive literature review
of existing tools is conducted to screen tools that are widely accepted and used by researchers.
The selection of appropriate tools in this review follows three principles: (1) Applicability in SCC;
(2) the possibility of these tools to be used in SCC; and (3) the value of these tools for developing
new decision support tools for SCC. A wide range of decision support tools has been developed for
assisting SSWM. However, one major limitation of these tools is that they might only be applied within
a specific country or region. Understanding the calculation algorithms and developing philosophies of
these tools might provide critical insights into the future development of decision support tools.
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Based on the screening method of the decision support tools mentioned above, eight are selected
for a comprehensive comparison of their suitability in assisting SCC (Table 3). These include SWMM,
SUSTAIN, MIKE URBAN, Infoworks, MUSIC, Dynamic Adaption for Enabling City Evolution for
Water (DAnCE4Water), Urban Biophysical Environments and Technologies Simulator (UrbanBEATS),
and CALVIN. These tools are widely used by researchers and have the potential to be used for assisting
implementation. These eight tools cover the scope of model classification proposed by Bach et al. [28],
which enhances their representativeness. Comparison aspects include classification, primary focus,
adaptability and applicability for assisting SCC, as well as the comprehensive evaluation capacity for
SWM. Another parallel comparison of these eight tools (Table S2) is provided for assessing the capacity
of comprehensive evaluation of SSWM by referring to their user manuals and related studies.

The comparison demonstrates that all the eight tools can evaluate the runoff quantity control
in terms of whether the stormwater system meets the designed objectives and the operational
reliability of the system. Nevertheless, the comparison shows that although SWMM, Infoworks,
SUSTAIN, and MIKE URBAN are widely applied in SCC, their capacity of comprehensive evaluation
is limited. For example, Infoworks and MIKE URBAN mainly focus on the flood control and the
performance of drainage system. There is a lack of studies on the applicability of CALVIN, UrbanBEATS,
and DAnCE4Water. However, the philosophy and algorithm adopted by these tools are inspiring
to the future model development for SCC. For instance, the water shortage loss function adopted by
CALVIN can predict overall urban water use in the future based on population growth projections
and urban water demands [130]. This method gives insights into how to guide SCC in drought
areas in China. The stochastic procedural algorithm adopted in UrbanBEATS can conceptualise
various characteristics of urban environment to achieve a better water infrastructure planning [24].
This provides insights into how to establish links between SCC and urban planning and design.
The developing philosophy of DAnCE4Water involves various transitions of urban water management
in one single model. It considers interactions between water infrastructure, city development and
societal need to predict possible future scenarios of urban water management [131]. This provides
some ideas of exploring consequences of SCC under deep uncertainties in the future. The use of
MUSIC for SCC is limited, but it is applicable when the long-term climate data can be provided.
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For the comprehensive evaluation capacity of these tools, MUSIC, UrbanBEATS, and DAnCE4Water
can simulate comprehensive results from a range of different perspectives.

From the tool comparison in the proposed comprehensive evaluation framework (Table S2), it is
further revealed that all the eight decision support tools cannot measure most qualitative indicators
under the objectives of social engagement and urban development. For these indicators, methods like
using experts’ opinions, stakeholders’ preferences and assigning monetary values that mentioned in
Section 3.3.2 can be used as valuing options. Furthermore, methods like MCA and BCA can be adopted
for evaluating both qualitative and quantitative indicators to provide comprehensive evaluation
outcomes. A set of related tools were reported by Linkov and Moberg [132] and Pannell [133] to help
decision makers in selecting best solutions for environmental problems, but very few of these tools
focus on SSWM. In this regard, tools like E2STORMED which is based on MCA to quantify decision
criteria of SSWM [55] and INFFEWS which is based on BCA focuses on assessing water sensitive
outcomes economically [134] have been developed in recent years to provide integrated and robust
evaluation of SSWM. However, these two tools generally have limited hydrologic simulation ability
and their applicability need to be widely tested. For SCC in China, there has been an increasing trend
in using MCA rather than BCA as the final step to weight the indicators, score strategies or projects,
and provide relatively objective evaluation outcomes [17,120]. The limited use of BCA in SCC is mainly
because the research on monetary values of various benefits brought by SCC is relatively limited.

Development of more integrated tools is therefore needed. Instead of focusing on hydrologic
models only, future tools should adopt broader approach to embrace measurement methods of diverse
indicators such as social engagement and urban development. For instance, a simplified MCA or BCA
can be added as a function in future tools to assist in making more inclusive decisions. Furthermore,
better user-friendliness, transparency, multi-stakeholder involvement, and data collection are also
important to enhance the capability of effective communication of future tools across various disciplines.
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Table 3. Comparison of eight decision aid tools in assisting SCC.

