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Abstract: Transition between free-surface and pressurized flows is a crucial phenomenon in many
hydraulic systems. During simulation of such phenomenon, severe numerical oscillations may appear
behind filling-bores, causing unphysical pressure variations and computation failure. This paper
reviews existing oscillation-suppressing methods, while only one of them can obtain a stable result
under a realistic acoustic wave speed. We derive a new oscillation-suppressing method with first-order
accuracy. This simple method contains two parameters, Pa and Pb, and their values can be determined
easily. It can sufficiently suppress numerical oscillations under an acoustic wave speed of 1000 ms−1.
Good agreement is found between simulation results and analytical results or experimental data.
This paper can help readers to choose an appropriate oscillation-suppressing method for numerical
simulations of flow regime transition under a realistic acoustic wave speed.

Keywords: flow regime transition; finite volume methods; numerical oscillations; numerical viscosity;
Preissmann slot model

1. Introduction

In water conveyance systems, water flows under free-surface flow condition or pressurized
flow condition. Under certain circumstances, transition between the two flow regimes may occur
(i.e., the flow regime transition phenomenon). Following the transition, force exerting on structures
changes violently and causes structural damage [1–3]. Numerical simulation of flow regime transition
can provide substantial information for the design and management of river-crossing bridges, tunnels,
conducts and culverts [4–10].

The complexity of flow regime transition lies in the presence of free-surface and pressurized
flows, which are governed by different equations. This problem can be avoided by adopting one set
of governing equations for two flow regimes. Based on this idea, the Preissmann slot model (PSM)
is proposed [11]; it was adopted by many researchers and commercial software packages [12–18].
The strong gradient in piezometric head at the interface between two flow regimes forms a discontinuity
in flow. Finite volume methods can capture the discontinuity in the flow implicitly, which makes them
popular in simulating flow regime transition [19].

Despite of all the fine properties that finite volume methods have, the numerical oscillations in
a flow regime transition simulation have troubled many hydraulic engineers [12]. These numerical
oscillations have the same origin with “post-shock oscillations” in gas dynamics [20–23]. In analytical
results, the thickness of the filling-bore is infinitely small, and the flow states at the two sides of a
filling-bore satisfy the Rankine–Hugoniot condition. In numerical simulations, a filling-bore spreads
over several computational cells, and the flow states at the two adjacent cells do not satisfy the
Rankine–Hugoniot condition. This causes trivial discrepancies in the mass and momentum fluxes,
which are amplified in simulation results due to the large acoustic wave speed. High-order finite volume
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methods cause more numerical oscillations because of low dissipation away from the shocks [21].
First-order upwind finite volume methods fail to prevent numerical oscillations without compromising
the representation of the filling-bore [23–25].

A lot of effort has been spent to obtain a stable and accurate result of flow regime transition [12,23,24].
In this paper, some existing oscillation-suppressing methods are tested on a benchmark model.
Considering the lack of an efficient and simple method, the authors derive a new method, which can
suppress numerical oscillations and capture the filling-bore nicely under a high acoustic wave speed.
The structure of this paper is as follows: Section 2 introduces the governing equations and the
discretization method. Section 3 reviews the existing oscillation-suppressing methods, and their effects
are evaluated on the benchmark model that was adopted by Malekpour and Karney [24]. Section 4
proposes a new and simple modified HLL solver to suppress numerical oscillations. Its accuracy and
robustness are tested against the analytical results and experiment data in Section 5. Conclusions are
drawn in the last section.

2. Governing Equations and Discretization Method

The PSM places an infinitely high narrow slot on the top of the conduct, so that it becomes an
open-channel with a composite cross-section. The water depth in the slot represents the piezometric
head of the pressurized flow inside the original conduct, as shown in Figure 1. The slot width needs to
be very small so that the gravity wave speed inside it is identical to the acoustic wave speed.
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width. The external force acting on the flow is accounted in the source term, where Sb is the bed 
slope and Sf is the friction slope, which can be computed using the Manning relation: 

Figure 1. A rectangular conduct with a slot on its top: (a) free surface flow; (b) pressurized flow.

Under the framework of PSM, the governing equations of one-dimensional flow regime transition
with uniform cross-sections can be written as [26]:

∂U
∂t

+
∂F(U)

∂x
= S(U)

U =

(
A
Q

)
, F(U) =

 Q
Q2

A + gI(h)

, S(U) =

 0
gA

(
Sb − S f

)  (1)

I(h) =

∫ h

0
(h− ξ)l(x, ξ)dξ

where Q is the volume flow rate, A is the wetted area, g is the acceleration of gravity, h is the water
depth, I is the moment of inertia, l is the cross-sectional width and l(x, h) = b(x) the water surface width.
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The external force acting on the flow is accounted in the source term, where Sb is the bed slope and Sf
is the friction slope, which can be computed using the Manning relation:

