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Abstract: Demand for radar Quantitative Precipitation Estimates (QPEs) as precipitation forcing to
hydrological models in operational flood forecasting has increased in the recent past. It is practically
impossible to get error-free QPEs due to the intrinsic limitations of weather radar as a precipitation
measurement tool. Adjusting radar QPEs with gauge observations by combining their advantages
while minimizing their weaknesses increases the accuracy and reliability of radar QPEs. This study
deploys several techniques to merge two dual-polarized King City radar (WKR) C-band and two
KBUF Next-Generation Radar (NEXRAD) S-band operational radar QPEs with rain gauge data for
the Humber River (semi-urban) and Don River (urban) watersheds in Ontario, Canada. The relative
performances are assessed against an independent gauge network by comparing hourly rainfall
events. The Cumulative Distribution Function Matching (CDFM) method performed best, followed
by Kriging with Radar-based Error correction (KRE). Although both WKR and NEXRAD radar QPEs
improved significantly, NEXRAD Level III Digital Precipitation Array (DPA) provided the best results.
All methods performed better for low- to medium-intensity precipitation but deteriorated with the
increasing rainfall intensities. All methods outperformed radar only QPEs for all events, but the
agreement is best in the summer.

Keywords: radar-gauge merging; QPE; WKR C-band radar; NEXRAD radar; hydrology; floods

1. Introduction

Flooding has been identified as the world’s deadliest natural disaster after earthquakes and
tsunamis due to the associated damage to life, property, economy, and infrastructure [1,2]. Therefore,
flood mitigation procedures are essential for regions susceptible to flooding. A well-developed flood
forecasting system that can deliver accurate and reliable forecasts with proper lead time is a vital part
of nonstructural flood management. At present, flood forecasting and warning utilizing hydrological
models to forecast river flow have a widespread application in disaster management [3,4]. In urban
watersheds, the frequency and magnitude of flooding are mostly influenced by precipitation [5,6].
Therefore, the accuracy and reliability of hydrological model predictions depend heavily on the accuracy
of the forcing data, especially the Quantitative Precipitation Estimates (QPEs) [7,8]. Additionally,
accurate QPEs produce model parameter sets that represent watershed characteristics after hydrological
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model calibration. Therefore, accurate and reliable QPEs are necessary to provide runoff and streamflow
estimates with high confidence [9].

Today, the precipitation input for hydrological models comes from surface rainfall gauges,
weather radar, weather models, and satellite images [10,11]. Currently, the calibration of these
hydrological models relies mostly on in-situ rain gauge data [5,10]. Rain gauges are trustworthy
instruments for rainfall point measurements, but the rainfall variations in both space and time are not
well captured [12]. Since radar produces spatially and temporally continuous data over a large area in
real-time, there is considerable interest in precipitation information derived from weather radar for a
hydrological model run in operational flood forecasting [5,10].

The concept of forcing hydrological models with radar QPEs first appeared at the urban storm
drainage conference in Sweden, 1984 [13]. Since then, radar QPEs have been used as precipitation forcing
for hydrological models for flood forecasting applications worldwide, mainly due to the advances in
radar infrastructure, computer power, and hydrological models. [14–17]. At present, different countries
produce commercial weather radar products that are extensively used in operational hydrology: e.g.,
Next Generation Weather Radar (NEXRAD) in the USA and Radar-Online-Aneichung (RADOLAN)
in Germany [18–20]. Those products provide a fixed cartesian grid with rainfall accumulation data
summarized over a set time. The spatiotemporal resolution of radar QPEs has been improved recently,
and therefore, the application of radar QPEs in operation hydrology has been increased. For example,
the United States and European countries have used S-band radars and C-band radars with spatial
resolutions of about 1000 m and 5 min temporal resolutions, mostly in operational hydrology [5].
Additionally, the X-band radar with spatial and temporal resolutions of 250 m and 1 min has been
used in Japan for operational purposes [21].

Even if the radar QPEs have been used for nearly 30 years to run hydrological models, well-known
artifacts associated with radar limits its operational use [22,23]. Since weather radar measures the
precipitation indirectly, radar QPEs are known to be exposed to errors due to attenuation [24],
radar miscalibration [25,26], ground clutter [27], anomalous propagation [28], beam blockage [29],
range degradation [30], presence of the bright band [31], variations in the drop size distribution [32],
and more [16,33–36]. Numerous studies have attempted to demonstrate and quantify the potential
magnitude of radar uncertainty and the resulting consequences of using radar QPE for operational
hydrological modeling [34,37–41]. The studies mentioned above have identified radar QPE uncertainties
related to range, Vertical Profile of Reflectivity (VPR) effects, inappropriate Z–R relationships, anomalous
propagation, clutter, and visibility effects as significant sources of error in the radar-estimated rainfall
that can have a profound effect on hydrological modeling confidence. Therefore, radar data must
undergo careful selection and corrections where possible before using them as a precipitation source
for hydrological model calibration. In contrast to these studies, Vehvilainen et al. [42] have investigated
the effect of using raw radar estimated QPEs for hydrological modeling and concluded that in small
catchments (<500 km2), where the time of concentration is on the order of hours, hydrological models
can benefit from raw radar-derived rainfall estimates.

Previous studies have discussed several methods to reduce these errors since the start of the use
of radar as precipitation estimates in hydrological applications [13,39]. The recent improvements built
upon dual-polarization radar measurements have improved the accuracy and reliability of weather
radar data in hydrological applications [24,43–46]. The dual-polarized radar emits and receives radar
pulses in both horizontal and vertical polarization, permitting additional products such as differential
reflectivity (ZDR) and specific differential phase (KDP) [47] that produce better precipitation estimates,
particularly for extreme rainfall events [48]. Additionally, dual-polarized radar improves the quality
of radar estimated precipitation rates and total amounts by mitigating attenuation and anomalous
propagation, leading to more accurate radar QPEs [33,45,49,50]. Since dual-polarized radar produces
more accurate radar QPEs, it is beneficial to use dual-polarized radar QPEs over single polarized
radar [33,48]. Additionally, increasing the density of the radar network reduces the uncertainties in
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radar QPEs by reducing the distance to the radar stations [51]. However, both methods mentioned
above require significant investment.

Besides the methods mentioned above, a significant improvement has been made by adjusting radar
QPEs with gauge observations (hereafter radar-gauge merging). The radar-gauge merging produces
accurate, reliable, real-time QPEs that capture variations both in space and time. Radar-gauge merging
to adjust radar QPEs to match with gauge observations is broadly discussed in the literature [52–54].
Previous research has shown that the radar-gauge merging is useful to improve radar QPEs that can
be used as an additional source for hydrological applications [23,52,54,55]. Even though radar-gauge
merging has been used in improving radar QPEs since the start of the operational use of weather
radars in the 1970s, Ochoa-Rodriguez et al. [54] emphasize the lack of understanding of the full
potential of application at the spatial-temporal resolutions required for urban hydrology. High-quality
precipitation estimates with high temporal resolution are needed for urban hydrological applications
due to small-sized urban catchments and a high degree of imperviousness in response to fast
rainfall [36,54]. Hence, urban watersheds are very sensitive to the spatial and temporal variability
of rainfall, and further research is essential before using radar QPEs in operational urban hydrology
with confidence.