Classification Tool Name Primary Focus Adaptability and Applicability in SCC Comprehensive Evaluation Ability of SSWM Main References

IUDMs SWMM Hydrological and hydraulic
simulation of SWM performance Widely used in runoff quantity control performance assessment Evaluation of flood control and defense

Has to be integrated with other tools or methods [11,17,21]

Infoworks Hydrodynamic simulation of
flow by drainage system Widely used in flood control simulation Evaluation of flood control and defense

Performance of underground drainage network [128,135,136]

IWSMs CALVIN
Integrated water cycle

management for California
river basin

None
This model is based on the flood and drought characteristics of California.
However, the urban water shortage loss function applied in CALVIN can
provide critical insights into SWM simulation in drought area in China.

Evaluation of flood control and defense
Evaluation of drought mitigation and defense

Analysis of total water system including the relations to surface and
groundwater reservoirs, canals, rivers, water demand and supply

Economic value evaluation

[130,137,138]

IUWCMs

MUSIC Conceptual planning and design
of WSUD

Limited
Mainly due to built-in climate data which is only for Australia and New
Zealand. But the size and performance of SSWM measures in China can

be simulated with adequate climate data.

Calculation of groundwater recharge;
Evaluation of stormwater harvesting and reuse rate

Providing platform for stakeholder engagement
Life Cycle Cost Analysis

[125,139–141]

MIKE URBAN Hydrodynamic simulation of
flow by drainage system Widely used in flood control simulation

Evaluation of flood control and defense
Performance of underground drainage network

Calculation of water demand and supply
[126,142]

SUSTAIN Planning and optimisation
of BMPs Widely used BMPs selection and optimisation

Evaluation of flood control and defense
Evaluation of SWM systems site adaptability

Cost-effectiveness analysis
[143–145]

UrbanBEATS Spatial planning and design of
WSUD placement

None
The stochastic procedural algorithm adopted in UrbanBEATS is

inspiring. The algorithm considers varying demographics, land uses and
other urban characteristics in determining WSUD placement. It provides

critical insights into how to integrate SWM into urban planning
and design.

Calculation of space requirements of SSWM systems
Evaluation of site adaptability of SSWM systems
Evaluation of self-sufficiency of SSWM systems;

Evaluation of stormwater harvesting and reuse rate;
Calculation of potable water supply

Economic evaluation module;

[24,146]

IUWSMs DAnCE4Water Conceptual planning and design
of urban water system scenarios

None
The philosophy of integrating urban water system, urban development

and the societal system is inspiring.
Creates a dynamic simulation and interaction environment between

water infrastructure, city development and society to explore possible
future scenarios of urban water management.

Provides critical insights on how to identify the most robust and suitable
SSWM strategies to plan against future uncertainties.

Evaluation of self-sufficiency of SWM systems
Evaluation of urban heat island effect mitigation

Information transparencyEvaluation of stormwater harvesting and
reuse rate

Providing platform for stakeholder engagement
Simulation of future urban development scenarios

[131,147]

Note: IUDMs—integrated urban drainage models; IWSMs—integrated water supply models; IUWCMs—integrated urban water cycle models; IUWSMs—integrated urban water system
models. The classification method is adopted from Bach et al. [28].
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4. Conclusions

This study conducts an extensive review on comprehensive evaluation of SSWM and proposes
a new evaluation framework for assessing the performance and benefits of SSWM in developing
countries. In particular, the existing SSWM evaluation systems in the US, Europe, Australia, Singapore,
China, India, and Malaysia provide critical insights into developing this evaluation framework.
The framework proposes four management objectives and the corresponding evaluation indicators in a
broad perspective based on the current development situation in most developing countries. This can
assist decision makers in improving the quality of SSWM implementation in the future.

Establishment of comprehensive evaluation framework for SSWM does not mean that all the
objectives and indicators suggested in the framework should be adopted. Instead, it should be
regarded as an evaluation guide at early stage to assist stakeholders and decision makers in screening
and selection of optimal SSWM strategies based on their respective geographical and operational
context. Considering various national circumstances in developing countries, suitable objectives and
corresponding indicators in the proposed framework can be selected based on local characteristics.
Then benchmarks for different SSWM strategies and existing projects monitoring programmes can be
achieved during the decision-making process.

This review further summarises the procedures for comprehensive evaluation of SSWM.
Different types of evaluation methods are also classified to provide recommendations for decision
makers on how to screen optimal SSWM strategies and improve the performance of existing projects.
Moreover, eight decision support tools are compared in this review to assess their adaptability and
applicability in developing countries. Lastly, future development of assessment tools for SSWM
in developing countries should also take various factors into consideration. These factors include
built-in climate data, user-friendly interface, and the ability to assess multiple indicators from
various perspectives, so that researchers and practitioners with different educational and professional
backgrounds can participate in the decision-making process. Thereby, the science-based development
of SWM systems in developing countries can be accelerated in the future.

Further research is necessary to enhance the applicability and feasibility of the proposed
comprehensive evaluation framework. In addition, selected decision support tools in this study
mainly focus on hydrologic models and future study should try to explore broader approach for
measurement methods of more diverse indicators, especially qualitative ones. Therefore, development
of more integrated tools is needed for the implementation of comprehensive evaluation of SSWM.
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