S f =
n2u|u|
R4/3

(2)

where u is the flow velocity, n is the Manning coefficient and R is the hydraulic radius. For a rectangular
cross-section with a slot on its top, the parameters b, A, I and wave speed c can be expressed as functions
of h:

b(h) =

{
B h ≤ H
Bsl h > H

(3)

A(h) =

{
Bh h ≤ H
BH + Bsl(h−H) h > H

(4)

I(h) =

{
0.5Bh2 h ≤ H
BH(h− 0.5H) + 0.5Bsl(h−H)2 h > H

(5)

c(h) =


√

gh h ≤ H√
g A

Bsl
h > H

(6)

where H and B are the cross-sectional height and width, and Bsl is slot width. In order to make the
gravity wave speed inside the slot equal to the acoustic wave speed a, the slot width Bsl = gAf a−2,
where Af is the full cross-sectional area of the conduct [27]. Using the Godunov-type finite volume
methods with first-order accuracy and assuming a piecewise constant data construction, the governing
equations are discretized as

U∗i = Un
i −

∆ti
∆xi

(Fi+1/2 − Fi−1/2) (7)

Un+1
i = U∗i + ∆tiS

(
U∗i

)
(8)

3. Review of Current Oscillation-Suppressing Methods

The benchmark model was proposed by Malekpour and Karney [24], it consists of a conduct with
square-unit cross-sections that are connected to a reservoir at the upstream end. The acoustic wave
speed is 1000 ms−1 and the slot width is 9.8 × 10−6 m. Under the initial condition, 0.6 m-deep stagnant
water is in the conduct while the water level inside the reservoir is constantly 4 m, as shown in Figure 2.
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Under initial condition, flow states UL in the reservoir and UR in the conduct are discontinuous:[
hL

uL

]
=

[
4 m

0 ms−1

]
,
[

hR

uR

]
=

[
0.6 m

0 ms−1

]
(9)

Since hL is larger than hR, a shock wave (filling-bore) belonging to the second characteristic
field is formed at the conduct inlet and propagates downstream. Consider 1–1 as a cross-section in
the reservoir and 2–2 as a cross-section at conduct inlet: flow sates at 1–1 and 2–2 are U1 and U2,
respectively. Then U2 can be obtained by solving the following equations iteratively [24]:

h1 = h2 +
u2

2

2g
(10)

u2 = uR +

√
[gI(AR) − gI(A2)](AR −A2)

ARA2
(11)

where U1 = UL by assuming that flow velocity inside the reservoir is negligible. In this case, h2 and u2

are 3.167 m and 4.0334 ms−1, a ghost cell is set at the upstream boundary adopting h2 and u2. Since U2

is connected to UR through a right shock, the flow states inside the conduct ultimately will take place
by U2. The propagation speed of the filling-bore is given by the Rankine–Hugoniot condition, which is
10.067 ms−1. Then we can construct the analytical result in the benchmark model at t0:

h(x) =

{
3.167 m x < 10.067t0

0.6 m x > 10.067t0
, u(x) =

{
4.0334 ms−1 x < 10.067t0

0 ms−1 x > 10.067t0
(12)

As customary, x denotes the distance to the conduct inlet. In a numerical simulation, the size
of each computational cell is 1 m, the time step is 0.008 s and the Courant number is 0.8. When the
acoustic wave speed adopted in the simulation exceeds 100 ms−1, the magnitude of the numerical
oscillations become so large that the simulated piezometric head become negative, and the simulation
will not proceed [24]. In the remaining part of this section, the readers will see that only one method
can get a satisfactory result under a high acoustic wave speed, while its performance rely on two
parameters which must be well tuned. This shows the importance of devising an alternative method,
which is stable and convenient.

3.1. Numerical Filtering Method

In this method, the exact Riemann solver is adopted to solve the Riemann problem at each cell
boundary. Flow states Ui+1/2 at xi+1/2 satisfy the following equations:

ui+1/2 =

 ui −

√
g [

I(Ai)−I(Ai+1/2)](Ai−Ai+1/2)
AiAi+1/2

Ai+1/2 > Ai

ui +
∫ AL

0

√
g
αb dα−

∫ Ai+1/2
0

√
g
αb dα Ai+1/2 < Ai

(13)

ui+1/2 =

 ui+1 +

√
g [

I(Ai+1)−I(Ai+1/2)](Ai+1−Ai+1/2)
Ai+1Ai+1/2

Ai+1/2 > Ai+1

ui+1 −
∫ Ai+1

0

√
g
αb dα+

∫ Ai+1/2
0

√
g
αb dα Ai+1/2 < Ai+1

(14)

Equations (13) and (14) can be solved iteratively, then the wave structure in the Riemann problem
can be determined and utilized to compute the flux; see Kerger et al. [26] for detail. Although the exact
solver can obtain the complete wave structure, serious numerical oscillations appear in the simulation
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result. Vasconcelos et al. [23] proposed to suppress the numerical oscillations by averaging the flow
states among the three conjunct cells at each time step:

Un+1
i = (1− 2ε)Un+1

i + ε
(
Un+1

i−1 + Un+1
i+1

)
(15)

The authors suggest ε to be between 0.025 and 0.050. This method will increase the spreading
length of the filling-bore front and remove any physical oscillations that appear in the solution.
The simulation result of this method using ε = 0.04 is drawn in Figure 3.
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Figure 3. Comparison of results simulated by the numerical filtering method (filtered) and the analytical
result (AR): (a) piezometric head; (b) flow velocity.