Even though studies on radar-gauge merging are common, to date, they have not adequately
addressed applicability at the resolution and scale required for urban hydrological applications. Most of
the studies have focused on large-scale area applications, frequently country-wide, using a time-step above
24 h, or at temporal scales for event-based accumulation [22,51,52,56–65]. Urban hydrological studies need
reliable QPEs at high spatial (a few km) and temporal (hourly or sub-hourly) resolutions [53,66]. A few
studies have investigated radar-gauge merging techniques focusing on the urban scale but were limited to
a single technique under limited climatological and infrastructure conditions [23,67–69]. To date, only two
inter-comparison studies have been conducted focusing on urban scales [68,70]. The first study evaluated
radar-gauge merging techniques based on a rain gauge network of three gauges [69]. The latter research
provides an introductory understanding of the relative performances of merging methods [70]. Therefore,
further research on smaller-scale urban catchments is essential [53,54]. The most recent categorization
of the existing radar-gauge merging methods was introduced by Ochoa-Rodriguez et al. [54] based
on the potential for urban hydrological application; 1. radar bias adjustment methods, 2. rain gauge
interpolation methods using spatial radar association as additional information, and 3. radar-rain gauge
integration methods. Only two preliminary studies have investigated the three categories of merging
methods defined by Ochoa-Rodriguez et al. [54,68,71]. Therefore, it is beneficial to consider methods
that preserve small-scale features in the merged estimates in fine scale, the limited availability of rain
gauges, and computational requirements for operational use when applying radar-gauge merging
methods. Furthermore, radar-gauge merging applications using modern dual-polarization radars must
be evaluated. Most of the previous studies have evaluated merging techniques using single polarized
radar [51,53]. As mentioned before, the dual-polarized radars have the potential to produce more accurate
and reliable radar QPE compared to single polarized radar [33,50]. As emphasized by Ochoa-Rodriguez
et al. [68], the quality of initial radar products affects the relative performance of merging methods and,
ultimately, the quality of merged radar precipitation estimates. Therefore, it is vital to investigate how these
new dual-polarized products may impact the performance of different radar-gauge merging techniques.

In this study, different existing radar-gauge merging techniques for operational use in urban
watersheds have been implemented to obtain the best estimation of precipitation in two watersheds in
the Greater Toronto Area (GTA), Canada: semi-urban Humber River, and urban Don River watersheds.
The operational application of radar-gauge merging in flood forecasting is not yet implemented widely
in Canada [51]. This is important because a recent study conducted in the GTA reported about 94.0 mm
of rainfall estimates with R(KDP) algorithm using dual-polarized King City radar (WKR) through
a heavy rainfall event over a 2-h period on 8 July 2013, whereas the rain gauge recorded 126 mm
over the same period [72]. In the same study, an accumulation of 109.2 mm of rain is reported for the
same storm event with the R(Z) algorithm using KBUF NEXRAD S-band algorithms [72]. The authors
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suggested the differences are caused by ground clutter contamination, path attenuation, and radome
wetting. To use radar QPEs as additional precipitation forcing for hydrological models in the GTA
area, the reported differences must be minimized. In this study, the performance of two dual-polarized
WKR C-band radar hourly QPEs and two KBUF NEXRAD S-band radar hourly QPEs have been
improved using radar-gauge merging techniques to minimize the difference with gauge measurements.
Moreover, several radar-gauge merging techniques with varying degrees of complexity have been
evaluated to assess which method best suits these two urban and semi-urban watersheds in the GTA
area. The merging techniques implemented include Mean Field Bias correction (MFB), Frequency and
Intensity Correction (FIC), local intensity scaling (LOCI), Cumulative Distribution Function Matching
(CDFM), Range-Dependent bias Adjustment (RDA), Modified Brandes Spatial Adjustment (MBSA),
and Kriging with Radar-based Error correction (KRE). The MFB, RDA, MBSA, and KRE methods are
often used in the literature for radar-gauge merging; however, methods CDFM, FIC, and LOCI are
seldomly discussed in the literature as radar-gauge merging techniques. In addition to radar-gauge
merging techniques, Ordinary Kriging (OK) was also included for the evaluation as a benchmark since
it is a widely used interpolation method for hydrological applications and is often used as a reference.

This work aims to evaluate radar-gauge merging techniques using two dual-polarized WKR
C-band radar and two KBUF NEXRAD S-band operational radar hourly QPEs (the first attempt to the
best of our knowledge) to assess which best suits the two urban and semi-urban watersheds in the
GTA, Canada. The objectives of this study are (1) to evaluate different existing radar-gauge merging
techniques of various degrees of complexity to facilitate hydrological model runs for operational flood
forecasting in urban watersheds; (2) to verify the reliability and accuracy of dual-polarized radar QPEs
from WKR C-band and KBUF NEXRAD S-band QPEs as an additional data source for hydrological
model calibration; (3) to assess the relative strength of radar-gauge merging techniques at different rain
intensities; and (4) to illustrate the performance of radar-gauge merging techniques for different rainfall
events. Additionally, Section 2 provides a detailed description of the study area. Characteristics of the
radar and the rain gauge network and detailed descriptions of different methods used for merging can
be found in Section 3. Section 4 presents the results and discussion of the evaluation of radar-gauge
methods. Section 5 draws general conclusions.

2. Study Area

The Humber River watershed and Don River watershed, located in the GTA, Ontario, Canada, are the
two watersheds of interest in this study (Figure 1). Toronto and Region Conservation Authority (TRCA)
currently manages both watersheds. The watersheds form part of the Great Lakes basin and have good
coverage from the King City Canadian WKR C-band radar and the Buffalo KBUF NEXRAD USA S-band
radar. The radar-gauge merging methods are applied on a square domain containing both watersheds
(Top left: 567,172.239m E 4,883,228.030 m N; Bottom right: 647,341.150 m E 4,819,410.402 m N).

The Humber River watershed is the largest semi-urban watershed in the GTA and is home to over
800,000 people. The watershed covers an area of 911 km2 and consists of approximately 54% rural land,
33% urban land, and 13% of urbanizing land [73]. For further details on the Humber River watershed,
readers are referred to the TRCA Watershed Features Humber River website [73].

The other watershed focused on for this study is the Don River watershed and is nearly 350 km2

in size and home to over a million residents. It is a fully urbanized watershed, with approximately
80% developed areas [74]. Further details of the Don River watershed can be found in the TRCA Don
River website [74].



Water 2020, 12, 1494 5 of 29

Water 2020, 12, x FOR PEER REVIEW  5 of 31 

developed areas [74]. Further details of the Don River watershed can be found in the TRCA Don River 
website [74]. 
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Figure 1. Humber River and Don River watersheds, and coverages of the nearest radar sites (WKR and
KBUF).

3. Materials and Methods

3.1. Data

3.1.1. Rain Gauge Data

Hourly rainfall accumulations provided by tipping-bucket rain gauges from 2012 to 2017 were
gathered from TRCA data archives. TRCA operates a dense gauge network (one gauge per ∼75 km2

in Humber River and one gauge per ∼116 km2 in the Don River) with 18 precipitation monitoring
locations across the two watersheds. All TRCA gauge stations are located within ∼40 km radius range
of WKR Canadian C-band radar station and within the usable range (<180 km) of KBUF NEXRAD
S-band radar (Figure 1).
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3.1.2. King City WKR C-Band Dual-Polarized Radar QPEs

Environment and Climate Change Canada (ECCC) operates 29 weather radar stations across
Canada at a full reflectivity measurement range of 256 km around the site and a Doppler range of
120 km around the site [75]. Reflectivity data for this study were collected from the King City weather
radar facility located north of Toronto, Ontario (Figure 1). The WKR radar performs dual-polarization
POLarimetric Plan Position Indicator (POLPPI) scans at 0.5-degree elevation, completed in about 1 min,
every 10 min with 0.25 km range and 0.5-degree azimuth resolution [33]. Reflectivity values were
corrected for attenuation using the modified ZPHI algorithm [33,76]. Radar QPEs were estimated using
different rain rate estimator algorithms, R(Z), R (Z, KDP), and R (KDP, ZDR), listed in Table 1. In this
study, the average over 11 × 11 radar pixels around the nearest gauge location was used to limit the
wind drift [77]. Considering the resolution of radar bins, the final radar QPE grid size is about 3 km
(11 × 0.25 km) × 4 km (11 × 0.5 = 5.5 deg assuming a distance of 40 km) with each grid cell containing
a 10-min rainfall accumulation. Radar estimated rain rates are not time interpolated and are assumed
to be constant over the scanning time interval of 10 min. To be consistent with the gauge data, the
10-min rainfall was integrated in time to derive 1-h rainfall accumulations.

3.1.3. KBUF NEXRAD S-Band Dual-Polarized Radar QPEs

NEXRAD Level III S-band radar QPE data from the Buffalo radar station (Latitude 42.94639
Longitude −78.72278) were downloaded from the National Centers for Environmental Information
(NCEI) archives. The KBUF radar collects reflectivity values about every 6 min at 0.25 km in range
and 0.5-degree in azimuth. Afterward, rain rates are calculated using the Precipitation Processing
System (PPS) algorithm R = 0.017 Z0.714. Two NEXRAD Level III one-hour precipitation products,
Digital Precipitation Array (DPA), and one-hour precipitation (OHA), were used for the study (Table 1).
The operational NEXRAD QPEs have a temporal resolution of 60 min and a spatial resolution of
~4 × 4 km [78].

Table 1. List of rain-rate estimators for radar Quantitative Precipitation Estimates (QPEs).

Radar QPE Description Formula Reference

C1 Combined Z and KDP algorithm
using a threshold on KDP

R = 0.017Z0.714

R = 33.8K0.79
DP

[79]

C2 Multi-parameter rain rate
estimator using KDP and ZDR

R = 37.9K0.89
DP 10−0.072ZDR [43]

N1 NEXRAD Level III (DPA) R = 0.017Z0.714 [59]
N2 NEXRAD Level III (OHA) R = 0.017Z0.714 [59]

3.2. Radar-Gauge Merging Methods

The following radar-gauge merging techniques were carefully chosen for this study based on
extensive operational use in urban areas, the ability to be implemented, prominence in past literature,
varying degrees of complexity, and several location-specific factors such as gauge density, proximity to
the radar station, basin size, and time step of adjustment [51,80].

3.2.1. Mean Field Bias Correction (MFB)

This method removes the bias introduced through the uncertainty in the radar calibration or an
erroneous coefficient in the Z-R relationship [81]. MFB assumes that the radar QPEs are affected by a
uniform multiplicative error. Therefore, a single adjustment factor (Cm f b) is estimated (Equation (1) [82])
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and applied to the entire radar field [82]. An alternative adjustment that depends on the mean
assessment factor (Cma f ) (Equation (2) [82]) is also implemented:

Cmfb =

∑N
i=1 Gi∑N
i=1 Ri

(1)

Cmaf =
1
N

N∑
i=1

Gi

Ri
(2)

where Cmfb and Cmaf are correction factors, Gi and Ri are the gauge and corresponding radar value
associated with gauge i.

3.2.2. Frequency and Intensity Correction (FIC)

This method maps the distribution between the radar and gauge rainfall data at a given location [83].
FIC first truncates the radar rainfall distribution at a point that approximately replicates the long-term
observed relative frequency of rainfall. Then the truncated radar rainfall intensity distribution is
mapped on to a gamma distribution fitted to observed gauge intensity distribution. The frequency of
the hourly radar rainfall is corrected by fitting a threshold value x̃R to truncate the empirical distribution
of the radar rainfall data. The radar rainfall threshold x̃R is calculated as follows (Equation (3) [83])
using the empirical cumulative distribution of both gauge and radar rainfall. In this method, 0.1 mm
was used as the minimum observed precipitation amount x̃ for an hour to be considered wet (hours
with precipitation ≥ threshold) based on the literature [83]. Corrected radar rainfall xCor

i on hour i is
calculated as in Equation (4) [83] by mapping the truncated radar rainfall intensity distribution FR(x)
(e.g., fitted gamma or empirical distribution) to a gamma distribution fitted to observed intensity
distribution FG(x).

x̃R = F−1
R (FG(x̃)) (3)

where F(·) and F−1(·) represent a cumulative distribution function (CDF) and its inverse, R indicated
radar rainfall, and G shows observed gauge rainfall

xCor
i =

F−1
obs(FR(xi)),xi ≥ x̃

0,xi < x̃
(4)

This study considered both gamma (GG) and empirical distribution (EG) for truncated radar
data, respectively. Precipitation at a location without a coincident gauge record was obtained by
correction from the precipitation values from the WKR C-band grid point closest to the gauge station.
For NEXRAD radar, it was obtained from the closest radar pixel to the prediction grid cell with
coincidental gauge records.

3.2.3. Local Intensity Scaling (LOCI)

The primary step of the LOCI method is to correct the wet time-step frequency and intensity,
respectively [84]. First, a model wet-hour threshold

(
x̃R,h

)
is determined from the hourly radar

rainfall for an hour h to ensure that the threshold exceedance matches the wet-hourly frequency in
the gauge observation. A correction factor

(
xCor

R,h,i

)
is then calculated using the following equation

(Equation (5) [84]):

xCor
R,h,i =

 xR,h,i ×
µ(xG,h,i| xG,h,i>x̃R,h)
µ(xR,h,i| xR,h,i>x̃R,h)

, xR,h,i ≥ x̃R,h

0, xR,h,i < x̃R,h

(5)

where µ is mean intensity (mm wh−1) (“wh” is a wet hour, with greater than or equal to thresh hold).
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3.2.4. CDF Matching (CDFM)

The CDFM method uses a sorting algorithm to match the CDF of observed data (radar rainfall)
to a reference data (gauge) set [85]. CDFM matches the CDF of the radar rainfall (cd fR) based on
polynomial fitting to match with the CDF of the historical gauge data (cd fG). The radar estimated QPEs
are re-scaled so that the empirical CDFs of both radar and gauge data sets match (Equation (6) [85]).
A third-degree polynomial model is employed as follows for this purpose (Equation (7) [85]).

cd fG(x′) = cd fR(x) (6)

where x and x′ are the gauge data and transformed radar rainfall data respectively

BR = P1S3 + P2S2 + P3S + P4 (7)

where BR is the bias-corrected radar rainfall, P indicates the coefficients of the polynomial models, and
S is the raw radar rainfall.

3.2.5. Range-Dependent Bias Adjustment (RDA)

This method is based on the Baltic Sea Experiment (BALTEX) adjustment proposed by
Michelson et al. [86] and assumes that radar biases are a function of the distance from the radar tower [87].
Range dependencies are due to beam broadening, overshooting of the beam, increasing height of the
measurements, and attenuation effects [88]. The relationship between the R/G ratio and the distance from
the radar station is expressed in the log-scale. The range is approximated by a second-order polynomial
whose coefficients are determined through observations using the least-squares fit (Equation (8) [53]).
The range dependent multiplicative factor is calculated from:

log CRDA = ar2 + br + c (8)

where r is the distance from the radar tower to the radar bin, and a, b, and c are coefficients using the
least-squares fit.

3.2.6. Modified Brandes Spatial Adjustment (MBSA)

In opposition to MFB, the MBSA assumes that the biases are spatially dependent [57]. The MBSA
distributes correction factors across the radar field. A distance-weighting scheme with a smoothing
factor is used to determine the influence of a known data point on the interpolated value of a specific
radar bin. The correction factors (Ci) are calculated at each gauge location at a set time step (e.g., hourly)
(Equation (9) [53]). Then, weights (WT) for each radar bin i from each gauge location are determined
following the Barnes objective analysis to produce the calibration field [89]. A negative exponential
weighting (Equation (10) [53]) is used to calculate the weights. All correction factors are then interpolated
across the entire radar field using two passes (F1: Equation (11) [53] and F2: Equation (12) [53]). Finally,
the spatially interpolated correction factors at each radar bin are multiplied by the radar-estimated
rainfall (Equation (13) [53]) to get the bias-corrected radar rainfall.

Ci =
G
R

(9)

WTi = exp
(
−d2

EP

)
(10)

F1 =

∑N
i=1(WTi)(Gi)∑N

i=1 WTi
(11)
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F2 = F1 +

∑N
i=1(WTi)(Di)∑N

i=1 WTi
(12)

where Di = Ci − F1,i
Rnew,i =

(
Rold,i

)
(F2) (13)

3.2.7. Kriging

The Kriging methods determine the precipitation value at a grid point/pixel at a non-gauged
location by using gauge measurements at neighboring locations [61]. In this study, two kriging methods
have been implemented: Ordinary Kriging (OK) and Kriging with Radar-based Error correction
(KRE). The Ordinary Kriging method interpolates the precipitation from gauge observations at several
locations [90]. The KRE method uses the radar field to estimate the error of the OK that is created using
gauge data [91].

Ordinary Kriging (OK)

The OK defines a variogram symbolizing the spatial variability of the observed precipitation field.
First, a parametric variogram, γ(h), is generated using the gauge measurements. Weighted contributions
from surrounding gauges are then used to calculate rainfall values at unknown points (Equation (14)
and 15) [61]). After that, the OK system is produced by minimizing the estimate variance using a
Lagrange multiplier µ1 (Equation (16) [61]). Finally, merged rainfall values at x0 are determined using
n values obtained by solving a matrix (Equation (17) [61]) that formalizes the above conditions.