3.2. Hybrid Flux Method

The hybrid flux method uses two types of numerical fluxes alternatively. The first one is based on
the Roe solver [28] and the LxF scheme [23]. Define λ j

i+1/2 as eigenvalues of the linearized Jacobian

matrix, R j
i+1/2 as the corresponding right eigenvectors and α j

i+1/2 as the wave strengths across the cell
boundary:

λ1
i+1/2 =

Q̃i+1/2

Ãi+1/2

− c̃i+1/2,λ2
i+1/2 =

Q̃i+1/2

Ãi+1/2

+ c̃i+1/2 (16)

R1
i+1/2 =

[
1,λ1

i+1/2

]T
, R2

i+1/2 =
[
1,λ2

i+1/2

]T
(17)

α1
i+1/2 =

λ2
i+1/2(Ai+1 −Ai) − (Qi+1 −Qi)

λ2
i+1/2 − λ

1
i+1/2

,α2
i+1/2 =

(Qi+1 −Qi) − λ
1
i+1/2(Ai+1 −Ai)

λ2
i+1/2 − λ

1
i+1/2

(18)

where Q̃i+1/2, Ãi+1/2 and c̃i+1/2 are Roe averages:

Ãi+1/2 = (AiAi+1)
1/2 (19)

Q̃i+1/2 =
Qi+1(Ai)

1/2 + Qi(Ai+1)
1/2

(Ai)
1/2 + (Ai+1)

1/2
(20)

c̃i+1/2 =


[
g I(Ai+1)−I(Ai)

Ai+1−Ai

]1/2
Ai+1 , Ai[

g Ai+Ai+1
bi+bi+1

]1/2
Ai+1 = Ai

(21)
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Then the fluxes obtained by the Roe solver are written as

FRoe
i+1/2 =

1
2

[
F
(
Un

i+1

)
+ F

(
Un

i

)]
−

1
2

2∑
j = 1

∣∣∣∣λ j
i+1/2

∣∣∣∣α j
i+1/2R j

i+1/2 (22)

The Roe solver is known to be vulnerable to numerical oscillations [21,29], while the LxF scheme
is robust against numerical oscillations but causes too much diffusion of the filling-bore:

FLxF
i+1/2 =

1
2

[
F
(
Un

i+1

)
+ F

(
Un

i

)]
−

∆x
2∆t

(Ui+1 −Ui) (23)

Compare Equations (22) with (23): The difference between the Roe solver and LxF scheme is the
choice of eigenvalues. Vasconcelos et al. [23] proposed a new method to determine the eigenvalues:

∣∣∣∣λ1,2
i+1/2

∣∣∣∣ = min

∆x
∆t

,

∣∣∣∣∣∣∣ Q̃i+1/2

Ãi+1/2

∓ c̃i+1/2

∣∣∣∣∣∣∣+ L(∆ci+1/2)
L ∆x

∆t

 (24)

∆ci+1/2 =

∣∣∣̃ci+1 − c̃i
∣∣∣

max
(∣∣∣̃ci+1 − c̃i

∣∣∣)
i = 1...N−1

(25)

This method is referred to as the hybrid one from here on further. At the cell boundary between
the free-surface and pressurized flows, ∆ci+1/2 = 1, as L changes from 0 to 1, the eigenvalues switches
from those obtained by the Roe solver to those adopted in the LxF scheme. At the other cell boundaries,
∆ci+1/2 is approximately 0, thus the eigenvalues in Equation (24) remain close to those obtained by
the Roe solver. In this way, numerical viscosity is added at the cell boundary where flow condition
transition happens, and its amount increases with L. The simulation results of the hybrid one with
L = 0.6 are drawn in Figure 4. This method overestimates the spreading length of the filling-bore, and it
fails to suppress the numerical oscillations under a high acoustic wave speed.
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Hyunuk et al. [12] chose different fluxes; they used the FORCE scheme [30] at the cell boundary
between the free-surface and pressurized flows, and the HLL solver [30] elsewhere:

Fhybrid
i+1/2 =

 FFORCE
i+1/2 (hL −HL)(hR −HR) < 0

FHLL
i+1/2 otherwise

(26)
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This method is referred to as hybrid two from here on further. The HLL solver starts by estimating
the largest wave speed SwR and smallest wave speed SwL in the Riemann problem. The fluxes are
computed based on the signs of SwL and SwR:

FHLL
i+1/2 =


F(Ui) SwL > 0
SwRF(Ui)−SwLF(Ui+1)+SwRSwL(Ui+1−Ui)

SwR−SwL
SwL ≤ 0 and SwR ≥ 0

F(Ui+1) SwR < 0
(27)

The choices of SwL and SwR follow Toro [31]:

SwL = ui −Ωi, SwR = ui+1 + Ωi+1 (28)

ΩK(K = i,i+1) =


√

g [
I(Ai+1/2)−I(AK)]Ai+1/2

AK(Ai+1/2−AK)
Ai+1/2 > AK

cK Ai+1/2 ≤ AK

(29)

where Ai+1/2 is an estimate of the wetted area at xi+1/2; we adopt the one proposed by Leno et al. [32],
which admits the minimum amount of numerical viscosity:

Ai+1/2 =
Ai + Ai+1

2

(
1 +

ui − ui+1

ci + ci+1

)
(30)

The FORCE flux can be written as the algebraic average of the LxF scheme and Lax–Wendorff scheme:

FLW
i+1/2 = F

(
ULW

i+1/2

)
, ULW

i+1/2 =
1
2

(
Un

i + Un
i+1

)
−

∆x
2∆t

[
F
(
Un

i+1

)
− F

(
Un

i

)]
(31)

FFORCE
i+1/2 =

1
2

(
FLW

i+1/2 + FLxF
i+1/2

)
(32)

The FORCE scheme is a centred scheme; thus, it is robust against numerical oscillations. It
is less diffusive than the LxF scheme, which can reduce the over-smearing at strong gradients [33].
The simulation results of hybrid two are depicted in Figure 5.
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The hybrid flux methods have added enough numerical viscosity at the cell boundary between 
the two flow regimes but, still, serious numerical oscillations appear in the simulation results. The 
reason is that the numerical oscillations appear as soon as the flow regime transition happens, and 
while the two methods start to add numerical viscosity one time-step falls behind of it. If one 
method can foresee the happening of the flow regime transition, and admits numerical viscosity 
ahead of it, it will achieve a more stable result. 

Figure 5. Comparison of the results simulated by hybrid two and the analytical result (AR): (a)
piezometric head; (b) flow velocity.

The hybrid flux methods have added enough numerical viscosity at the cell boundary between the
two flow regimes but, still, serious numerical oscillations appear in the simulation results. The reason
is that the numerical oscillations appear as soon as the flow regime transition happens, and while the
two methods start to add numerical viscosity one time-step falls behind of it. If one method can foresee
the happening of the flow regime transition, and admits numerical viscosity ahead of it, it will achieve
a more stable result.
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3.3. Modified HLL Solver

Malekpour and Karney [24] pointed out that the amount of numerical viscosity in the HLL fluxes
increases with the magnitude of SwL and SwR. In fact, the HLL fluxes equal the LxF fluxes when |SwL|

and |SwR| equal ∆x/∆t. To increase the amount of numerical viscosity, they proposed a modified HLL
solver (referred to as the M_HLL solver). In the M_HLL solver, Ai+1/2 in Equation (29) is computed
according to a reference depth hG:

Ai+1/2 = A(hG), hG = Kamax(hi−NS, hi−NS+1, · · · , hi−1, hi, hi+1, · · · , hi+NS−1, hi+NS) (33)

The depth hG is defined as Ka, multiplying the highest piezometric head in the 2NS+1 cells
surrounding cell i, while Ka > 1 and NS ≥ 3. The solution of Equation (33) produces a larger magnitude
of SwL and SwR; thus, increasing the numerical viscosity before the flow regime transition happens.
The simulation results of M_HLL with Ka = 1.4 and NS = 5 are drawn in Figure 6.
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result (AR): (a) piezometric head; (b) flow velocity.

The M_HLL solver can suppress numerical oscillations in the benchmark model, and it only
slightly increases the spreading length at the filling-bore front. However, the values of Ka and NS can
affect the diffusion and accuracy of the M_HLL solver to a great extent; see Figure 7.
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Figure 7. Comparison of the results simulated by M_HLL, with Ka = 1.4 and NS = 3, and the analytical
result (AR): (a) piezometric head; (b) flow velocity.