Z(x0) =
N∑
α=1

wαZ(xα) (14)

with the condition that
N∑
∝=1

w∝ = 1 (15)

N∑
β=1

wβγ
(
xα − xβ

)
+ µ1 = γ(xα − x0) f or a = 1, . . . , n (16)


γ(x1 − x1) · · · γ(x1 − xn)

...
. . .

...
γ(xn − x1)

1
· · ·

· · ·

γ(xn − xn)

1

1
...
1
0




w1
...

wn

µ1

 =


γ(x1 − x0)
...

γ(xn − x0)

1

 (17)

Kriging with Radar-Based Error Correction (KRE)

This method attempts to diminish the bias while minimizing the variance of error [53]. The KRE
method combines radar and gauges by fitting gauge data into the observed precipitation field R(s)
based on the radar data [91]. First, gauge data are Kriged using OK to create a gauge Kriging field
GK(s) to obtain the best linear unbiased rainfall estimates. Then, the radar-based Kriging precipitation
filed RK(s) is generated with the same variogram using radar QPEs at corresponding gauge stations.
This process produces an interpolated rainfall field that retains the mean-field of the original radar
data. After that, the deviation between observed and interpolated radar values εR(s) is calculated at
each grid point (Equation (18) [91]). Finally, the deviation field εR(s) is applied to the Kriged gauge
field GK(s) to obtain the merged rainfall field (Equation (19) [91]) that preserves mean-field deviation
and the spatial structure of radar rainfall.

εR(s) = R(s) −RK(s) (18)
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M(s) = GK(s) + εR(s) (19)

3.3. Evaluation of Radar-Gauge Merging Techniques

After Koistinen and Puhakka [92], several assumptions were made before conducting radar-gauge
merging. Firstly, rain gauge data were used as a ground reference assuming they are accurate for each
respective gauge location. However, gauge data can be unreliable due to human errors, irregularities of
topography, wind-induced under-catch, wetting, and evaporation losses [93]. Secondly, it was assumed
that there is no spatial mismatch between radar and gauge measurements and is valid for the same
location in time and space. However, there is always a spatial mismatch because different volumes
are sampled by point rain gauges and spatially integrated weather radar at different heights [94].
While radar samples volume above approximately 4 × 4 km surface for NEXRAD radar and 3 × 4 km
for WKR radar, rain gauges measure precipitation over an eight-inch diameter surface area contributing
differences in measured precipitation. Thirdly, the radar was assumed to capture relative spatial and
temporal variabilities of precipitation successfully. Even if attenuation and ground clutter is addressed
during signal processing, other limitations such as anomalous propagation, radar calibration errors,
wind effect, growth of precipitation, variations in the Z–R relationship, presence of hail, or other
hydrometeors can affect the radar precipitation [95]. Fourthly, the assumption of constant rain rate
over the scans leads to a temporal sampling error [69,96]. Finally, the relations that are made upon the
comparison between gauges and radar were assumed to be valid for other locations in time and space.

Performance of nine radar-gauge merging techniques was investigated by using 18 rainfall events,
totaling 278 h (i.e., all events) of rainfall that occurred in spring, summer, and fall periods from 2012 to
2017 (Table 2). Since the Z–R relationships for WKR C-band radar QPEs are only valid for liquid rainfall
and do not account for low melting layers and possible bright band contamination, winter precipitation
was excluded from the analysis [33]. Events were determined as the time where at least half of the
gauges (9 out of 18) recorded a precipitation amount > 0 mm to the time where half of the gauges
start re-recording zero. Additionally, intensity, availability of both radar and gauge precipitation, data
continuity (limited number of missing values), reasonable accumulation of rainfall, and coverage of
the watershed were considered during event selection.

Table 2. Description of events.

Event
No Start Date UTC End Date UTC Season Duration

(Hours)
Max Total

Rainfall (mm)
Max Rainfall

Intensity (mm/h)

1 1 June 2012 8:00 1 June 2012 23:00 Summer 16 39 28.0
2 28 May 2013 20:00 29 May 2013 8:00 Spring 14 60 39.2
3 8 July 2013 18:00 9 July 2013 2:00 Summer 9 93.8 46.8
4 31 July 2013 19:00 1 August 2013 10:00 Summer 16 50 17.6
5 28 July 2014 0:00 28 July 2014 12:00 Summer 13 85 81.0
6 6 September 2014 0:00 6 September 2014 10:00 Fall 11 52.6 21.9
7 20 April 2015 3:00 20 April 2015 19:00 Spring 17 32 6.1
8 30 May 2015 15:00 31 May 2015 23:00 Spring 33 66 19.0
9 8 June 2015 0:00 8 June 2015 13:00 Summer 14 44.2 32.0
10 27 June 2015 17:00 28 June 2015 21:00 Summer 29 57 26.0
11 28 October 2015 7:00 28 October 2015 23:00 Fall 17 49.8 11.0
12 10 November 2015 19:00 11 November 2015 11:00 Fall 17 20.4 8.0
13 13 August 2016 16:00 14 August 2016 1:00 Summer 11 45.2 28.8
14 16 August 2016 8:00 16 August 2016 19:00 Summer 12 34.4 12.8
15 23 June 2017 5:00 23 June 2017 14:00 Summer 10 65.2 25.2
16 20 July 2017 15:00 20 July 2017 17:00 Summer 3 41.6 31.4
17 27 July 2017 0:00 27 July 2017 15:00 Summer 16 15.2 7.6
18 18 November 2017 22:00 19 November 2017 8:00 Fall 11 20 11.0

The methods were evaluated by comparing the merged radar QPEs to the gauge measurements
and radar only QPEs (hereafter referred to as RO) to determine what method generates the best
precipitation estimates. First, radar-gauge merging was applied for all events (278 h) at the same time to
evaluate the performance of each technique for each radar QPE for an hourly time-step of accumulation.
Then radar-gauge merging was separately applied for the events to represent the performance by the
event. Missing gauge values were ignored during the analysis. The merged WKR QPE at the nearest
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gauge point or the combined NEXRAD radar pixel where the ground observation is collected was
compared with the reference gauge points. As commonly practiced in hydrological studies, two-thirds
of the gauges (12) were assigned for merging method implementing purpose (denoted by triangles
in Figure 1), and the remaining six gauge stations (denoted by squares in Figure 1) were used for
validation as reference gauges [61]. To get the maximum coverage within the watershed, stations that
are located a minimum of 10 km apart from each other were selected for the verification. To assess
the added value of the radar-gauge merging compared to the spatial distribution of the rain gauge
data alone, the OK method was tested as a benchmark. In addition, the performance of each merging
method for rainfall intensity thresholds was assessed to determine the effect of rainfall intensity on the
merging methods.

The merging techniques were applied to hourly precipitation amounts to keep the spatial and
temporal advantages accessible by radar as the error due to spatial and temporal variations in gauge
estimates are averaged out for more extended time steps, especially at 24 h or above or event-based
accumulation times. The selection of appropriate space and time scales for radar-gauge merging
to remove systematic bias in urban and semi-urban watersheds is always a compromise. It heavily
depends on the specific area of interest. Even though sub-hourly data provides more reliable results
during radar-gauge merging for urban watersheds, hourly precipitation was used in this study due to
several reasons. Firstly, high temporal resolution data limitation is a challenge in these two watersheds.
Only hourly precipitation gauge data is available from most of the TRCA gauge stations for the study
period from 2012 to 2017. Additionally, available NEXRAD radar data for the study area are in hourly
temporal resolution. Secondly, sub-hourly time steps can result in random errors [97]. Thirdly, adjusting
radar QPEs in long-term accumulations to be applied in short term hydrological applications is often
used in literature and proven to be effective [97–100]. Fourthly, the hydrological models have been
improved recently; however, many of them are not yet ready to use high temporal resolution (sub-hourly)
inputs because the output is always for an hour or more than that [5]. Finally, hourly streamflow
simulations using hydrological models could adequately capture peak flows at the two watersheds
because the calculated time of concentration of both basins is higher than one hour [101]. In terms of
operational flood forecasting, streamflow and possible inundated areas along a river must be sent to the
authorities and public as early as possible. High-resolution radar QPEs are costly and also could delay
the flood forecasting process because of the high model computation time when it comes to real-world
application [5].