Thus, the values of Ka and NS must be well-tuned. Meanwhile, the way to determine hG makes
the HLL solver hard to use in parallelized computation. In the next section, the authors present an
alternative method, which is equally efficient as the M_HLL solver.
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4. A New Modified HLL Solver

In this section, we present a new modified HLL solver (referred to as the P_HLL solver) to suppress
numerical oscillations. In the P_HLL solver, the solution to Ai+1/2 depends on the water depths at
cell i and i + 1. When hi and hi+1 are below PbH, Ai+1/2 is computed using Equation (30) to admit
the minimum amount of numerical viscosity, otherwise Ai+1/2 is computed according to a constant
depth PaH:

Ai+1/2 = A(PaH), hi > PbH or hi+1 > PbH (34)

Pb must be smaller than one, and a preferable value is between 0.6 and 0.8. PaH must be larger
than the piezometric head peak during the transition to admit enough numerical viscosity.

To illustrate the effect of Pa and Pb, we study the Riemann problem at xi+1/2 in the benchmark
model. Suppose hi and hi+1 is 3.167 m and 0.6 m, respectively, and ui and ui+1 is 4.0334 ms−1 and
0 ms−1, respectively. The solution of Equation (30) lies between Ai and Ai+1, and after substituting
it into Equation (28), one will get SwL (noted as SwL1) as the speed of the left rarefaction wave head,
and SwR (noted as SwR1) as the speed of right shock wave:

SwL1 = ui − ci, SwR1 = ui+1 +

√
g
[I(Ai+1/2) − I(Ai+1)]Ai+1/2

Ai+1(Ai+1/2 −Ai+1)
(35)

A sketch of two waves in the Riemann problem is shown in Figure 8.
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Figure 8. A left rarefaction wave with a right shock wave at xi+1/2.

Because cell i is under a pressurized flow condition, it is easy to see that |SwL1| nearly equals the
acoustic wave speed. The entropy condition of right shock wave requires

ui+1/2 + ci+1/2 > SwR1 > ui+1 + ci+1 (36)

The magnitude of SwR1 equals the propagation speed of the filling-bore, which is 10.067 ms−1,
and it is much smaller than the acoustic wave speed.

The solution of Equation (34) is unconditionally larger than Ai and Ai+1, which produces two
shock waves in the Riemann problem. Consequently, SwR2 is the speed of the right shock wave,
and SwL2 is the speed of the left shock wave; see Figure 9.

The entropy condition of the left shock wave requires

ui+1/2 − ci+1/2 < SwL2 < ui − ci (37)

Since cell i is under a pressurized flow condition, ui << ci; thus, |SwL2| > |SwL1| and they are both
close to the acoustic wave speed. The speed of the right shock wave increases with Ai+1/2; thus, SwR2 >

SwR1. This larger magnitude of SwR admits more mass and momentum into cell i + 1 before it becomes
pressurized. The loci of Ui+1 simulated by HLL and P_HLL (Pa = 5, Pb = 0.7) are drawn in Figure 10.
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Figure 10. (a) Locus of the flow states in cell i + 1 simulated by HLL and P_HLL (Pa = 5, Pb = 0.7); (b)
history of the flow states in cell i + 1 simulated by P_HLL (Pa = 5, Pb = 0.7).

Vertexes appear in the locus simulated by HLL after cell i + 1 becomes pressurized, which
represent numerical oscillations in the simulation result. In contrast, P_HLL achieves a smooth and
stable transition between the free-surface flow and pressurized flow. The locus simulated by P_HLL
converges to a 3.159 m depth and 4.033 ms−1 velocity, which is very close to the flow states at the
entrance of the conduct. The discrepancy in water depth is more pronounced due to the small value of
the slot width. Therefore, P_HLL preserves the conservation in mass and momentum.

A larger magnitude of SwR2 admits more mass and momentum into cell i + 1 before it is pressurized;
thus, it increases the diffusion of the filling-bore.The magnitude of SwL2 and SwR2 are related to the
value of Ai+1/2, which consequently depends on the value of Pa; see Figures 11 and 12.

Figure 11 shows that SwR2 increases with Pa, while|SwL2| barely changes with Pa and stays close to
the acoustic wave speed. However, SwR2 does not increase significantly when Pa changes from 1 to 10,
which denotes that the diffusion of the filling-bore does not increase significantly when Pa changes
from 1 to 10. The simulation results using the P_HLL solver with Pb = 0.7 and different values of Pa

are drawn in Figure 13.
Although Pa = 10 produces a more diffusive filling-bore, the spreading length of the filling-bore

does not increase significantly compared to that using Pa = 5. During a realistic transition phenomenon,
the piezometric head peak seldom exceeds 10 times the cross-sectional depth. Therefore, one can
always start by adopting a large Pa (for example 10) in the P_HLL solver and do not worry about
significantly compromising the representation of the filling-bore.

Compared to Pa, the value of Pb has a more significant effect on the numerical oscillations, for it
determines the threshold depth where numerical viscosity starts to increase. Pb must be smaller than
one so that the numerical viscosity is added before the flow regime transition happens. A smaller Pb
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leads to more stable result, but it may cause more diffusion. The simulation results using Pa = 5 and
Pb = 0.7 or 0.9 are drawn in Figure 14.Water 2019, 11, x FOR PEER REVIEW 11 of 20 
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Figure 13. Comparison of the results simulated by P_HLL, with Pb = 0.7 and Pa = 5 or Pa = 10, and the
analytical result (AR): (a) piezometric head; (b) flow velocity.

When Pb = 0.9, a smooth transition between the free-surface and pressurized flows cannot be
guaranteed. Therefore, we suggest a Pb between 0.6 and 0.8 to avoid causing two much diffusion of
the filling-bore. This is also supported by the numerical tests in the next section.

In conclusion, at a free-surface cell, P_HLL admits numerical viscosity once the water depth is
higher than a threshold value PbH. Thus, a smooth transition from the free-surface flow to pressurized
flow can be obtained. Meanwhile, P_HLL causes diffusion of the filling-bore. In realistic applications,
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a Pa of 10 is large enough to suppress numerical oscillations without significantly increasing the
spreading-length of the filling-bore. The value of Pb is suggested to be between 0.6 and 0.8.
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analytical result (AR): (a) piezometric head; (b) flow velocity.

5. Numerical Tests

5.1. Two Filling-Bores

This test evaluates the accuracy of P_HLL under the presence of two filling-bores. It consists
of a 200 m-long conduct with square-unit cross-sections and two reservoirs connected to it at the
upstream end and downstream end; the acoustic wave speed is 1000 ms−1. At initial conditions, water
in the conduct is stationary with a depth of 0.6 m, while water depth at the upstream and downstream
reservoir is 4 m and 3 m, respectively. The model set up is sketched in Figure 15.
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At t = 0 s, the conduct inlet and outlet are opened immediately, forming two filling-bores that
propagate in the opposite direction. The upstream filling-bore is identical with that in the benchmark
model. The downstream filling-bore can be derived analogously; its propagation speed is 8.429 ms−1,
and the flow states behind it are 2.42 m and −3.3717 ms−1. Boundary conditions adopt ghost cells at the
conduct inlet and outlet. Before the two filling-bores collide with each other, the analytical result at t0 is

h(x) =


3.167 m x < 10.067t0

0.6 m 10.067t0 < x < 200− 8.429t0

2.42 m 200− 8.429t0 < x

u(x) =


4.0334 ms−1 x < 10.067t0

0 ms−1 10.067t0 < x < 200− 8.429t0

−3.3717 ms−1 200− 8.429t0 < x

(38)

In P_HLL, we choose Pa = 5 and Pb = 0.8, optionally. In M_HLL, we choose Ka = 1.4 and NS = 5
as suggested by Malekpour and Karney. The computational cell is 1 m, time step is 0.0008 s and the
Courant number is 0.8. The simulation results in the two tests at t = 6 s are drawn in Figure 16. In this
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paper, an error indicator based on the L2-norm [34] is used to evaluate the accuracy of P_HLL and
M_HLL. In the following equation, ϕi stands for the simulation result at cell i, while ϕref stands for the
analytical result.

L2 =

 1
N

N∑
i = 1

(ϕi −ϕref)
2


0.5

(39)
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5.2. Negative Pressure Flow 

In this test, P_HLL and M_HLL are adopted to simulate a water hammer phenomenon in a 600 
m-long circular pipe with a 0.5 m diameter and acoustic wave speed is 1200 ms−1. The pipe is 
horizontal and frictionless; a steady flow rate of 0.477 m3s−1 is initially in it. It connects to a reservoir 
at the downstream end, and water depth inside it is 45 m; see Figure 17. 

Figure 16. Comparison of the results simulated by P_HLL (Pa = 5 and Pb = 0.8), M_HLL (Ka = 1.4 and
NS = 5) and the analytical result (AR): (a) piezometric head; (b) flow velocity.

The L2 in the piezometric head of P_HLL and M_HLL are 0.2963 and 0.2913, respectively; the L2

in the velocity of P_HLL and M_HLL are 0.2879 and 0.2873, respectively. In P_HLL, the spreading
length of the right filling-bore is slightly longer than that in M_HLL. This denotes that P_HLL is
more diffusive than M_HLL in there. At the same time, P_HLL has eliminated some minor numerical
oscillations while M_HLL does not. Both solvers are very robust and stable.

5.2. Negative Pressure Flow

In this test, P_HLL and M_HLL are adopted to simulate a water hammer phenomenon in a
600 m-long circular pipe with a 0.5 m diameter and acoustic wave speed is 1200 ms−1. The pipe is
horizontal and frictionless; a steady flow rate of 0.477 m3s−1 is initially in it. It connects to a reservoir
at the downstream end, and water depth inside it is 45 m; see Figure 17.