The spatial resolution of the radar data used in the study may not be the optimal resolution for
urban hydrological applications. High spatial resolution data limitation is challenging. Nearly 4 × 4 km
resolution NEXRAD radar is available for the study area. However, Hourly NEXRAD radar with
4 × 4 km spatial resolution has shown some potential for operational use in urban scale watersheds
in the USA [102]. After pixel averaging to limit the wind drift, the resolution of WKR is ~3 × 4 km.
The pixels averaging was performed following the advice of severe weather scientists at WKR radar
station, who has a long time of hands-on experience on WKR radar QPEs. Even though spatial sampling
error increases with pixel averaging, the effect decreases with increasing accumulation time and,
therefore, relatively low at a longer time scale [52]. Moreover, on a 1261 km2 (Humber River—911 km2

+ Don River—350 km2) grid, the radar provides better spatial resolution than gauges. For Humber
River watershed and Don River watershed, the WKR C-band radar gives the equivalent of about
~75 and ~29 rain gauges across the basins, respectively. In contrast, the rain gauges yield 12 and
3 measurements (Figure 1). The NEXRAD S-band radar provides the equivalent of about ~56 and
~21 rain gauges across the Humber River and Don River basins, respectively. In addition, the use of
radar QPE resolution mentioned earlier might save on computation time, facilitating the operational
flood forecasting.

The performance of merging techniques was assessed by calculating the Pearson’s correlation
coefficient (r) (Equation (20)), BIAS (%) (Equation (21)), MAE (mm) (Equation (22)), and RMSE (mm)
(Equation (23)) metrics for reference gauges measuring ‘true’ rainfall for all events together and each
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event separately. A metric called RMSF (dB) (Equation (24)) was also calculated because the RMSE
overstates relatively significant differences that may be caused by inaccurate data [80].

Correlation (r)

Correlation =

∑
(PG − PG)

(
PR − PR

)
√∑

(PG − PG)
2 ∑

(PR − PR)
2

(20)

BIAS (%)

BIAS =

∑
PR −

∑
PG∑

PG
(21)

MAE (mm)

MAE =

∑N
i=1|Ri −Gi|

N
(22)

RMSE (mm)

RMSE =

√∑n
i=1(PG − PR)

2

N
(23)

RMSF (dB)

RMSF =

√√∑N
i=1

(
10 log Ri

Gi

)2

N
(24)

where,
PG is gauge measurement, PG is average gauge measurement, PR is radar rainfall, PR is average

radar rainfall, and N is the number of radar-gauge pairs data available.
The following flow chart (Figure 2) provides an overview of the methods and evaluation process

for this study.
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4. Results and Discussion

Figure 3 shows the average RMSE (mm), MAE (mm), BIAS (%), correlation (r), and RMSF(dB) of
the radar only QPE and merged radar QPE values for 278 h (i.e., all events) at grid point nearest to
gauge point of King City WKR C-band radar and corresponding grid cell of KBUF NEXRAD S-band
radar. The agreement between gauge observations and radar QPEs has been improved after applying
radar-gauge merging; however, the degree of improvement varies for each method as well as for each
radar QPE (Figure 3). Overall, the CDFM method appears as the best performing method followed by
KRE among nine merging techniques used in this study. Matching the CDFs of radar and gauge data
sets based on polynomial fitting 1–5 was carried out to remove the systematic differences between
two data sets. The CDFM method with polynomial fitting 3 appeared to perform best with the least
RMSE and highest correlation for all four radar QPEs. The reported average RMSE with polynomial
fitting 3 for C1, N1, C2, and N2 is 1.0 mm, 0.8 mm, 0.9 mm, and 1.7 mm, respectively. The correlation
values for C1, N1, C2, and N2 recorded after CDFM with the third-degree polynomial model is 0.88,
0.91, 0.89, and 0.89, correspondingly. The existing error after applying CDFM may be caused by the
random component of the radar QPE errors that are not removed by the CDFM method. Even though
the CDFM method is not often used in radar-gauge merging, it has been successfully applied to bias
correct different other gridded hydrological inputs to hydrological models in previous literature such
as soil moisture [103–105] and snow depths [106,107]. For example, Leach et al. [106] have reported a
significant reduction of average RMSE after applying CDFM bias correction for Snow Data Assimilation
System (SNODAS) snow depths (67.30 mm to 38.45 mm) as well as SNODAS snow water equivalent
data (SWE) (19.99 mm to 5.19 mm). A significant improvement of average NSE for SNODAS snow
depths (0.24 to 0.76) and SNODAS snow water equivalent data (−5.7 to 0.55) have also been reported.
Furthermore, a mean correlation of 0.87 ± 0.02 and mean RMSE of 0.05 ± 0.02 was reported after
CDF matching between soil moisture and ocean salinity (SMOS) microwave radiometer and local
soil moisture observations [104]. Although the CDFM method is not very common in radar-gauge
merging, results suggest that it can be successfully used to match radar QPEs with gauge observations.
The KRE method shows the second-best performance in terms of matrices calculated for all events.
In this study, a bounded linear function that can be fitted to the experimental variogram model was
used, and the data are assumed to be isotropic. Other unbounded functions stable, exponential, and
Gaussian were also explored in the study to perform Kriging. Several bounded functions, including
circular, spherical, pentaspherical, were also explored with gauge observations to find the best method
to be used for radar-gauge merging. The bounded linear variogram outperforms all other variogram
models with a recorded correlation of 0.88, BIAS of −1.05%, RMSE of 1.7 mm, and MAE of 0.8 mm.
Both KBUF NEXRAD S-band (N1 and N2) and WKR C-band radar (C1 and C2) have been enhanced
after application of radar-gauge merging; nevertheless, the degree of improvement differs for each
radar QPE.

In comparison with the radar only QPEs, the RMSE decrease is apparent for all the radar-gauge
merging methods (Figure 3). The percent decrease of RMSE compared to radar only QPEs for C1, N1,
C2, and N2 ranges from 79.85% to 90.50% after applying the CDFM method (Table 3). The NEXRAD
Level III (DPA) shows the highest percent decrease, followed by WKR C-band multi-parameter rain
rate estimator using KDP and ZDR. All radar-gauge merging methods effectively reduced the RMSE by
more than 50% for C1, C2, and N1 except for MFB-maf and MBSA (Table 3). The recorded RMSF has
been reduced for all four radar QPEs after applying all radar-gauge merging methods. In contrast to
RMSE, N2 shows relatively higher RMSF decrement compared to the other three radar QPEs, especially
after MFB-mfb, MFB-maf, RDA, and FIC-GG with greater than 70% (Table 3). As mentioned before,
RMSE inflates relatively significant differences that may be caused by inaccurate data that leads to
anomalous values. The anomalous reflectivity values caused by the bright band effect may have caused
the discrepancies in RMSE for N2. There is a high possibility for NEXRAD to measure reflectivity at
the height of the bright band because the KBUF NEXRAD measures the precipitation relatively far
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(~106 km) from the watershed making a discrepancy in sampling heights between KBUF NEXRAD
S-band and WKR C-band reflectivity measurements.
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As seen in Figure 3, the MAE is considerably reduced after radar-gauge merging for all methods
used in the study. All four radar QPEs have been improved except for MFB-mfb for C1. Reported MAE
after RDA and FIC-GG merging methods are relatively similar for all radar QPEs. Reported MAE
values for C1, N1, C2, and N2 are 2.21 mm, 2.32 mm, 2.15 mm, and 2.34 mm respectively after RDA
and 2.07 mm, 2.08 mm, 2.03 mm, and 2.21 mm after applying FIC-GG. The highest percent decrease of
MAE is recorded after CDFM with greater than 90% decrement percent for C1, C2, and N1 (Table 3).
Most of the methods effectively reduced the MAE (>50% percent decrease) for both WKR C-band and
NEXRAD S-band radar QPEs except for MFB-maf and MBSA.

The average negative (underestimation) BIAS for all radar QPEs has been reduced after applying
radar-gauge merging; however, the degree of bias reduction varies for each method as well as for each
radar QPE (Figure 3). The BIAS is relatively higher for both KBUF NEXRAD S-band radar before and
after radar-gauge merging (Figure 3). After radar-gauge merging, the KRE method shows low BIAS
with relatively persistent (average value ranges between −5% and −15%) values for each radar QPE.
The persistent bias can be adjusted through hydrological model calibration [108].