At t = 0 s, the inflow rate is decreased to 0.4 m3s−1, which triggers a water hammer phenomenon;
the water hammer pressure is 48.05 m according to Kerger et al. [26]. In P_HLL, the values of Pa and
Pb are 100 and 0.8. In M_HLL, the values of Ka and NS are 1.2 and 12, as suggested by Malekpour and
Karney. The computational cell is 1.2 m, the time-step is 0.0008 s and Courant number is 0.8. A ghost
cell is set at the upstream boundary, and flow rate in it is constantly 0.4 m3s−1, while the piezometric
head adopts the transmissive condition. Another ghost cell is set at the downstream boundary in
which the piezometric head is constantly 45 m and the flow rate adopts the transmissive condition.
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The history of the flow states at the pipe midpoint in the simulation and analytical results are 
drawn in Figure 18. Both solvers nicely capture the reflection of the water-hammer wave in the 
pipe. The L2 in the piezometric head of P_HLL and M_HLL are 6.3965 and 6.3970, respectively, 
while L2 in the velocity of P_HLL and M_HLL are 0.1332 and 0.1333, respectively. 
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The L2 indicator is adopted to evaluate the accuracy of the two solvers; it is defined as

L2 =

 1
N

N∑
i = 1

(ϕi −ϕref)
2


0.5

(40)

where Nt is the number of time step, ϕi is the simulation result at the midpoint of the pipe, and ϕref is
the analytical result, which is given as

hi =



45 m n < i∆t < n + 0.25
−3.05 m n + 0.25 < i∆t < n + 0.75
45 m n + 0.75 < i∆t < n + 1.25
93.05 m n + 1.25 < i∆t < n + 1.75
45 m n + 1.75 < i∆t < n + 2

, n = 0, 1, 2, 3 . . .

ui =



2.4293 ms−1 n < i∆t < n + 0.25
2.0377ms−1 n + 0.25 < i∆t < n + 0.75
1.6461 ms−1 n + 0.75 < i∆t < n + 1.25
2.0377 ms−1 n + 1.25 < i∆t < n + 1.75
2.4293 ms−1 n + 1.75 < i∆t < n + 2

, n = 0, 1, 2, 3 . . .

(41)

The history of the flow states at the pipe midpoint in the simulation and analytical results are
drawn in Figure 18. Both solvers nicely capture the reflection of the water-hammer wave in the pipe.
The L2 in the piezometric head of P_HLL and M_HLL are 6.3965 and 6.3970, respectively, while L2 in
the velocity of P_HLL and M_HLL are 0.1332 and 0.1333, respectively.
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in diameter; initially, stagnant water of 7.3 cm depth is established in the tunnel. A fill box with a 25 
cm × 25 cm bottom and 31 cm height connects to the tunnel inlet. A surge tank with a constant 
diameter of 19 cm connects to the tunnel outlet. The experiment starts by constantly supplying 3.1 
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spilled away. A gate is installed at the tunnel outlet; its opening is smaller than the initial water 
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Figure 18. Locus of the flow states at the midpoint of the pipe simulated by P_HLL (Pa = 100 and
Pb = 0.8), M_HLL (Ka = 1.2 and NS = 12) and the analytical result (AR): (a) piezometric head; (b)
flow velocity.

Interestingly, in this test, the P_HLL solver can obtain almost the same result with an arbitrary
value of Pa; for example, the simulation result using Pa = 1 is drawn in Figure 19.

In Section 4, we have proven that under the framework of PSM, any non-negative value of Pa

will produce a wave speed that is close to the acoustic wave speed, provided that the cell is under
pressurized flow condition; see Figure 12 for detail. In this test, all the computational cells are under a
pressurized flow condition, which makes the simulation result of Pa = 100 and Pa = 1 almost the same.
In the flow regime transition simulation, PaH must be larger than the highest piezometric head.
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5.3. Vasconcelos’s Experiment

This experiment was designed by Vasconcelos et al. [35] to study the filling process in a realistic
stormwater storage tunnel. It is a 14.6 m-long horizontal tunnel with circular cross-sections of 9.4 cm
in diameter; initially, stagnant water of 7.3 cm depth is established in the tunnel. A fill box with a
25 cm × 25 cm bottom and 31 cm height connects to the tunnel inlet. A surge tank with a constant
diameter of 19 cm connects to the tunnel outlet. The experiment starts by constantly supplying 3.1 Ls−1

water into the fill box, and when water level inside the fill box reaches its top, water is simply spilled
away. A gate is installed at the tunnel outlet; its opening is smaller than the initial water depth. When
the filling bore collides with the gate, it triggers a water-hammer phenomenon. A ventilation tower is
fixed upstream of the gate so that no air is trapped in the tunnel. The experiment setup is drawn in
Figure 20.
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Figure 20. A sketch of the experimental setup.