The correlation between radar QPEs and gauge measurements has considerably increased after
applying radar-gauge merging techniques (Figure 3). The correlation values after radar-gauge merging
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for all four radar QPEs are relatively high and persistent for the CDFM method compared to other
methods. The percent increase of r values is higher than 100% for all four radar QPEs after bias
correcting using the CDFM method (Table 3). After the CDFM method, a relatively complex KRE
method shows the highest correlations between radar and gauge measurements with reported r values
of 0.88, 0.87, 0.76, and 0.78 respectively for C1, N1, C2, and N2. The percent increase of r values for all
four radar QPEs for the KRE method is also higher than 100% (Table 3). The KRE method outperforms
simple radar-gauge merging methods because it uses optimal interpolation to combine gauge and
radar observations while taking the covariance structure of the data into account to reduce bias as well
as to minimize variance [52]. The MBSA method that uses a negative exponential weighing method
(Barnes’s objective analysis) to interpolate differences in radar and gauge measurements performs well
after KRE with relatively high and consistent correlation values for all four radar QPEs (Figure 3).
The correlation values for all four radar QPEs after application of MFB-mfb, MFB-maf, RDA, LOCI,
FIC-EG, and FIC-GG methods show similar and relatively satisfactory performances with r values
range from 0.40 to 0.60 and relatively high percent increments (Table 3). The simple methods such as
MFB can significantly improve radar QPEs and therefore remains one of the most commonly used
radar-gauge merging methods for operational applications, especially in many national meteorological
services [52,60,65]. Contrasting the MFB adjustment, the RDA method assumes radar QPE error surges
with distance from the radar tower because of beam broadening and overshooting, and therefore
improves KBUF NEXRAD than WKR C-band radar QPEs (Figure 3).

Moreover, after radar-gauge merging, the correlation values decrease for radar QPEs as N1 > N2 >

C2 ≈ C1. Among four radar QPEs, the correlation is much improved after applying bias correction for
N2 compared to the other three radar QPEs and ranges from 94.97% to 206.89% (Table 3). For example,
the correlation value of 0.29 between raw radar and gauge before bias correction is improved to 0.89,
with the percent increment associated is 206.89% (Table 3) after applying CDFM. Apart from the
CDFM method, all the other methods show a percent increment of greater than 90% for N2 (Table 3).
Improvement is apparent for N2 after applying KRE with recorded highest percent decrement of RMSE,
BIAS, RMSF, and MAE, and the second-highest percent increment of the correlation (Table 3). The N2
shows the worst performances compared to other radar QPEs before radar-gauge adjustment with
recorded RMSE, MAE, BIAS, r, and RMSF of 8.4 mm, 7.3 mm, −52.01%, 0.29, and 9.6 dB, respectively.

Overall, as seen in Figure 3, the CDFM and KRE methods perform better than gauge only
OK. However, the OK method provided precipitation estimates with a similar or better magnitude
of accuracy as other radar-gauge merging techniques. The OK method shows a better magnitude
of accuracy than all four radars only QPEs. The estimated matrices for gauge only OK method
display similar matrices to other radar-gauge merging techniques MFB, RDA, LOCI, FIC, and MBSA.
As mentioned before, the rain gauge network density is relatively high for both Humber River and Don
River watersheds with one gauge per 75 km2 and one gauge per 116 km2, respectively. The noticeable
accuracy of gauge only OK is attributed to the proximity of merged gauge stations to verification
gauges. The distance between the verification gauge and the nearest merged gauge in the study area
varies from 3.5 km to 9.5 km. Since gauge only OK method performs better than radar only QPEs,
radar QPEs must be adjusted with gauge measurements before using them as precipitation inputs to
get the additional benefit added by radar QPEs.
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Table 3. Percentage of change of RMSE, BIAS, Correlation, RMSF, and MAE after application of radar-gauge merging methods.

Merging Method RMSE Decrease (%) BIAS Decrease (%) r Increase (%)

C1 N1 C2 N2 C1 N1 C2 N2 C1 N1 C2 N2
CDFM 86.94 90.50 89.41 79.85 14.86 94.72 3.76 50.01 193.83 127.50 146.43 206.89

MFB-mfb 57.25 70.51 60.71 43.15 20.00 56.64 19.05 55.78 37.02 66.08 27.64 105.87
MFB-maf 42.14 25.26 25.00 22.40 20.00 56.64 10.00 42.32 52.60 66.08 27.64 105.87

RDA 58.73 60.23 64.26 63.86 89.94 32.61 92.56 30.11 49.03 54.85 32.68 99.65
LOCI 57.14 66.10 60.62 53.07 40.00 62.55 19.05 76.75 52.65 66.08 27.69 105.87

FIC-EG 77.70 79.47 78.22 66.74 96.96 10.00 94.90 61.55 62.81 51.68 39.30 94.97
FIC-GG 68.32 79.31 68.66 59.21 89.29 41.72 91.68 13.54 55.70 49.39 30.11 98.09
MBSA 37.11 49.48 50.00 28.57 20.00 7.09 4.76 61.55 123.40 70.70 86.48 116.85
KRE 68.14 53.23 57.50 78.31 67.90 71.42 51.23 78.85 191.87 118.66 111.11 170.57

Merging Method RMSF Decrease (%) MAE Decrease (%)
C1 N1 C2 N2 C1 N1 C2 N2 1.00

CDFM 54.46 58.52 59.94 9.78 91.06 94.17 91.98 84.23 25.00
MFB-mfb 24.71 21.22 11.58 70.32 70.61 73.28 75.36 67.04 50.00
MFB-maf 30.00 11.09 44.33 77.50 3.07 46.99 35.30 72.10 75.00

RDA 31.78 15.81 13.91 75.88 69.38 59.36 68.65 68.04 100.00
LOCI 28.26 19.99 21.33 69.05 68.40 61.87 68.02 57.11 125.00

FIC-EG 33.13 5.45 23.60 25.80 72.21 63.59 71.31 52.23 150.00
FIC-GG 40.52 16.38 31.87 73.81 71.35 63.59 70.34 69.80 200.00
MBSA 3.95 17.81 3.65 65.66 43.82 8.45 45.98 33.76 (%)
KRE 52.16 18.97 44.71 63.07 76.46 61.83 55.14 78.00



Water 2020, 12, 1494 17 of 29

Figure 4 compares the box and whisker plots of gauge measurements with each of the radar QPEs
after the application of radar-gauge merging. The interquartile range (IQR) for merged radar QPEs is at
the same level as reference gauge measurements and overlaps with one another for C1, C2, and N1 for
all radar-gauge merging methods. Additionally, the median of C1, C2, and N1 lies within the IQR of the
gauge measurements. The first quartile, median, third quartile, and the range of C1, C2, and N1 nearly
tie-up with gauge measurements, implying that all radar-gauge merging methods perform evenly well
for C1, C2, and N1. The first quartile, median, third quartile, and the range of N1 after applying CDFM
methods match the gauge measurements implying that N1 with the CDFM method can be used as an
additional source of precipitation for hydrological model calibration with high confidence. The IQR
for N2 does not overlap with reference gauge or with C1, C2, and N1 for all radar-gauge merging
methods except for the KRE method. For example, after FIC-EG correction, the IQR for N2 is entirely
above the reference gauge measurements as well as C1, C2, and N1. Additionally, its median always
lies either below or above IQR of gauge and other radar QPEs except for KRE. Therefore, it can be
concluded that radar-gauge merging methods work relatively better on C1, C2, and N1 compared to
N2. However, after applying KRE, the IQR of N2 overlaps with gauge measurements and other radar
QPEs. The median after KRE bias correction lies within IQR of the gauge data as well as C1, C2, and
N1. Therefore, the KRE method performs well for all radar QPEs compared to other methods.

As mentioned above, the N2 QPEs are unstable for radar-gauge merging methods except for
KRE. The percent detection (d) of precipitation was calculated for radar only QPEs using the following
equation to find out the capability of each radar QPE to capture the precipitation compared to gauges.