The manning coefficient is 0.016 m1/6, acoustic wave speed is 300 ms−1 and head loss coefficient
associated with the partially opened gate is 12, as suggested by Malekpour and Karney. In P_HLL,
the values of Pa and Pb are 5 and 0.8. In M_HLL, the values of Ka and NS are 1.2 and 12.
The computational cell is 0.1 m, and the time-step is set for a Courant number of 0.8. At the
upstream end, the three unknowns are the discharge, the wetted area at the tunnel inlet and the water
level in the fill box. At the downstream end, the three unknowns are discharge, the wetted area at
tunnel outlet and the water level in the surge tank. The continuity, energy and characteristic equations
are applied to obtain the three unknowns at each boundary [36]. The loci of flow states at x = 9.9 m in
the simulation results of P_HLL and M_HLL are shown in Figures 21 and 22.

The simulation results are in good agreement with the experimental data, and the two solvers
have correctly computed the arrival time of the filling-bore front at x = 9.9 m. P_HLL has computed
a piezometric head peak slightly larger than M_HLL. Most importantly, P_HLL and M_HLL do not
smear the physical pressure oscillations.
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5.4. Aureli’s Experiment

This experiment is conducted on a 12.12 m-long pipe with a 19.2 cm-diameter and 4 mm-wall
thickness [25]. We used x to present the longitudinal distance to the pipe inlet. There is a sharp turn
at about x = 7 m; the downward part has a slope of about 8.4% and the upward part has a slope of
−27.7%. Six piezometric transducers were installed in the bottom at x = 1 m, 3 m, 4.5 m, 6.8 m, 7.06 m
and 8.52 m. A sluice gate was installed at approximately x = 5 m; it is closed at the initial conditions.
Stagnant water with a 22.5 cm piezometric head at transducer 1 was established behind the sluice gate;
the rest of the pipe was empty. As the experiment began, the gate was lifted within 0.2 s, setting flush
into the pipe. The pipe inlet was blocked so that no water flows through it, while the outlet was totally
open. The experimental setup is shown in Figure 23.
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In P_HLL, the values of Pa and Pb are 4 and 0.7; in M_HLL, the values of Ka and NS are 1.4 and 5.
The computational cell is 0.04 m, acoustic wave speed is 200 ms−1 and time-step is set for a Courant
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number of 0.8. A reflective boundary condition was set at the upstream end, while a transmissive
boundary condition was set at the downstream end. At the wet/dry interface, the estimates of wave
speed followed Leon et al. [27]. The loci of the flow states at x = 6.8 m simulated by P_HLL and M_HLL
are drawn in Figures 24 and 25.
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The simulation results of P_HLL and M_HLL show certain discrepancies: M_HLL overestimates
the wave speed. It is because P_HLL adds numerical viscosity only if the depth is higher than the
threshold value of PbH, while M_HLL adds numerical viscosity at any free-surface cells. Nonetheless,
the simulation results of the two solvers are in good agreement with the experimental data.

6. Conclusions

Numerical oscillation is a critical problem in transient mixed flow simulations. These numerical
oscillations arise from the ambiguity about the location of the filling-bore within one computational
cell, which cannot be captured even with high-order finite volume methods. First order finite volume
methods have failed to suppress them while capturing the filling-bore front.

Four oscillation-suppressing methods were tested on a benchmark model, with three of them
failing to get a satisfactory result under a high acoustic wave speed. The key is to admit numerical
viscosity before the flow regime transition occurs. Numerical viscosity can be added by artificially
increasing the magnitude of the wave speed in the HLL solver. Following this idea, this paper presents
a P_HLL solver that has two parameters: Pa and Pb. Pa needs to be larger than the highest piezometric
head while Pb needs to be between 0.7 and 0.9. This solver adds numerical viscosity when the water
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depth is above PbH so that a smooth transition between the free-surface and pressurized flows can be
achieved. The amount of numerical viscosity increases with Pa, while a large Pa does not smear the
simulation result significantly. Therefore, one can always start by adopting a Pa that is large enough
under realistic applications, for example 10.

The P_HLL solver is tested in several numerical tests, in which a good agreement between the
simulation results and analytical results or experimental data is found. In the test where the wet/dry
interface is presented, the P_HLL solver achieves a more accurate result than M_HLL. Meanwhile,
P_HLL solver has sufficiently suppressed the numerical oscillations, and accurately captured the
propagation of the filling-bore. Compared to the M_HLL solver proposed by Malekpour and Karney,
the P_HLL is more convenient to use as the parameters in this solver are easier to determine.

The result in this paper can provide useful information for readers to design an
oscillation-suppressing method. It provides an alternative method to the M_HLL solver, which may be
used in the parallelization of computation.

This method is proposed under the framework of PSM; it is limited to the simulation of flow
regime transition. Besides, since the air pressure is not counted, this method cannot be applied to
simulate flow regime transition where air pockets are present, which is out of the scope of this paper.
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