Detection (d)

d =
nPR > 0, nPG > thresh

nPG > thresh
× 100 (25)

where,
PG is gauge measurement, PG is average gauge measurement, PR is radar rainfall, PR is average

radar rainfall, nPR > 0, nPG > thresh, number of radar-gauge pairs that the radar records precipitation
and the corresponding gauge observation exceeds the specified threshold (0 mm); and nPG > thresh,
number of radar-gauge pairs where the gauge value exceeds the specified threshold (>0 mm).

The calculated percent detection for C1, C2, N1, and N2 are 84%, 84%, 78%, and 58%. The detection
is relatively higher for WKR radar only QPEs than NEXRAD radar QPEs. The detection for N1 is better
than N2. The WKR radar measures the precipitation at a distance of 37 km away from the greatest
edge of the watershed and therefore shows high detection whereas the KBUF NEXRAD measures the
precipitation ~106 km away from the watershed resulting lower detection of precipitation. The low
detection of N2 partially causes the worst performances compared to other radar QPEs used in the
study. However, the KRE method uses radar observations of rainfall to assess the errors using Kriging to
interpolate between the rain gauge observations and then condition the Kriged gauge field accordingly.
Unlike bias reduction methods, the KRE method uses the spatial association of the radar rainfall field
to support the interpolation of gauge measurements. Since it interpolates rainfall between radar and
gauges, the missing values are infilled during the radar-gauge merging process. The spatial variability
observed by the radar is retained while reducing variance using the optimal information content in the
vicinity of the gauges where they provide accurate information on the exact rainfall field using Kriging
interpolation. The infilling using Kriging has caused relatively significant improvement of N2 radar
QPEs compared to other radar QPEs. It is beneficial, especially for hydrological model calibration,
where a continuous precipitation time series is often necessary. As suggested by Zhang et al. [109],
the lack of detection is difficult to address during the calibration of hydrologic models. Therefore,
the KRE method is recommended if the original data suffers from missing data.
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Figure 5 shows the hourly radar rainfall accumulations before and after radar-gauge merging
for all four radar QPEs for the 278 h of analysis (i.e., all events) and plotted against the gauge hourly
accumulations. The scatter plots illustrate the relative strengths of each radar-gauge merging method
at different rain intensities. The unbiased radar precipitation estimates are indicated by the one-to-one
line (dotted line). In general, hourly precipitation values are more clustered along the one-to-one
line after the application of radar-gauge merging when compared to the radar-only QPEs. Therefore,
all radar-gauge merging methods are effective in adjusting radar QPEs to match with observed gauge
measures. The CDFM and KRE methods generally perform well compared to the gauge observation
followed by MBSA. However, the KRE method slightly overestimates the gauge measurements.
The QPEs are much closer to the one-to-one line for all four radar QPEs for precipitation intensities
ranges from 1 mm/h to 10 mm/h, especially after the application of CDFM methods. The KRE method
performs reasonably well for all intensities as well as for all four radar QPEs. However, the agreement
is relatively low for precipitation less than 1 mm/h and has become progressively worse with higher
rainfall intensities. In heavy intensity rainfall events, the path attenuation affects reflectivity values and,
ultimately, radar estimates precipitation [33]. Even though attenuation is addressed using the ZPHI
algorithm for all methods, the attenuation correction can be possibly overshadowed by the extensive
radome attenuation at WKR C-band radar station, resulting in poor rainfall estimates [33]. The CDFM
method performs reasonably well for a wide range of intensities, including intensity > 10 mm/h.
However, the CDMF method overestimates lower accumulation amounts. A similar overestimation is
observed for the remaining radar-gauge merging methods as well. Even though a degree of scattering
occurs between radar QPEs and gauge reported precipitation for hourly data after application of
radar-gauge merging, less scatter is observed for N1 compared to C1, C2, and N2. Even though N2
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shows acceptable performance after application of CDFM radar-gauge merging, some inconsistencies
at the medium and higher intensities exist. This inconsistency may result due to the lack of detection
of precipitation from NEXRAD S-band radar compared to WKR C-band as the two watersheds are
closer to the WKR C-band radar than the KBUF NEXRAD radar. Although the WKR radar suffers
from attenuation of return echoes, the detection is high as WKR radar measures the precipitation
at a distance of ∼37 km at the furthest edge of the watershed. For N2, the low detection has been
successfully addressed by applying the KRE method as most of the values after KRE correction plotted
close to the one-to-one line.
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The average correlation between WKR C-band and KBUF NEXRAD S-band radar QPEs and
gauge observations before and after radar-gauge merging for each event are presented in Figure 6a–d.
Overall, the correlation is relatively higher for all four radar QPEs (C1: 0.24–0.96; C2: 0.25–0.96; N1:
0.45–0.97; N2: 0.10–0.94) compared to radar only QPEs (C1: 0.01–0.80; C2: 0.00–0.79; N1: 0.05–0.74; N2:
0.0–0.46) after applying radar-gauge merging methods. The correlation values vary from event to event.
The average correlation for 18 events for QPEs from C1, C2, and N1 after applying the CDFM method
is superior to other radar-gauge methods for all events followed by KRE and MBSA (Figure 6a–c).
The correlation values vary considerably between different radar QPEs as well as between different
events before the application of radar-gauge merging. As can be seen in Figure 6, after radar-gauge
merging, the correlation values are approximately similar for all radar QPEs as well as for all events,
especially after CDFM. Correlation values range from 0.80 to 0.99 for all events after applying the
CDFM method for C1, C2, and N1. However, for N2, the CDFM method shows some inconsistencies
(Figure 6d), and this may be due to the lack of detection, as discussed before. The KRE method shows
a higher correlation with gauge data compared to other radar-gauge merging methods followed by
CDFM and MBSA for N2 (Figure 6d). Even though MFB, RDA, LOCI, FIC methods show higher
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correlation values after radar-gauge merging for 278 h (i.e., all events) compared to radar only QPEs,
relatively low or no improvement is observed for each event separately for C1, C2, and N2. However,
all radar-gauge merging techniques show a considerable increase in correlation values for four summer
events 13, 14, 15, and 16 and relatively low but substantial improvements for summer events 3, 4, and
10 for N1 (Figure 6b). The radar-gauge merging is relatively effective for events in summer than fall
and spring, especially for N1. The performances of radar-gauge merging methods and, eventually,
the quality of merged rainfall products is affected by the quality of original radar QPE products [68].
The recorded RMSE and Correlation values before radar-gauge merging for N1 is relatively good
compared to other raw radar QPEs of C1, C2, and N2. This quality of N1 radar QPEs may have affected
for successful merging in N1. On the other hand, the bright band effect might have affected the quality
of radar QPEs in early spring, and late fall, and apparently, the radar-gauge merging is not able to
improve the radar precipitation estimates successfully.

Figure 6e–h shows the average RMSE between radar-gauge hourly accumulation pairs before (RO)
and after applying radar-gauge merging for radar QPEs for each event separately. Calculated RMSE
shows the same trend as the correlation values and varies from event to event. Generally, the RMSE
is relatively lower for all four radar QPEs compared to raw radar QPEs after applying radar-gauge
merging. The average RMSE for QPEs from all four radar QPEs after applying CDFM method (C1:
0.4–12.0 mm; C2: 0.3–13.0; N1: 0.6–12.1 mm; N2: 0.0–13.0 mm) are superior to other radar-gauge
methods compared to radar only QPEs (C1: 1.7–18.0 mm; C2: 3.1–15.1 mm; N1: 1.1–15.0 mm; N2:
1.2–15.0 mm) for all events. The RMSE values vary substantially between different radar QPEs as well
as between different events before the application of radar-gauge merging. Even though RMSE is
reduced after radar-gauge merging, RMSE is nonetheless high for high-intensity events (e.g., events 3
and 5) and relatively small in low-intensity events (e.g., events 7, 12, and 18). Although radar-gauge
merging reduces the RMSE, above mentioned limitations in radar precipitation estimates [23,41]
impede the accuracy and reliability of radar QPEs.

As indicated in the matrices for 278 h (i.e., all events), the gauge only OK method shows relatively
better performances than radar only QPEs for separate events in terms of r and RMSE (Figure 6).
After applying the CDFM, KRE, and MBSA merging techniques to C1, C2, and N1 show better
performances than the OK method. As stated before, a relatively high dense gauge network may
result in a better magnitude of accuracy for OK than MFB, RDA, FIC, and LOCI radar-gauge merging
techniques. The outperformance of rain gauge alone OK could be due to the ability of the high-density
gauge network to describe the spatial variability in the precipitation field. For every event, radar QPEs
adds additional value only after applying radar-gauge merging. Therefore, radar only QPEs must be
adjusted with the appropriate merging technique before using them as additional precipitation source
for event-based hydrological models for operational flood forecasting.
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Figure 7 shows an example of radar-gauge merging results after applying the KRE method.
The figure shows the spatial distribution of accumulated precipitation derived from radar-gauge
merging using KRE for the event 3 took place from 8 July 2013 1800 UTC to 9 July 2013 0200 UTC.
It compares the difference between the gauge (G), NEXRAD radar only QPEs (RO), and KRE merged
QPE (KRE). The KRE precipitation field display features from both gauges and radar only QPE.
Additional information is reported after applying the KRE method in the areas where the gauges’
record precipitation, but the radar only QPEs is uncertain. The agreement between the precipitation
recorded at the reference gauges and radar QPEs is higher than that of the radar only QPEs, especially
in the South-Eastern parts of the watershed.
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Besides the factors discussed above, the selection of an optimal radar-gauge merging method
is influenced by location-specific environmental and operational factors [53]. Therefore, it is vital to
understand the impact of factors such as the density of the gauge network, storm characteristics,
proximity to radar tower, response time (time of concentration) of the watersheds, and the time step
of adjustment to select appropriate radar-gauge merging technique. The rain gauge density of the
semi-urban Humber River and urban Don River watersheds are relatively high, with rain gauge
densities of one gauge per ∼75 km2 and one gauge per ∼116 km2, respectively. According to McKee
and Binns [53], rain gauge density can play a significant role in determining the optimal radar-gauge
merging method. Highly dense rain gauge networks can sometimes characterize the spatial variability
in the rainfall field and hence adequately increase the confidence in radar-gauge merging methods.
For example, Goudenhoofdt and Delobbe [52] studied the sensitivity of radar-gauge merging methods
to rain gauge density and concluded that the decrease in density affects spatial adjustment methods
than simple bias reduction techniques. As shown in this study, both bias reduction techniques (CDFM,
MFB, MBSA, RDA) and error variance minimization techniques (KRE) produce better results because
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of the high dense gauge network. The characteristics of the storm, such as intensity, also affect the
accuracy of radar-gauge merging [110]. The results of this study also suggest that only the CDFM
method and KRE method show better agreement between observed gauge measures and merged radar
QPEs for a wide range of intensities; however, the agreement is deteriorated for all other methods
with increasing the intensity. Furthermore, the proximity to the radar tower affects the accuracy of
radar-gauge merging in two separate ways. Firstly, the accuracy of the radar-estimated precipitation
and the radar-gauge merging methods deteriorate with increasing distance from the radar tower.
Secondly, low detections of KBUF NEXRAD radar compared to WKR C-band radar due to beam
broadening, beam overshooting, and beam attenuation affect the raw radar QPE quality, radar-gauge
merging techniques, and ultimately merged radar QPEs. After applying RDA to KBUF NEXRAD
radar, a substantial improvement was observed compared to WKR C-band radar, especially in terms of
correlation. As Gjertsen et al. [80] suggested, relatively small urban basins with a time of concentration
on the order of hours are highly benefitted from radar QPEs that require rainfall estimation on small
spatial and temporal scales. Therefore, the time step of the radar-gauge merging plays a vital role
in selecting radar-gauge merging methods for urban watersheds. For more extended periods (e.g.,
daily or event-based temporal resolutions), the magnitude of spatiotemporal sampling errors become
stable because error fluctuations are averaged over time [53,80]. Even though the errors are reduced,
short-term variations are missed affecting the accuracy of merged radar QPEs. In this study, an hourly
time-step is used, because the study targets operational flood forecasting in urban watersheds where
response time is on the range of hours. Since radar-gauge merging is performed in hourly time-step,
spatially dependent bias correction method KRE works better than bias reduction method MFB.
The variations between radar and gauges are more pronounced in shorter time steps, and therefore
more weight is placed on the gauge observations when error variance methods such as KRE are used.
Bias reduction methods such as MFB averaged out these variations and hence produced less accurate
merged radar QPEs compared to KRE. Apart from all the above-mentioned factors, data management,
and computational requirements must also be considered. The error variance methods, such as KRE,
involves higher computational power than simple methods such as MFB. Because of these factors,
the results from this study are transferable only between relatively small urban watersheds with similar
environmental and operational factors but not between large rural basins.

5. Conclusions

Various methods combining QPEs from the dual-polarized WKR C-band and KBUF NEXRAD
S-band operational radars and precipitation data from a rain gauge network have been implemented
for two watersheds in the GTA, Ontario, Canada—the semi-urban Humber River, and the urban Don
River. A comparison of nine radar-gauge merging techniques is conducted using 18 rainfall events,
occurring from 2012-2017, totaling 278 h (i.e., all events), against an independent gauge network of
hourly rainfall measurements. Additionally, this study has investigated the impact of the quality
and quantity of different radar QPEs on the performance of radar-gauge merging. Several statistical
measures, Correlation (r), BIAS (%), MAE (mm), RMSE (mm), and RMSF (dB), have been computed to
evaluate the performance of selected radar-gauge merging methods.

Based on the verification study, all radar-gauge merging methods outperformed radar only
QPEs alone. However, performance varies for each radar method as well as for different radar QPEs.
The CDFM method with polynomial fitting 3 is the best performing method, followed by KRE. Since the
KRE method uses information from radar to interpolate gauge data, it can be effectively used to merge
radar QPEs with missing gauge values. The persistent bias reported using the KRE method could be
addressed adequately during hydrological model calibration. If the distance from the radar tower to
gauges in the watershed changes drastically, the RDA method that takes distance from the radar tower
into account during radar-gauge merging is recommended. A relatively simple MFB method shows
satisfactory performances along with reduced computational demand. Since radar-gauge merging
primarily addresses the systematic errors, the inevitable random error component of the radar QPE
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errors is responsible for most of the existing differences between merged radar QPEs and reference
gauge observations. The gauge-only OK method outperforms radar only QPEs, as well as several
merged QPEs because of its ability to characterize the spatial variability in the precipitation field using
the high dense gauge network.

The effectiveness of various radar-gauge merging methods and, ultimately, the quality of merged
radar QPEs are affected by the quality and quantity of the radar only QPEs. Both NEXRAD S-band
and WKR C-band radar QPEs have been improved after radar-gauge merging; however, the NEXRAD
Level III (DPA) showed the most improvement. For that reason, all types of corrections for errors
such as attenuation, VPR effect, etc. must be applied to improve raw radar QPEs before applying
radar-gauge merging. Both merged NEXRAD and WKR radar QPEs show acceptable agreement
between reference gauges and, therefore, can be used as an additional data source for hydrological
model calibration with high confidence. All merged radar QPEs performed well in predicting for
low and medium intensity precipitation from 1 mm/h to 10 mm/h. The CDFM and KRE methods
show better performances for a wide range of intensities; nevertheless, performances deteriorate with
the increasing rainfall intensities. The event-based evaluation points out that all merged radar QPEs
outperformed radar only QPES alone for all 18 events. However, performances improve considerably
after applying CDFM, KRE, and MBSA. Radar-gauge merging performed best in the summer season
when contamination due to the bright band effect is minimal compared to late fall and early spring.

Since this study addresses systematic spatio-temporal errors at an hourly time step, radar-gauge
merging would aid in developing accurate and continuous precipitation data for hydrological model
calibration for flood forecasting purposes at relatively small urban and semi-urban watersheds with
a time of concentration on the order of hours. Although the results presented in this study provide
some direction on the best methods to use for radar-gauge merging, there is no guarantee that similar
performances will be obtained in all other locations in the radar domain. Therefore, it is recommended
that additional information about the environmental and operational factors such as rain gauge
density, rainfall intensity, proximity to radar tower, the response time of the watershed, and the time
step of the radar-gauge merging, be used to select the best-merged radar estimated precipitation.
In the future, evaluation of the accuracy, as well as computational demand for radar-gauge merging
methods with hydrological models used for operational flood forecasting, is recommended. In addition,
the radar-gauge merging methods must be re-evaluated when sub-hourly data is available.
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